MACHINE LANCGUAGE

PROGRAM

NG

SHARP PC-1500 & RADIO SHACK PC-2

POCKET COMPUTTERS

@ Copyright 1983 POCKET COMPUTER MEUSLETTER

MACHINE LANGUAGE PROGRAMMING
THE SHARP PC-1500
AND RADIO SHACK PC-2
POCKET COMPUTERS

Hidden beneath the surface of pocket computers
such as the Sharp PC~-1500 and Radio Shack PC-2
models is a secret world of unigue and powerful
capabilities. Alas, this world is only open to the
initiated who have the willingness and stamina to
study and 1earn /macine /18nguage programming!

Machine language programming (or MLP as it
will frequently be referred to here) is really what
makes the entire system work. Indeed, the BASIC
language itself and all the capabilities of the
pocket computer are programmed in this most
fundamental language of the MiCIoprocessor.

MLP is a complex subject. The reason computer
languages such as BASIC were developed is
because the average user of computers would like
to be able to use them easily. Such people do not
want to be bogged down in a myriad of technical
detalls about how the computer itself operates.
Details that have little to do with solving the
problem at hand. They want to be able to quickly
express to the computer how to perform a specific
set of operations in order to obtain desired
answers. The trade-off they make (freguently
without knowing it) is one of speed of programming
versus speed of computer operation. The speed of a
computer, compared to that of the human mind, is
vastly superior. Allowing it to take hundreds or
even thousands of times longer than its most
efficient arrangement would require is often
unnoticeable to the casual user. Thws, the average
user has little regard for the fact that the PC may
take a thousand times longer to execute a program
written in BASIC than it does to perform the same
procedure when written in machine language.

Wwhen one programs in machine language one
has to be concerned with a 1ot of technical details.

PC-1500/PC-2 Hachine Language Programming (Issue 1 of 4)

These details often have little to do with solving
the overall probiem for which the computer is
being used. If, for example, one has to perhaps deal
with 20 or 30 parameters when prograrnming a
computer using a 1 such as BASIC, one
might have to deal with 500 to 1000 pieces of
information (instructions, storage locations,
sequences, procedures, etc) in order to
successfully program the same problem using
machine language. The reward for being able to do
this, however, might well be an overall increase in
the speed at which a specific problem could be
solved. This improvement in the rate at which a
specific task might be accomplished can often be
measured in orders of magnitude, such as ten, one
hundred or a thousand of times faster

Access to the cornputer at the machine level
can also open a whole new world of opportunities.
This is especially true if one wants to deal at the
hardware level in such areas as using the PC to
perform real-time cantrol operations. Generally
these kinds of specialized applications cannot be
successfully- approached wusing high level
languages, such as BASIC, because of speed or
physical interfacing restraints.

APieceata Time

As complex as machine language programming can
be, it is possible to make the chore of leaming how
to program in machine language be relatively easy
to bear. The trick lies in breaking down the
operation of a computer into its simplest parts.
This makes each section easier to understand.
Eventually the pieces can be placed back together
as one gains familiarity with the fundamental
aspects,

How simple can we get? How about defining a
computer as consisting of two essential divisions:
(1)aCPU and (2} memory.

CPU [y MemoTy

T - S S R S

The CPU (Central Processing Unit) in a pocket
computer is a microprocessor. That is, it is an
integrated circuit that is the heart of the system. In
the Sharp PC-1500 the CPU integrated circuit is
referred to as an LH5801. It is a proprietary device
made especially for that pocket computer. (Since
the Radio Shack PC-2 is simply a custom-made
version of the Sharp PC-1500, unless otherwise
noted in this text, operation of the PC-2 can
assumed to be the same.) The nomenclature
1.H5801 has no special significance to anyone other
than the manufacturer. It is essentially nothing
rnore than a part number to identify that particular
type of electronic device.

A CPU such as the LH5801 is able to do a
number of essential operations. But, basically what
is does is transfer information to and from memory.
Part of what it transfers is its own instructions.
That is, the directives that tell it what to do!

The memory elements in a computer hold two
basic types of information. Instructions that tell
the CPU what to do and data that is used to solve
problems. To the uninitiated it is impossible to tell
which parts of memory do what. You will soon
becorne among the initiated.

AStepataTime

A CPU essentially consists of a number of
registers, some electronic paths that interconnect
these registers, and an array of logic-performing
circuits that control what happens within and
between the registers.

cPuU

Registers

Memory essentially consists of an orderly
arrangerment of registers and a method of
addressing or selecting each register. In theory
there could be up o 65,536 registers (64K} in the
main memory bank of a PC-1500, each register of

which would have a unigue address inthe range D -
65,535. (Because of the manner in which electronic
circuits operate, numbering of items such as
registers and cells within computers always start
with zero.} Memory registers in a PC-2 have eight
cells. Each cell can assume the binary state of one
or zero. With eight cells making up a register, 256
different binary patterns or values (ranging from 0
through 255) can be stored in each memory
register.

Memory

Address 0
Address 1

Address 2

tddress 3

===\
P
10
|
0

©]0]|0]0

Address 4

Address 5
dddress 6

Address 7

°
=
olojelelelelolo] -

Tjelifefl

The Program Counter

The first thing that has to happen in order for
the CPU to communicate with memory is for it (the
CPLU) to have an "address” specifying a particular
memory register with which it is to transact its
pusiness. Would you believe that there is a special
register within the CPU whase sole task is tokeep
track of where the CPU should obtaln its next
“sommurications” or instruction? Yep! Andithasa
very apt name: the program counter The program
counter ina PC-1500 is 16 bits wide. Now it just so

s that a register of 16 binary cells can
represent up to 65,536 patterns -- in the range 0
through 65,535 -- which (coincidently, eh?) turns
out to be the maximum number of memory
registers that a pocket cormputer of the type being
discussed can theoretically have in its primary
memory banks. Thus, the program counter can in
principle hold all the values that could translate
into valid memory register addresses.

whenever the CPU needs to obtain 3
instruction or an instruction-related piece of

2 nachine Language Programming Copyright 1983 - POCKET CUMPUTER NEWSLETTER

information from memory, it looks at the contents
of the program counter to ascertain the

appropriate memory address.
po [N PRI CONTERZZ//7A — e
CPuU
[1O11]©]] (O] | |O] woress 0 ¢—
11011]0]1]0] 1 O] Awdress 1 4—
l s] Oll10 O} nddress 2 44—
{1 1110 O rddress 3 44—
I@I@I@I@Mﬁesﬂ*“‘
11O]11]0]1]0] 1 |O] rvoress s
|@|°i O]] |©O] rsdress ¢
110] 1 |©] 1 |©] | 1©] ~udress 7
Memory

Once started, the operation of the program
counter is essentially automatic. Whenever an
instruction is "fetched” from a memory location,
the value contained in the program counter is
automatically incremented to "point” to the next
memory address. There are, however, a few
exceptions to this automatic incrementing
sequence. A few special classes of directives can
alter the contents of the program counter. Can you
guess these classes? That is hardly a fair question
at this point, but as you will eventually learn in
getail, the classes of instructions known as " jumps”
and "calls” can change the contents of the program
counter.

How does a computer such as the PC-1500 get
started? well, one of the first things that happens
when power is applied to the unit is that the
program counter is set to contain the address in
memory where the CPU is 1o begin finding machine
language instructions!

The Accumulator

There is an 8-bit register in the CPU that can sort
of be considered as a "jack-of-all-trades.” This
register is able to hold information while the CPU

Copyright 1983 POCKET CONPUTER MEUSLETTER

is in the process of performing other operations —-
such as fetching another instruction from mernary.
It also works in conjunction with other intemal
CPU registers such as the arithmetic and logic unit
(ALU). In this regards it is capable of performing
mathematical operations such as addition,
subtraction and Boolean logic (OR, NOT, AND,
etc.. when a series of calculations are being
performed this register can directly accumuiate
intermediate results. Hence the derivation of its
name: scolamuiator.

PC PROGRAN COUNTER

NN

cPU

One of the most freqguent uses of the
accumulator (which will frequently be abbreviated
as the A register in this text) is simply toserveasa
"scratch pad.” That is, it is simply used to hold a
number or binary pattern while the CPU obtains
another operator. The accumulator in the PC-1500
can be loaded with a value obtained from memory
or from anotner CPLU register.

when directed to do so, the value in the
accumulator can be added or subtracted from the
value of another CPU register or a location in
memory. It can also perform logic operations with
the contents of other CPU registers or memory
locations.

Also, certain instructions can cause the
contents of the accumulator to be shifted to the
right or left. This capability serves many useful
purposes. It is one way in which muitiplication or
division can be implemented.

You will deal with the accumuiator frequently
when doing machine language programming. There
will be much to learn about its versatility.

Flags

Flagsare single logic cells that can assume one of
two states: set or reset (the latter scmetimes being
referred to as "cleared"). The PC-1500 has five
separate flags. While each flag operates
independently, as far as the programmer Is
concerned they can be viewed as being grouped in
the five least significant bit positions of an 8-bit
fiag register. This concept is important because at
various times it will be important to be able to save
or restore the status of all five flags at one time.

fachine Language Programming 3

B e oty T —

Special instructions enable the flag register to be
manipulated as an entity to accomplish this
objective.

while the flags may be viewed as residing
within one register, each flag serves a specific
purpose and is operated independently of the other
flags. These flags are used to indicate the results
of various operations following the execution of
certain classes of instructions. It wili eventually
become necessary for a prospective machine
language programmer to thoroughly understand the
purposes of each flag. However, for now a brief
introduction to their functions will suffice.

Pe PROGRAN COUNTER
A ACCNULATOR 177/ FLAGS A/ /A Fl—
cPU
HV ZIZC
i1 Tt]e—

)] (el)

FLAGS REGISTER

The zero flag(Z flag) is used to indicate if the
contents of a register are zero (flag set) or if the
contents of a register are non-zero (flag cleared).
Note the seemingly inverse relationship here!

The carry flag (C flag) is set when there is a
carry from the most significant bit of a register
and cleared if there is no carry during an addition
operation. During subtraction it is set if thereisno
borrow and cleared if there is a borrow. The carry
flag can also be considered as an extension of a
register during certain types of operations such as
shifts and rotates. It can alsobe i tly set
or cleared by special instructions so that its status
can be defined at times determined by the
pProgrammer.

The ralf carry Flag (H flag) is set when there is
a carry from the least significant four bits of a
register during certain types of decimal arithmetic
operations. It is cleared when a carry does not
occur from this lower half of a byte. (The eight
binary cells that make up a register are sometimes
referred to as a & Did you know that half of a
byte is sometimes referred tG as a nibble? No joke!}

The overflow Alag(V flag) is set or reset as a
function of the carries from the most significant
two bits of a register. It has value in certain

mathematical procedures. Many ML programmers
never have occassion to make use of this particular
flag.

The Internypt enable flag (1 flag) is used to
enable or disable a type of CPU interrupt
capability provided for the LHS801 CPU. Most
programmers will not have to be concerned with its
applications.

Data Pointers and General Purpose Registers

The LHS801 has a whole group of registers that
may be used for several purposes. While not having
quite the versatility of the accumulator (in that
they generally lack “calculating” capabilities),
never-the-less they come in very handy.

There are six of these geweral pupose 8-bit
registers. However, they can be paired to form
three sets of 16-bit aats painter registers. when
serving as a data pointer the contents of the
register may be used to ingicate an address in
memary where data is to be obtained or deposited.
Note that when coupled together to form a 16-bit
register they can hold any address in the range 0 -
65,535, thus they can point to any vatid address in
memary that the CPU is theoretically capable of
accessing.

Z0
PG PROGRA COUNTER
A | ACCUNULATOR FLAGS F
uH U U
XH X X
M Y YL
CPU

when not being used as data pointers, these
registers may be used to temporarily store and
manipulate information in 8 or 16-bit formnat.
These registers are rather arbitrarily referred to as
the X, ¥ and U register pairs when referenced
as 16-bit data pointers. Since each 16-bit pair can
also be manipulated as two independent 8-bit
groups, each may be referred to as consisting of a
high byte and a low byte, Thus the designations XH
& XL, YH & YL and UH & UL when the 8-bit
registers are referenced as separate entities.

It is worth noting that while a data pointer may
be the same 16-bhit size as the program counter,
their functions are different. ‘Remember, the
pragram counter aiways tells the CPU where to
obtain the next Jwstretion in memory. On the
other hand, a data pointer register may be used to
tell the CPU where to obtain gglg from memory.
The two operations are quite distinct and should

4 Nachine Language Programming Copyright 1983 POCKET COMPUTER NEWSLETTER

not be confused,
The Stack Pointer

The siack pointer is a spectal 16-bit register that
has a variety of interesting uses. Basically, what it
does is point to a specific address inmemory where
information is to be stored on a temporary basis.
The stack pointer register is designed such that
each time it is utilized by an instruction, its
conterts are incremented or decremented
depending on the type of instruction being
performed. This operation provides a method
whereby information may be pushed into a storage
area in mernory oI pggped out of that region back
into designated CPLI registers.

PC PROGRAN COUNTER

A [acconuAToR FLAGS F

Uit 1.-' UL

XH X AL

¥H Y YL

5PN STACK T}INTER FA
cPu

A frequent use of the stack pointer is to save
the contents of the program counter {remember
what it does?) when a program branches from a
rmain sequence of instructions to aminor sequence.
This process is generally known as subroutining. By
saving the value of the PC In an area of memory
indicated by the stack pointer, the CPU is able to
eventually resume operations from the point where
the subroutine was first catled.

Wwhile all of this may seem complicated at this
time, don't worry about the details, just grasp the
concept. The details of stack pointer operation will
be presented when it is appropriate to understand
it in depth.

Internal (User Transparent) CPU Registers

The registers that have been discussed are all in
some manner or ancther accessible to the
programmer. That is, by giving the proper
instructions or sequences of such directives, the
contents of those locations can be directly
controlled,

There are a few internal registers in the CPU
that do a lot of work that is effectively hidden from
the view of the user. For instance, there are
registers that perform certain types of arithmetic
operations. As @ group these comprise and are

rally referred to as the arithmetic logic unit
ALU for short) There are also registers that
control the overall operation of the CPU. One of

Copyright 1983 POCKET COMPUTER MEWSLETTER

the most important of these is known as the IR or
Instruction register This register holds the binary
pattern representing an instruction (fetched from
memory) while surrounding circuitry "gdecodes” the
instruction. This results in the CPU performing the
operation dictated.

PC PROGRAt COUMTER
A ACCUMULATOR FLAGS F
UH U W
XH X XL
YA Y YL
5P STACK POINTER

1l Internal ALU Registers @ : ::

cPU

It is often worthwhile remembering that the
initial description of a computer as consisting of a
CPU and memory is not inaccurate. All a computer
really does is fefc/r an instruction from memory
and then execuwie the directive it receives. The
beauty and power of the computer comes from the
fact that it can perform a typical fetch and execute
cycle at the machine language level in just a few
rillionths of a second. That is the case even for a
tiny hand-held package such as the PC-1500!

AnInstruction at a Time

Just as a computer executes one instruction at a
time, a potential machine language programmer
should plan on learning about one instruction at a
time. while the PC-1500 can execute several
hundred different instructions, don't be
faint-hearted. Many of the instructions are
identical except for the fact that they operateona
different register. Thus, once the concepts for a
fundamental class have been learned, you will
know how to use a whole group or series of
particular directives.

A Treatise on Mnemonics

Mnemonics (pronounced “knee-mon-ics”) are
memory aids. That is they are a shorthand way of
writing machine language directives. They are
generally developed in such a way that they help
the programmer remember what each instruction
does.

The novice programmer is sometimes confused
about the true significance of mnemonics. It is
important to realize that to a computer at the
operational level, there is no such thing as &
mnemonic. All the CPU ever sees as it processes
instructions are the binary patterns that represent
gach particular directive. Remember, the CPU has
an instruction "decoder* network (circuit) that

Machine Language Programming 5

- 5

translates each different type of pattem into a
sequence of events to accomplish a particular
objective. Unfortunately, people do not appear to
have such efficient gecoder networks in their
heads wihe? it comes to manipulating binary
patiems. However, the human mind is quite adept
at handling alphanumeric pattems {probably
because that is what they are trained or
"programmed” to recognize) People have 10
program computers. Hence, we need to have an
efficient method of remembering what kinds of
instructions our computers can perform and of
writing those directives down so that we can easily
tell what it is we are doing.

Mnemonics are completely artificial, abstract
and arbitrary deflnitions of machine language
instructions. Anybody that wants to can create and
compile their own set of mnemonics for any
computer. The only reason for having any
standardization when it comes to using mnemonics
Is so that other people with whom we converse and
communicate can readily understand what it is we
are talking about.

Now it happens that most CPU manufacturers
get the honor of promulgating a set of mnemonics
to properly represent the instruction set of their
beloved CPU. After all, they want people to use
their machines. To make life easier on prospective
customers, they generally are happy to put forth an
gasy way to remember all the various machine
language instructions that their CPU can perform.,

Of course, there are always exceptions, aren't
there? Wwhen the Sharp PC-1500 was first
introguced, it seems that the manufacturer oid ot

want consumers to know how (o program it in
machine language! They thought BASIC
programming would be good enough for everybody.

Alas, they were incorrect in their reasoning. A
large group of purchasers were indeed interested in
utilizing the little PC at its most powerful level.
Some of these users, in particular a8 group of
POCYET COMPUTER NEWSLETTER readers,
worked together to decipher the machine language
instruction set that the PC was apparently capable
of performing. This was dene entirety by analyzing
the binary pattems stored in the ROM {read-only
memary) portions of the PC.

The principal investigator of this group, AorZin
Rober, created a set of original mnemonics to
represent the instructions that the group
discovered. The rmnemanics he created are the ones
used in this text. They are referred to herein as the
Rober Mremanics.

Here is some more inforrmation that may help
you to further understand the function of
mnemonics. If, after you have designed a machine
language program using mnemonics, you plan on
having your PC execute your directives, you will

need to perform a transiation from the mnemonics

use 1o the binary pattermns (machine code)
utitized by the CPUL. To do this(for small programs)
you will simply use a lookup table. That table will
list the mnemonics you use and the equivalent
binary codes that must be fed to the CPU 10
represent each instruction.

Now, if you plan on going into the "big leagues,”
(such as making your living programming in
machine language} then you might eventually want
to use a special program that would help you
convert from mnemonic format to machine code.
Such a program is called an assemp/er; It is nothing
more than a program that performs automatic
tabie lookup procedures! Trouble is, it in itself can
take up a lot of memory and on a small computer
such as a PC can be more of a pain to use than not
(due to all the shuffeling of programs in and out of
memory, etc.). Such being the case, next thing you
know you are taiking about using a
"cross-assembler.” That is an assembler program
that works on a larger computer and produces code
for the “"target” (your PC-1500) machine. Before
getting carried away with a discussion about such
programs, let me end it by saying that the use of
such programs will 7o¢ be assumed in this text.
Instead, 1 shall proceed on the basis that small
programs, of the type beginning machine language
programmers will feel confident to tackle, will be
converted from rmnemanics to machine code by the
manual (table lookup) method!

Let's Add Some of ThisUp

A good way to get a feel for programming at the
machine code level is to take an in-depth 100k at an
instruction. we are going to start with a
register-to-register addition directive. The
machine code representation for this instruction is
the 8-bit binary pattern 000 000 1 Dwhichcanbe
represented in hexadecimal numeric shorthand as
the value 02. The mnemonic for this command is:
ADDA XL. Thnis represents a shorthand method of
saying: add the contents of register A (the
accurnuiator) and the contents of the 8-bit register
XL {the lawer half of the 16-bit register X).

There are some other things you need 10 Know
about this directive: (1) The type of addition
performed is based on two's complement binary
arithmetic, {2) The initial contents of the carry flag
(C) are added to the least significant bit positionat
the start of the adadition process, (3) The result of
the addition process is left in the accumulator (A
register), (4) Any “overflow” from the addition
process will be reflected in the status of the carry
flag (C) at the conclusion of the operation, (5} The
status of the Z, v and H flags (along with the
previously mentioned C flag) may be altered by the
results of the operation, and (6} The original

6 Nachine Language Programming Copyright 1983 POCKEY COMPUTER MEWSLETTER

T T s A

contents of register XL are not altered by the
operation.

| Carry Flag
oloJojololol1]0] x resster
ololojoo]1[ofo] ‘i
(@@@@I] %oy

s 0] “Toiy

Gee! That is quite a list of information to have
to know just to effectively utilize a single machine
language instruction. All of it is important, too. If
you forget just one aspect while creating a
prograr, you can end up with a procedure that does
not yield correct results. 1 can tell you from years
of experience that one of the items many novice
programmers forget about when attempting to
apply this type of directive is the affect caused by
the initial condition of the carry flag! Note that if
the carry flag is set (at a logic one state) when this
instruction is executed, that a count of one will be

added to whatever is the result of the addition. This
feature has considerable practical application, It

provides a means of performing what is commonly
known in the field as multiple-precision
arithmetic. That is a method whereby arithmetic
values may be represented by the combined
contents of several registers. On the other hand, it
can be a subtle (and vicious) trap for the
programmer who forgets its ramifications when
performing simple register-to-register (often
referred to as single~precision) arithimetic. If the
status of the carry flag is not known (i.e., reset to
the zero state) prior toexecuting the directive,one
can end up with an addition that seems 1o be
mysteriously off by a count of one extra. The
reason this operational aspect can really throw
beginning programmers is because in a complex
program, the status of the carry flag may be
varying each time such an instruction fis
encountered. The net result is a program that
capriciously ylelds incorrect mathemnatical
resultst

All of this points out one critical factor about
machine language programming. It can be
extremely complex and one subtle mistake on the
part of a programmer can lead to errors, the cause
of which are often difficult to detect. To get a
better appreciation of the potential for
catastrophe, contemplate the operation of a
rmachine language program with, say, about 10,000

Copyright 1983 POCKET COMPUTER NEWSLEVTER

instructions. An error in the application of any one
of those could cause incorrect operation of the
system. Take it seriously, for indeed that is
approximately the number of machine language
directives in your PC-1500"s BASIC ROM!

On the other hand, note that everything there is
to know about the operation of this instruction can
be learmned and appropriately controlled. Thus, if
every aspect is carefully considered and applied,
then there is virtually nothing that can go wrong
{unless the machine itself should fail, which, short
of catastrophic device failure, is an extremely rare
occurrence). Executibpn of the ADDA XL
instruction will invariably produce the same result
as long as all the parameters remain the same each
time the operation is performed.

One of the great marvels of the computer is
that once a process has been properly modeled
{(programmed), NG matter how many months or years
of development benind it, its future use is timeless.
It may have taken five people-years of woIk to
create the coding contained in the BASIC ROM in
the PC-1500. However, that coding can now be
duplicated in literally millions of devices and used
by humankind for eternity (if the manufacturer
obliges).

Let us not stray too far from our course. The
subject at hand is learning the detalled aspects of
invoking the ADDA XL directive.

Another point worthy of note: Take heed of the
fact that the carry flag acts as an addition to the
least significant bit of the registers at the start of
the operation. However, at the end of the procedure
it is acting as the overflow handier from the most
significant bit position of the accurmulatort Thus, in
this instance, the carry flag appears o serve
opposite ends of a register depending on when one
“looks” at the situation. At the beginning of the
operation, it is serving as an addend at the
rigntmost bit position. At the conclusion, it is
acting as an extension at the left end of the
accumulator -- effectively serving as a ninth bit
position.

Finally, it will be mentioned that the ADDA XL
instruction takes but one byte of memory to fully
specify the directive. Other types of instructions,
even variations of the "add to the accumulator"
instruction such as this one, can take several bytes
of memory as will be outlined shortly.

Leam One, Leam a Bunch

A nice thing about studying the machine codes for
a particular CPU is that once you have learned the
basic operation of one instruction, you have often
learned the key facets of a whole group of
instructions. That is certainly the case with the
ADDA XL instruction. You see there is a whole
group of ™add to the accumulator with carry”

Machine Language Programming 7/

commands:
Mnemonic Code
ADDA #mn 83
ADDA () 23
ADDA (X) 03
ADDA (Y) 13
ADDA non A3
ADDA UH A2
ADDA L 22
ADDA XH 82
ADDA XL 02
ADDA YH 92
ADDA YL i2

Right there you have 11 different types of
ADDA instructions, Can you figure out what each
mnemonic represents?

well, some conventions are being followed with
the mnemonics. First of all, the register that
follows the ADDA part of the mnemonic is always
being added to the A register with the result being
left in the accurmulator. The register being worked
with is left unchanged by the addition operation.

The symbol "#" associated with amnemonic is a
notation that signifies an “irnmediate” piece of
information. An immegiate piece of data is one
that immediately follows the gpcode byte. Thus the
mnemonic ADDA #nn indicates that whatever
value is in the byte that immediately follows the
opcode (B3 in this case) will be added to the
accurnulator. If the hexadecimal value D8 followed
the opcode, then 08 would be added to the current
contents of the accumulator. Note that this
particular instruction thus requires two bytes of
memory in order to be fully specified. The code B3,
indicating the type of instruction to be performed,
must be immediately followed by a second byte

——E: e[l il
alejele] i ielele

STACK POINTER

v e P e e e L e L

containing a value that will be used as an operand.
In this case the operand will be added to the
contents of the accumulator.

An ADDA mnemonic followed by a 16-bit
register designation enclosed in parenthesis, such
as ADDA (U) means that the specified register isto
be used as a oBlg pointer That means that the
address caontained in the 16-bit register will be the
address in memory from which the operand will be
taken. In other words, register U (in this case)
points to the memory acddress where the actual
data Dyte Is located. Note that there is an ADDA
instruction for use with each of the three (U, X and
Y} 16-tit data pointer registers. Also note that the
Instruction itself only reguires one byte of
memory. The operand that is pointed to by the
appropriate data pointer register can be any
location in memory. In many applications a
separate area will be reserved or established in
memory 1o serve as a data storage area. The data
pointer will then be set up (prior to execution of the
ADDA command) to identify the value that is to be
used in the addition operation.

e 13 0] | [&]eta] I Ti

" LY kW 3
P

~
o
3

o e

—————— eeéaoalg—]

HenoTy
“+- fec | & pespeel

LEESEEAREAD I F

- v i T3
*H 3 o8
YH Y YL
sp STACK POINTER

:1:1: Internal AU Registers: @

{Carry flag_assuned cleared at start.)

cPyU

Can you deduce the format of the directive
signified by the mnemonic ADDA nnnn? Sure! It
means that the opcode is followed by a 4-digit
(hexadecimal) address. The contents of that
remory address will contain the value that istobe
added to the accumulator. Note that now the
instruction uses three bytes of memory in order to
be completely specified. One byte for the opcode
and two to identify the memory address that
contains the data byte.

Perhaps this is a good place to delve into
thoroughly understanding how many bytes of
memory a particular type of instruction is said to

8 nachine Longuage Prograqming Copyright 1983 POCKET COMPUTER NEWSLETTER

e ———

require. The key here is {0 realize that the program

‘counter’s job is to identify where the next opcode
to be executed is located in memory. If an
instruction such as ADDA (U} is executed, then the
program counter (PC) is merely incremented once
to point to the next consecutive memory location.
This is because the ADDA (U) directive only uses
one byte of memory in which the actual opcode
itself is stored.

However, when an instruction such as ADDA
#nn is processed, the PC must be incremented
twice. Once to advance over the opcode and once
to go beyond the immediate byte of data that must
be provided after the opcode!

And, the instruction ADDA nnnn will cause the
PC to be incremented three times. Once for the
opcode, twice for the two bytes following it that
nold the 4-digit hexadecimal address where the
data value is located.

————EIQI@Q@!t

4 £s

s 4&.-' s .-"\ &
NEEREEIM

Hemory
-
— fpe & pC=pe+3 _
A lelelelelefe[in] ulviz] fc
7]] n
XM X il
YH Y k(8
P STACK POINTER
“i: Internal ALY Registors i
{Carry flag assumed cleared st start.)

crPy

In summary, the program counter must
automatically be advanced so that it identifies the
start of the next instruction that is to be executed.
Tne number of bytes that it must be advanced over
for each type of instruction is what we are
referring to when we say a directive is a one-, two-
or three-byte directive. (While most instructions
executed by the LH5801 only require 1 to 3 bytes,
there are a few that need even more. Those will be
introduced in due course.)

Finally there is a group of ADDA instructions
of the type with which you are thoroughly familiar:
the group that adds the contents of an 8-bit CPU
register {UH, UL, XH, XL, YH or YL) to the
accurmulator. Note that this latter group consists
of data operations that are "intra—CPU." That is,
the addition operation takes place amongst
registers within the CPU itself. The other types of

ADDA instructions discussed all took a data byte
froma location inmemory.

An Ordered Structure

While this text will not dwell on "hardware”
aspects of CPU operation, from time-to-time 1
may point out features that are related to the
internal circuit design. This will be done for the
purpose of providing interesting and useful
material that may be of value to some machine
language prograrmmers.

For instance, let's spend & few moments
examining the machine codes that are used to
represent the ADDA commmands. The codes are
shown In hexadecimal notation. The two
hexadecimal digits are easily expanded into two
adjacent groups of four binary bits. Thus, the
hexadecimal code for the ADDA #nn instruction,
B3, stands for the binary patterm: 10110011 1tis
interesting 1o note that all the ADDA directives
assoclated with intra-CPU register additions end
with the hexadecimal digit 2 while all of those that
involve data bytes stored in memory end with the
gigit 3. You can also observe that the most
significant hexadecimal digit similarly exhibits
interesting structures. For instance, the most
significant digit for ADDA (X} is 0, while for ADDA
{Y)itis 1 and for ADDA (U} it is 2. Look, too, at how
the most significant digit has a distinct pattemn
amongst the ADDA XH and XL, YH and YL and UH
and UL codes. When expanded to a binary
representation it is clear that the most significant
bit in the opcode is being used to select the high
order register of each register-pair.

This information might seem like trivia to
beginning programmers, but it can have practical
application as you gain coding experience. If you
have ever had occassion to watch a seasoned
machine language programmer at work {one with
several years of concentrated practice) you may
have been amazed to notice that the person
apparently knew how to directly translate machine
code from, say, a raw hexadecimally-coded
memory dump. One important way an experienced
programmer develops this skill is by learning the
significance of particular bit-pattems and the use
of individual bits within those pattems.

For instance, there are only two other types of
PC-1500 ML instructions that end with the
hexadecimal digit 2. One of these other types
always has the most significant digit in the
hexadecimal range C through F. The other uses 4,5
o1 6 as the most significant digit. Knowing this (by
heart!) you can instantly classify any machine code
ending with a 2! Would you be surprised to know
that the group that has 4, 5 and 6 in the most
significant digit positions involves the X, Y and U
registers in that order? Not if you noticed that the

Copyright 1983 POCKET CIMPUTER NEUSLETTER rtachine Language Programming 9

_|

ADDA group had the most significant digit

advancing from D to 2 in the same order for .

registers X, Y and Ut

I am not going to recommend that a beginner
proceed to put much effort into memorizing this
type of information. I am, however, pointing out
how it can be done so that you will be aware that
the CPU is a logical device, it was designed by a
human designer who developed logical patterns to
control its operation, and there is nothing magic
about the machine. As you gain familiarity with a
particular CPU you can start to casually 100K for
such recurring patterns and use the information for
what it is worth. If you become a professional
machine language programmer, it can be worth a
1ot of time. However, it is not anecessary skill. You
can always 1ook up the meaning of any machine
code in a suitable machine code table or better yet,
Use a computer program known as a disassernbler.
More about that later.

Aad without the Carry

As you mignt imagine, there are times when a
programmer may want to perform addition
operations without having to be concerned with the
status of the C flag at the start of the procedure. (In
pther words, without having to be bothered with
seeing that the carry flag has been cleared.) The
1. H5801 CPU has a group of instructions that
provides this capability, but it is not as
comprehensive as the previously described ADDA
category. In fact, it is restricted to commands that
add an immediate data value to the contents of a
location in memory, instead of the accumulator.

[elelelelelel1]e] -
[Glo]elelel1]ef6] uay
1Je] "ceit

[

carry Flag
i (result)
The set has the following mnemonics and machine
codes:

Mnemonic Code
ADNC) #n 6F
ADNC (X) #n aF
ADNC (Y) #mn SF
ADNC nnnn #nn EF

There are a nurmber of points you must kKnow in
order to properly utilize these directives: (1) The

——"3 &)
a6
7 .-'%-'a s

T (N

ol lo|®
2 10
ol 4.-18]-
o1 e

gxEE >

STACK POINTER
"7 Internal ALU Registers:

addition is performed using two's complement
notation, (2) The initial contents of the carry flag
are Jgnored at the beginning of the addition
process, (3} The result of the addition operation is
left in the memory location referenced by the
instruction, (4) The status of the carry flag will be
getermined by the result of the addition operation.
It is set if there is an pverflow, cleared otherwise.
(5) The status of the Z, V and H flags may also be
affected by the results of the procedure.

The first three instructions in this group are
two-byte directives. One byte representing the
opcode, the second the value that is to be added to
the specified location in memory. Note that the
16-bit registers U, X or Y must contain the address
of the byte in memory to which the immediate data
is to be added.

Hemory

B

of.
of -1
O A
o

)
ot

i

X)G B
il

— FPC PC=P{+4
A | ACCUMULATOR Hivlz! jei ¥
UM Y o,
X X X
¥ Y i,
5P STACK POINTER
10 Internal AU Registers il

cPy

10 Machine Languoge Programming Copyright 1983 POCKET COMPUTER NEWSLETTER

The last directive, ADNC nonn #nn is an
example of a directive that will cause the program
counter to be advanced by a count of /i when it
is executed. Once for the opcode, twice for the
16-bit memory address in the next two bytes,and a
fourth time for the immediate data bytet

Note the machine code pattern. The lower
nibble is F for the entire class of instructions, The
higher nibble goes from 4 to S to 6 to signify use of
the %, Y and U registers respectively.

This type of instruction can be particularly
valuable when it is desired 1o advance an address
pointer that is being stored in memory. This is
especially true when one is in a situation where it
might be beneficial not to have to aiter the
contents of the accumulator.

Subtraction

You will undoubtably not be surprised to leam that
the LHS801 CPU is able to perform subtraction. In
fact, it has an entire group of directives similar in
structure to that of the "add with carry” group that
has already been discussed. Here are the
mnemonics and machine codes used to represent

these subtraction directives:
Mnemonic Code
SLBA #n Bl
SUBA (U} 21
sSUBA (X) 01
SUBA (Y) 11
SUBA nmmn Al
SUBA UH AD
SUBA UL 20
SLBA XH 80
SLBA XL a0
SUBA YH 99
SUBA YL 10

All of the subtraction directives take place
between the accumulator and a specified register
or memory location. Here are the important things
to know about these directives: {1) The arithmetic
convention utilized is known as two's complernent
notation. {2) The complement of the carry flag is
considered as a dorrow. (3) The contents of the

| | carry Flag
©[0]0 l@@ LI®] = megister
[elo[eleleliTo[e] rmin

Accuwl
, re olejelelelife] “Tmiy
QN

Caxry Flag
"'m (result)

Copyright 1983 POCKET COMPUTER MEUSLETTER

specified register or memory location are atways
subtracted from the contents of the accumulator.
(@) Tre result is left in the accumulator. (5) The
original register or memory location vaiue is left
unchanged. (6) Any "underflow” caused by the
subtraction process wili be reflected in the status
of the carry flag at the end of the operation. (7) The
status of the Z, V and H flags may be altered by the
operation.

Addressing

As was the case with the aodition girectives, the
subtraction instructions take one, two or three
bytes depending on the agadressing irwvolved. The
group of subtraction instructions listed represerit.
four different types of addressing rodes.

Those such as SUBA UH and SUBA UL utilize
what is known as Jmplied addressing. That is, the
opcode itself specifies the registers or locations
that are affected by the operation. The
hexadecimal opcode 20 (whichis 0010000 0in
binary) tells the CPU everything it has to know in
order to perform the directive. when it detects
that pattern, it “knows" that it is to perform a
subtraction operation using the accurnulator and
the 8-bit UL register. In a like fashion, the pattem
1010 00D 0D (AD hexadecimal) tells the CPU 1o
perform the subtraction between the 8-bit UH
register and the accumulator. These types of
directives only use one byte of memory since the
addressing information {related to what registers
will be affected) are inherent within the actual
machine code. In fact, this mode of addressing is
sometimes also referred Lo as ierent or register
gddressing.

The directive SUBA #nn is an exampie of
imrnediate aodressing. The byte that immediately

T

YEESE >3
A EE .

cPU

Machine Language Programming 11

s —

follows the opcode is the location that is to be
subtracted from the accurnulator. This directive
requires two bytes of memary. One for the opcode,
the other to hold the data that is to be subtracted.

The instructions SUBA (U), SUBA (X), SUBA(Y)
all represent exarmples of what is often referred to
as register indirect aodressing. This is because the
contents of the 16-bit register U, X or Y holds an
address of a memory location where the actual
data that is to be subtracted is stored. Note that
the U, X or Y registers themselves da not hold the
data, rather they poiné to the data location.

e |9}®] { |S{D]O] O}
™ ” b S b : kY 'H'
T .-\ ¥ X .-" .-‘ it

———— [oileleistetie—
Nenory

A pe=pCet
e} F

¥ YL

SEIEFE >3

STACK POINTER
1 Internal AU Registers ' i
$Carry flag assumed cleared at start.)

CPU

Finally, SUBA nnnn is tllustrative of the mode
known as girect addressing. In this mode, the two
bytes that follow the opcode contain the actual
address indicating where the data byte is stored.

sp STACK POINTER
:::.: Internal ALU Registers @i

e e e 1

Note that these two address bytes are considered
as part of the instruction. Thus, this directive takes
three bytes of memory to be property defined.

These garessing modes (and there will be a
few others introduced later) are an important
concept. Most types of instructions have several
different possibie addressing modes. If you go back
now and review the ADDA group of instructions
you can observe that it has the exact same set of
addressing modes.

Some instructions utilize a combination of
addressing modes. The previously discussed ADNC
(U) #on utilizes a register indirect - Immediate
mode. The 16-bit register (U in this case) points to
a& memory location and the immediate data byte
holds the data that is to be added to the contents of
the referenced memory location. Can you figure
out what combination of modes are used in the
ADNC nonn #nn instruction? Right! It combines
afrect and Jmumediate modes.

Can you find any connection between the
machine codes used {in the opcode byte) and the
addressing mode being invoked? Remember, the
CPU was created by a logic-oriented circuit
designer. Do you think that perhaps a particular bit
position within the opcode byte is frequently used
Lo signify a particular addressing mode? You might,
keep an eye out for address—mode pattemns (in the
opcodes) as additional types of instructions are
introduced. This is another piece of information
that the "pro's" look for as they becorne intimately
familtar with the operation of a particular CPU.

Loading the Accumulator

Adding and subtracting guantities in a computer is
all well and good, but you need to have values to
work with in the first ptace. How do you obtain
values and get them positioned in the proper
registers? yYou use /oag and store directives.
These are instructions that cause information tobe
moved about from one location to another. They
are probably amongst the most often used
commands. Right now we will become familiar with
the group of directives that may be used to place
information into the accurmulator or A register:

Mnemonic Code
LDA #nn B5
LDA Q) 5
LDA (X) 1 23
LDA (Y) 15
LDA nnnn AS
LDA UH Al
LDA UL 24
LDA XH 8
LDA XL 04
LDA YH 94
LDA YL 13

12 Bachine Language Progranning Copyright 1983 POCKET COMPUTER NEWSLETTER

Here is what you need to know about this group
of Instructions: (1) A "copy” of the information in
the specified memory location or register is always
transferred {loaded) into the accumulator. (2) The
status of the Z (zero) flag will reflect whether or
not the value transferred was equal to zero.(3) The
other flags are not affected by this type of
operation.

T Zero Flag
O[O[C]O[O]O]O] * resistr
XIXXIXIXIXIX] ey

olo[olo[ofo]e] “truy"

I ZTero Flag
{result)

IJm‘-i'n:D mMPOTMME
I
o] Xl[e

X - Does not matter!

There, that was easy wasn't it? All these
instructions do is provide a means of moving
information about in the computer system. Note
that you can transfer data from the CPU registers
and (using several addressing modes) from
locations in memory. This particular group always
places the data intc the accurmulator.

———E: ol 1jefl jef:
T ENDT

Henory
P
—1pc & PC=PCe2
CRANNONNANL F
H B .,
XH X nt.|
H ¥ Y
P STACK. POINTER
.21 Internal ALY Registers .

cPU

You might also want to take note of the fact
that only one CPU flag is affected by this type of
directive: the zero(Z} flag.

Can you think of any reasons why the designers
allowed only this flag to be affected by the load
operations?

Copyright 1983 POCKET COMPUTER MEUSLETTER

There are several good reasons. One is that
some of the other flags, such as the carry, need to
be maintained when multiple-precision arithmetic
is being performed. (That is arithmetic where the
numbers being manipulated are stored in two or
more bytes, yet are considered as one value.)
Because these numbers take more than one byte in
which to be stored, they have 1o be processed in
byte-sized sections. If a load directive interfered
with the status of, say, the carry flag, then the add
with carry instructions would be worthless during
such operations.

But why let even the zero flag be influenced by
load operations? Because, as will be illustrated
later, being able to detect a “zero byte” (a8 byte in
which all the bits are cleared 1o zero) has many
practical applications. It is often used to denote
the end of data in lookup tables, to mark the end of
a string of stored text, and so forth. So, being able
to easily detect the presence of a zero byte whenit
is first loaded into & location, can have
considerable practical programming value. The
LHS801 desigrers knew this and thus permitted the
zero flag to be affected by this operation, while
protecting all other fiags.

The load directives are used so extensively in
machine language programming that it is common
to provide suppiemental types of instructions. Far
instance, the CPU used in the Sharp PC-1500 has
the following special 1oad directives:

Mnemonic Code
tDAI L) 65
LDAI (X) 85
LDAI (Y) S5
LDAD) 67
LDAD (X) 47
LDAD (Y) 57
—————— lopy 1lejoli jol
——— [P e L
Hemory
-~
- kPG A& PC=PC+1
Aprthibjeledelih F
— JUH Uzli+1 W
XH K XL
YH ¥y YL
P STACK POIMTER
;:-: Internal ALU Registers :>: .-

cPU

Nachine Language Pregrawiing 13

e ———

These are known as /ogd and increment ang
loaa ana cecrement directives. They transfer a
byte from the memory location poirted to by the
contents of the 16-bit registers (U, X or Y)into the
accurnulator an then ey &wlarmatically
increment or decrement the pointer register by a
court of ore! These powerful instructions are most
useful when it is desirabie to sequentially process a
whole block of remary.

Only the Z {zero) flag can be affected by these
directives, in exactly the same manner as for the
LDA (U) instruction. That is, it is cleared if the byte
transferred is non-zero and set if it is zero. Notice
that the increment or deciement of the pointer
register does not affect the flags. /7 /s the oyte
being transferred that controls the status of the Z
flag when any of this group is executed.

All of the load instructions discussed so far
have been designed to transfer data /nfo the
accumulator. But, how about getting data into the
other CPU registers?)

Loading Other CPU Registers

Each half of the 16-bit registers U, X and Y canbe
loaded with immediate data by the following load
instructions:

Mnemonic Code
LDUH #nn 68
LDUL #0n BA
LDXH #mn 48
LDXL #mn aA
LDYH #nn 5B
LDYL #mn SA

One important difference between this group of
directives and the previously described load
commands that dealt with the accumulator is that

_-_l:: a1 1elilali]
o] olotolelele]

Hewnory
i
— [pc PC=PC+2
A | ACCUMILATOR F
UH [=G Bl el El lﬂ.|
XH X *
YH ¥ YL
P STACK POINTER
" 'Internal ALU Registers:

CcPU

none of the fags are aliered by these transfers,
not even the zero flag.

The fact that each half of the 16-bit pointer
registers can be loaded with a byte has many
practical applications. Freguently these registers
are used as temporary storage locations within the
CPU. Being able to treat these regisiers as
consisting of two independent bytes {(when it is
desired by the programmer) means that more data
can be readily accessed within the CPU.

On the other hand, you must remermber that if
you want to set up a 16-bit register so that it
contains a memory address, then you must use a
sequence of two load immediate instructions. One
to load the most significant half (UH, XH or YH)
and the other to load the least significant haif (UL,
XL or YL)

It would have been theoretically possible for
the CPU designer to have provided a load
immediate instruction that loaded all 16 bits of the
data pointer registers at one time. The advantage
of opting for the 8-bit loads is flexibility. The
trade-off is that it takes two loads to completely
gefine an address. (However, as you will learn later,
this is not as serious a trade-off as it might
initially appear. In practical programming
situations it turns out that the most significant
portion of an address does not have Lo be changed
as often as the least significant portion. Thus,
many times, the address in a data pointer register
can be aitered to the desired value just by changing
one byte)

There is, in fact, a 16~bit load immediate
directive provided in the instruction set of the CPU
being discussed, it is used to load the stack pointer
with a complete 16-bit address.

1{o]1loli]
FHONE
SO0 |

(]

23 L2
]
-]

Henory
/
— Irc PC=PC+3 /
A | ACCUMMLATOR ld [L11F
UH U Ul.I
X X / X
H YL

spililil]ole[olofojolelelilili]l]

20 Internal ARY Registers ;.o

cPU

14 nachine Language Prograrming Copyright 1983 PCCKET COMPUTER MEWSLETTER

e ————

Mnemonic Code
LDS# nnhn AA

This Is the a2y directive in the instruction set
where the two bytes following the opcode both act
as immediate data values. Normally these values
represent an address that is loaded directly into
the stack pointer. None of the CPU flags are
affected by this command. (The stack pointer will
pe discussed in detail at a more appropriate point.
Have patience, please.)

Storing the Accumulator

So far, all the "load” instructions have been
transferring information in one direction: into the
accumulator or from a location in memory to a
register in the CPU. It would be a pretty useless
computer If data could only be transferred into the
accumulator or CPU and not out. Of course, that is
not the case. There is ancther group of instiuctions
that can transfer information in the other
direction. In some systems, this group is still
referred to as "Joad" directives. Here, however, 10
differentiate between the directions of data flow,
an fnstruction that passes data Zom the
accumulator to a location in memory, will be
designated a stare directive.

The first of the store girectives to be discussed
are those that simply transfer the contents of the
accumulator to a location in memory or to an 8-bit
register within the CPL

MHMnemonic Code
STA (U) Y o
STA {X) 0
STA(Y) 1E
STA nnhn AE
STAWUH z8
STA LL 2A
STA XH o8
STA XL 0A
STA YH 18
STA YL 1A

You need to know the following in order Lo use
these commands effectively: (1} A copy of the A
register (accumulator) is ptaced into the indicated
rmemary location or 8-bit CPU register. (2) Aane of
the flags are affected by these operations. Not
even the zero{Z) flag.

Thus, the CPU can store results from the
accurnutator into memory or another CPU Tegister
without altering the status of any of its flags. This
ability to accomplish such transfers without
altering the flags is useful inmany circumstances.
Note that now not even the Z flag is sacrificed.
This is because when constructing tables or text
strings, the CPU caninsert azerobyte toserveasa
terminator. It does not have to agefect such a

Copyright 1983 POCKET CONPUTER MEUSLETTER

marker as is typically the case when mermory is
being scanned. The distinction will be made clearer
later.

Remember, the STA (U), (X) and {Y) directives
use the contents of those 16-bit registers to oo/t
to the location in memory where the byte will be
saved.

e [S]O] 1[G I [1D
& k5 E -,
— Dyl
Henory
e
1 P =P+
CRINRBONNI F
L Juk &] o)
XH K MLI
YH ¥ Yt
P STALY. POINTER

0 Internal ALD Registers: -l

cPU

The STA nnnn command uses the 16-bit value
(nnnn} as an absolute memory address in which to
store the data.

The store directives also include the so-calied
auto-increment and auta-oecrement Qroups:

Mnemonic Code
STAI 61
STAI (X) A1
STAI (Y) S1
STAD (U) 63
STAD (X) 43
STAD (Y) 53

These are similar to the load directives. After
a byte is transferred from the accumulator to the
memory location pointed to by the address in the U,
X or Y register, the contents of the data pointer
Tegister is automatically incremented (py one) or it
is decremented (by one). It is thus ready to point to
the next sequential location in memory. Naturally,
this is quite beneficial when it is desired 10 pack
data into a continuous biock of memory. However,
unlike the load instructions, the CPU flags are not
altered by these store commands.

Inand Out

Finally, to wrap up the presentation of the load and
store instructions, there is a real whiz-bang
directive. This cornmand does the equivalent of

flachine Language Programming 15

h

both a load and a store plus it automatically
increments fwo data pointer registers! It is a real
block-buster -~ and that is exactly what it is
intended to do —— move large blocks of memory
quickly and conveniently.

Mnemonic Code
STI i?i?i FS

The byte of data stored at the memory location
pointed to by the contents of 16-bit CPU register X
Is first loaded into an /ntemal CPU register. It is
then stored into the memory location pointed to by
the contents of the 16-bit CPU register Y. Next,
the contents of both X and Y are acdvanced by a
count of one.

None of the CPU flags are affected by the
operation of this instruction,

It is a super instruction to use when you need to
maove blocks of data from one location in memory
to another! This type of directive is indicative of
advanced microprocessor designs, Earlier CPU
chips did not have such powerful operations
combined into a single machine 1anquage opcode.

—-—-—-—-—-.- 11 H00L 51 181
o [1]! 1' 1t} } 1§ —
—bl.ilillliln‘
fenory
 J
1 frc PC=P(+1 T
A | aCCUMLATOR | F
UM] oL,
XM X=xX+1 LN
L Jvs Yay+l Yi
P STACK POINTER
L Internal ALU Registers :Seo

CcPU

A Program

Only a small fraction of the commands that are
available in the repertoire of the LHS801 have been
presented at this point. There is much more to
learn. But perhaps now is a good time to get a
glimpse at what the future looks like for a machine
language programmer. More than enough
instructions have been explained so that we can
demonstrate a rudimentary, but actual, program.
The purpose at this point is to build confidence and
provide some feedback for the serious student.
Take heart, what you are learning really works. You
canmake things happen with this information!

The goal at this point is to develop a series of
instructions that will accomplish the following:
Add one number 1o another and store the result ina
location inmemory.

Simple enough, eh? How many ways do you
think that could be accomplished using just the
machine language directives you have learned so
far? There are quite a few, believe me. In fact, that
is one of the joys of working at the machine level.
There are usually a variety of ways of
accomplishing any given task. The "best” way often
depends on your objectives. Sometimes, there is
really no such thing as a best way. There are,
instead, simply a host of ways to accomplish the
same end result.

Before reading further, you might just want to
take a few minutes to write down some of the ways
that you can think of to accomplish the goal: add
two simple numbers together and store them in
Memary.

Did you think of the following method?

(1)Load one value into the A register.

(2} Store the contents of the A register (which
now contains the first value) into a3 specific
memory iocation.

(3) Add the second value to that memory
location, leaving the result there.

One reason for choosing this method is that it is
not affected by the status of the carry flag at the
start of the operation. Do you recall that all of the
instructions that add something to the accwmiator
are dependent upon the initial status of the carry
flag? How da you know, at any given point, what the
status of the carry flag is {or will bej? If you don't
know what it is, should you be using an instruction
that is dependent upon its status? (Actually, there
are instructions that can te used ta place the carry
flag in a known state. And, it is often possible to
logically control the state of the flag at a
particular poirt in a program. However, if you don't
know what those methods are, then you had better
be careful when dealing with "add with carry”
commands!} Did you choose 3 safe way of
accamplishing the given task or would you have
Deen oOn unsure grounds? You were on wnsure
grounds ir you elected to use any aar with carry
girective and you o not specifically aevise & way
ar insuring that e carry riag was set to a knowrn
state prior to perfornming the addition’

The first rtule of machine language
programming is that you have to 4rnow what is
going on. Guessing or hoping that conditions will be
this way or that way will not work. If you can’t be
sure about the status of something, then you had
better design things so that you end up xnouwing the
status. If you cannot logically figure out @ way of
accomplishing this, then the machine cannot do it
either. (You see, yow really are the boss.)

16 Machine Language Prograwring Copyright 1983 POCKET COMPUTER NEWSLETTER

Three directives would accomplish the stated
goal: LDA #nn, STA nnnn, ADNC nnnn #nn. Load
the accurnulator with the first number. Store the
accumuiator in the desired memory location. Add

_—E: 7600 e
78c1 |o]
7802 TTIOITE
7803 wlihi]1]e{ele
meca D liloll|ejeolel DO
7805 Lififef@]ifefi]1t EF
races [epiDilitiojolel 7s
7807 (il1ie]i[oioleje] 00
7808 (olejeloleliioie 04
7809 (i|ajeiiliieli]a] 9%
N 0 S
Y O Y G N O
7300 SBDBIIDY *x
//
— 1PC PC=PC+2
& (o]ejele 1] F
UH ') UL
KH K XL
¥YH ¥ YL
P STACK POINTER
[Internal ALV Registers
CPU
Menory
een Pleliielt]eh] Bs
ect [elelolejaleli[1] o3
78G2 I Hel i {ITIOfF AE
sl CIANRDERER it
73c4 Lilileli{o]e{alal DO
7605 LTSI &
78C6 @il iolaler 78
73c7 (i 1Jali|elelejs] Do
v IR BEEAROE 04
race [tlelof{ililelife] 9a

CEEE >3

....................

cPU

Renory
7800 @i 1@[7] 85
7501 [eig[eleleloli[1] 03
7802 Lielilefi]ifi]e] A
78C3 joftlirliiIoelel 78
78c4 ji{tleitiejolelei 0o
78C5 Lt I{LE1] EF
7806 palifiit]iioloje] 78
78c7 [1}&]1]elisjeio] DO
78ce felelsiele]) 04
7809 4] ijileliie] oA
EEYFEERSS
7800 ggfeehm TANE |
e POsPCed
A ololelofelel 1] [Miviz] leh F
iH U X
X X Xt
YH ¥ YL
sp STACK POINTER ,
111 Internal ALY Registers i)

CPU

{(no carry) the second number to the mernory
location where the first nurmbier was stored.

If the numbers 1o be added were 3 and 4 and the
hexadecimal addvess of the storage iocation in
memory was 7800, here is how the machine code
for this series of instructions would appear (in
hexadecimal notationk BS 03 AE 78 D8 EF 78 DO
0a.

The accompanying pictorials illustrate each
step of the program’s operation.

You can try this program out for yourself by
loading it into a PC-1500 or PC-2. One way to do
this is to use BASIC POKE statements. Here is a
BASIC program that will load and then execute
those machine language directives;

10:POKE &78C0, 885

, 803, 8AE, 878, &

DO, 8EF, 678, 8D0

, 804, 80A
20:CALL &78CO

30:PRINT PEEK &78

DC

AQ:END

Line 10 of this program places the actual
machine codes (using hexadecimal notation) into
the PC's memory. These instructions are being
stored In the portion of memory norrmaily used to
hold the BASIC variable A%, starting at the
hexadecimal address &78C0. The values foliowing
the four-digit address are the actual machine

Copyright 1983 POCKET COMPUTER NEUSLETTER Machine Language Programming 17

e T

codes for the program in hexadecimal format. (The
last byte in line 10, 89A, is the code for a machine
language directive that will cause the machine
language program to be exited back 10 BASIC.)

Line 20 causes the machine language codes to
be executed starting at hexadecimal address 78C0
(where the program was stored). After exeguting
those machine code directives, control returns to
the BASIC program.

Line 30 causes the PC to display the contents of
the memory location having the hexadecimal
address 7800. This is the first byte of the ares in
which the BASIC variable B$ is normally stored.
The machine language program uses this location
to store the first number (from the accumulator). It
is alsc the location where the ADNC instruction
takes action and leaves the results of the addition
(without carry) operation.

Line 40 denotes the end of the BASIC code.

Executing this BASIC program by placing the
PC in the RUN mode and executing GOTO 10 or
RUN should result in the value 7 being displayed.

Do you understand everything that is going on
at this point? Does sverything in the descriptive
pictorials that portrays the operstion of this
machine language procedure make sense? If not,
now is a good time to review the earlier parts of
this text.

By the way, attempting to examine the
operation of machine language routines by using
PEEK and POKE directives is a very slow and
tedious method. A far better tool to use is a
machine language monitor program. This is a
special program designed to facilitate working at
the machine code level. If you plan to make a
serious study of this discipline, [strongly
recommend that you obtain a copy of the
Loader/Monitor/Disassembler package sold by the
POCKET COMPUTER NEWSLETTER. This is a
powerful tool that makes it easy 10 place maching
codes into memmory, examine the contents of
“memory, execute machine language routines, and
so forth, In-a -direct mode, without having to
translate through PEEK and POKE directives. The
disassemiier program which is part of this package
utilizes the Raber Mnemonics which are used in
this text. It is able to translate machine codes
directly into these mnernonics. Hence, it is highly
useful for verifying that machine language
routines have been properly loaded into memory as
well as for use in exploring "uncharted” areas of
memory (such as ROMs). The loader part of this
package makes it easy to put together sections of a
machine language program. Plus, the package
provides a convenient means of saving and
restoring machine code programs by using a
cassette recorder. No serious MLP student should
be without such a tool.

Is leaming to program in machine language
worth all the trouble? Not for everybody. It
depends on what you want to end up being able to
do. You now can probably begin to see that dealing
at the machine level greatly complicates matters
from the programmer’s view. It took nine bytes of
memory storage just to specify the adding together
of two tiny numbers. Even with such a simple task,
one had to be concerned with the use of the carry
flag. The work is greatly compounded when one has
to start dealing with larger values or non-integer
guantities.

But, you can probably alsc gather that the
degree of control at this level is fantastic. You are
able to dictate every aspect of the machine's
operation. Streamlining the flow of operations to
accomplish a specific job is just one noticeable
benefit. Speed of operation is another. Do you
realize that those three instructions used to add
together two simple numbers can be performed in
about 25 millionths of a second? You could string
together some 40,000 sirnilar sequences and still
have them all performed in less than a second!

If you still want to hang in there and learn mare
about the subject, then read on. It is time to
describe some of the logical operations that the
LHS801 CPU can perform.

The Logical AND

The next few Cclasses of instructions that will be
discussed are those known as Boolean logic
operations. In the LH5801 these mathematical
operations are always performed on the contents of
the accumulator ar on the contents of a location in
memory.

The ability to perform these types of logic
operations are valuable in many applications.
Indeed, they give the computer the ability to
duplicate the type of electronic logic found in
moderm electronic digital circuitry.

These logic operations are always performed on
a bit-by-bit basis between the accumulator (or &
memory register) and the operand byte. The results
of the operation are stored in the accumulator (or
memory register). Furthermore, the status of the 7
(zero) flag will be affected by the results of the
logic operation. Thus, these types of directives,
among others, ultimately provide the computer
with a means of modifying its own behavior
oepending on its findings as it examines data.

The first group of Boolean logic operations to
be presented aye those that perform a logical AND
operation between the accumulator (A register)
and another byte of data in memory.

Mnemonic Code
ANDA #mn B9
ANDA {U) 29

18 nachine Language Programming Copyright 1983 POCKET CONPUTER WEUSLETYER

g’

o

i Hk—

ANDA (X) 1)
ANDA (Y) 19
ANDA nnnn A9

Note that there are three types of addressing
provided: immediate, register indirect, and direct.
To save space in the future, pictorials showing the
addressing modes for each class of instruction will
ot be provided. Refer to the earlier diagrams when
necessary to refresh your mMemory concerning
addressing relationships.

The execution of one of the above Boolean AND
directives by the LH5801 CPU does the following.
Each bit position in the accumulator is compared to
the corresponding bit position in the operand byte.
As this is done, a logical AND operation is
performed between the identically-positioned bits,
If both the bit in the accumulator and the bit in the
operand are set to the 1ogic 1 state, then the bit in
the accurnulator will be left in the logic 1
condition. For all other passible combinations (the
bits are opposite in state or both are zero), the bit
in the accumulator will be left at the logic O
(cleared) state. If all of the bits in the accumulator
end up being zero, then the Z flag will be set.
Otherwise it will be cleared. None of the other CPU
flags are affected by the operation. The contents of
the operand byte are not altered by the procedure.

Original Contents

O[T TOT1]ol1]0] ™isin: st
Cony F the

IOJOIO[1[110]0] “marv: o

1 [Olo]o] 1]O]0]0] i o weration

The logical AND operation may aiso be
performed upon the contents of a particular
memory location through the following commands:

Mnemonic Code
AND (U) #¥mn 69
AND (X} #0n 49
AND (Y) #n %9
AND nnnn #Nn E9

The same procedures apply with these
directives except that now the operation takes
place between the designated memory location and
the irmmediate data byte that is part of the
instruction. The results are left in the designated
memory site. Only the Z flag is influenced by the
operation.

Logical AND operations are particularly useful
for performing what are known as /masking or
strigoing operations. That is, when it is desired to
eliminate just a portion of a register's contents.

Copyright 1983 POCKET COMPUTER MEUSLETTER

For instance, if one wants to retain just the four
least significant bits of an 8-bit register, the entire
contents of that register may be ANDed with a
register containing the hexadecimal value OF. Try
it yourself (mentally or with the help of pencil and
paper) to see how the unwanted half of the byte is
Teduced to zero. Masking or stripping operations
are commonly used to pack data, manipulate
binary-coded-decimal (BCD) values and format
data inputs/outputs.

The Logical Or

As was the case for the logical AND directives, the
logical OR instructions may be divided into two
groups: those that leave the result in the
acoumulator and those that leave the result in a
memory location. The first group has the following
mnemonics and codes:

Mnemonic Code
ORA #nn 88
ORA () 28
ORA (X) 08
ORA {Y) 18
ORA nhmn AB

The Baolean OR operation is also performed an
a bit-by-bit basis. For the above instructions, the
operation takes place between the accumulator
and the designated operand byte with the results
being left in the accumulator. A bit position in the
accumulator is set to a logic 1 if either it o7 the
corresponding bit position in the operandissettoa
logic 1. Note that the case where they bothareal
also satisfies the condition. But, if neither register
contains a 1 in a given bit position, then the
accurmulator bit for that position remains in the
logic zerc state.

Original Contents
1101 1101110110 of Acouwlator

Contents of the
l I @@I ||@@ MIN‘;%O""_

- Accumulator ATter
HT1E11©]1]1]1 O] e = operation

The zero (Z) flag is affected by the results left
in the accurmulator following the execution of one
of these directives.

A second group of instructions is performed
with and stores the results of the logical OR
operation in a designated memory location:

Mnemonic

OR {U) amn
OR (X) #n
OR (Y)
OR nmnn #nn

B8E8jE

flachine Language Programving 19

e ——————————

Again, the Z flag is affected by the results of
the procedure.

The Logical Exclusive OR

There is a variation of the logical OR operation
that the LH5801 is able to perform. It is known as
the exclusive OR. It is similar to the OR operation.
The difference is that when the corresponding bits
between the operand and affected register are both
a 1, then the bit position in the results register is
Cleared to the zero state. Stated another way: a bit
in the results register is set to a logic 1 /£ awonly
Jf. st one of the registers has a 1 in that bit
position.

Original Contents
I@I@I@I@ of Accumulator

of
INEENNEE Revestde

Accumulator After

Because this class of instructions is more
limited in application, the CPU designers limited it
to operating with the contents of the accumulator
and an operand byte. There are no exclusive OR
directives that use a memory location as a results
register, as there was for the AND and OR classes.

Mnemonic Code
EORA #mn BD
EORA (L) 20
EORA (X) 0D
EORA (Y) 1D
EORA M AD

The Z flag is the only CPU flag affected by the
results of these operations.

The Logical Bit Test

~-Anather class of instructions provided by the CPU
used in the PC-1500 and PC-2 is really just a
specialized form of the logical AND operation. The
directives in this group enable a programmer to
determine which individual bit(s) within a register
are set to the logic 1 state. This can be done
without sctually altering the conlents of the
register being examined,

Known as the /fogical it test this type of
Instruction performs a logical AND between the
contents of the accumulator or a location in
memory and the contents of another register. The
second register can be a location in memory or
represented by an immediate data byte, depending
on the type of addressing being used. However, the
contents of the accumulator or location in memory
are not actually aitered by the test. Instead, an

internal CPU register holds the result of the
logical AND operation. If the result held in this
internal register is that all the bit positions are
zerg, then the zero (Z) flag is set.

I[I1T1]o[o]ofo] i tmens
HEEEDD

Contentx of the
Operand Byte

ITITTTTICTOIO[@] w5t merarion
¥ 10/010/0.0/0/0]0] s et of

the Bit Operation

| | stetus of Z Flag

If any bit position is in the 1 state, then the
zero flaq is cleared.

Original Contents

l ' I Il® @ @ @ of Accumulator
[CIeIo[TTTIO[Of0] “manss, o e

Accunulator After
the BIT Operation

O
o i om Internal Rasult of
Q'O e sit Operation

(%)

O |©

O] stats of 2 Flag

This type of instruction is particularly useful in
determining if a particular tit within a byte is set.
Note, however, that it is the status of the Z flag
alone that reflects this information. None of the
bits within the accumulator or memory are altered.
This operation is an example of what is often called
a non-gestructive test or comparison. This is
because none of the information involved in the
test is altered or lost.

If you compare the operation of this type of
directive against that of the regular logical AND,
you will note that the value in the results register
(the accumulator or memory location} can be
altered by the procedure.

Here are the bit test instructions that the CPU
is able to execute in g PC~1500 01 PC-2:

Mnemonic Code
BITA #n BF
BITA () 2
BITA (X} oF
BITA (Y) IF
BITA nnnn AF

20 Nachine Language Progranming Copyright 1983 POCKET COMPUTER NEUSLETTER

BIT {UJ) #nn 60
BIT (X) #n 4D
BIT (Y) #n 5D
81T nnrn #nn ED

Compares

The next series of instructions to be discussed are
similar In one concept to the bit test group. That is
they also utilize an internal (virtual or invisible)
register to store the result of a comparison, The
status of the CPU flags are then changed to reflect
the conditons in this intemai register. None of the
reqular CPU registers or memory locations that
are accessible to the programmer are actually
modified by the operation of these instructions.

However, these Instructions differ in the
manner In which the comparison is made. In the bit
test group, a logical AN was used to compare bits.
In the compare directives, the operand value is
slractee (using the two's complement method)
from the accumulator, another CPU reqister or a
memory location. The results of this subtraction
are held temporarily in an internal {invisible} CPU
register. The carry (C) and zero (7) flags are then
set according to those results. {The V and H flags
may be altered by these aperations, too, but their
settings would not be of value after such
procedures.}

The carry flag is set after the comparisonif the
result of the comparison indicates that the gosrane
was less than the compared value or was equal to
the compared value. The carry flag is cleared after
the comparison if the operand was greater than the
compared value,

The zero flag is set if the cornparison indicates
that the values were equal. Otherwise it is cleared.

The comparison instructions are among the
most important directives in the entire commang
set in ore particular regard: decision making.
These instructions enable the computer to make
decisions based on the results of comparisons.
Other directives, to be introduced shortly, can then

Original Contents
of Accumulatoy

Contents of the
Operand Byte

©

Accumilatey AFter
the Compare

Intarnal Result
fifter the Conpare

Status of 7 Flag

Status of C Flag

Copyright 1983 POCKET COMPUTER MEUSLETTER

Original Contents
of Accumul ator

Con f the
olojojolo]o] | [0] "o vy

O
o
O
O
o
o
@

Accumulator AFter
@@@@@@ i|© the Compare
e ageesn Tosarnal Result
Q00000 000 . the Conpare

ISums of 1 Flag

Status of C Flag

Original Contents

OJ0|0]0|O]O] | {O] o rcomrator
Aalen] Contents of the

ololelofel T]olo] ‘ners .
stor After

oJoloJolofo] 1]0] ' o
Internal Result

B30 lilil:] O arer the conpare
Flag status when the Q)| Status of 7 Flag

conpared register is

less than the oparand. Status of C Flag

Cause the computer to execute a different series of
instructions (thus modifying its behavior) based on
the decisions made as a result of comparisons.

Since these instructions are so central o the
productive use of a computer, there is a good
complement representing various addressing
rodes. The first group to be presented compares
the contents of the accumulator to locations in
MEeMOoTy Or 10 other CPU registers:

Mnemonic Code
CPA #n B/
CPA (U) 27
CPA (X a7
CPA (Y) 17
CPA nnnn A7
CPA UH Ab
CPA UL 26
CPA XH 86
CPA XL 06
CPA YH 9
CPA YL 16
CPAI (X) F7

The last instruction in this group is another

fachine Language Programming 21

S e 1, — T e —

oirective that performs autommatic incrementing of
a data pointer register. It first compares the
contents of the accumulator against the location in
memory that is ointad te by the contents of the
16-bit X register. The address in the X register is
then advanced by a count of one. This capability is
highly useful when it is necessary to scan a portion
of memory while searching for a particular byte of
data.

Another group of compare directives provides
for the ability to match values in the various CPU
registers against imrnediate data values:

Mnemonic Code
CPLH #mn 6C
CPLEL #n 6E
CPXH #mn AC
CPXL #mn 4
CPYH #mn 5C
CPYL #mn SE

These perform in essentially the same manner
as the previous group, with results of the virtual
subtraction being used to set up the carry and zero
flags. The actual values in the CPU registers (the
“compared” values) are not altered.

Increments

The ability to increment the value in a register is
important for several reasons. One is so that a
value serving as an address pointer can be updated
1o point to a new location. Another is so that the
register can serve as atally keeper or counier The
use of counters is particularly valuable when
forming what are known as arogamioons

The LH5801 has two basic types of instructions
that are used for incrementing values. One type is
meant 1o be used to advance 16-bit data pointer
registers. instructions in this category do not
affect the status of the CPU flags.

Mnemonic Code
INU 64
INX 44
INY 5
XH X

AEERREA0H]

Incrementing the 16-Bit X Register

AERERREENEEREEARR

fdvances the 16-Bit Valoue

CPU Flags are Mot Affected

(=] (2] {<]

The other type is used Lo advance the count in
the accumulator or an 8-bit register (UL, XL or YL).
This kind of increment directive will influence the

condition of the C, Z,V and H flags.

Mnemonic Code
INA DD
INUL 60
INXL 40
INYL 50
i n

Incyementing the 8-Bit XL Registar

fAdvances Just the 8-Bit Yalue

C Flag
£

vFlag |Q

M Flag

Flags are affected by
the results of an 8-bit
increment operation.

Decrements

The ability to decrement the values in pointer
registers and counters is also valuable. A similar
set of directives provides this type of capability in
the LH5801. The first subgroup is for decrementing
a 16-bit data pointer. None of the flags are
affected by the execution of these codes.

Mnemaonic Code
DEUV 66
DEX 16
DEY 56

Mnemonic Code
DEA DF
DELL 62
DEXL 42
DEYL 52

The second group decrements an 8-bit register,
either the accumulator or UL, XL or YL. Execution
of any of these will affect the status of the C, Z, V
and H flags. They are set or cleared as appropriate

22 fNachine Language Programming Copyright 1983 POCKET CORPUTER NEWSLETTER

accorging to the resuit contained in the affected
register after the decrement has taken place.

XH n

b 1101010101010

Decrementing the 8-Bit XL Register

1:3:-10]0i1010|0i0] 1 j1O

Docreases Just the 8-Bit Value

1.1 10I010[0J0J0]O] 1|

fnd Affects the CPU Flags
¢ Flag

Flags are affected by §ZFla [©
the results of an 8-bit By [O

decrement operation.
. H Flag

Shifts

It is often desirable to be able the shift the
contents of @ register to the right or to the left.
The ability to shift data has many uses. Those
people who have had experience with digital
electronic circuits know this well. Those who have
not will soon find it out if they continue to deive
into machine language programming.

The LH5801 CPU only has two instructions that
are specifically designed for shifting bits. These
directives operate directly on the contents of the
accumulator. If you ever want to shift the contents
of some other CPU register or memory location,
you will have to design a little program routine:
load the contents of the desired register into the
accurnulator, shift the contents once they are in
the accumulator, then store the result back into the
original register!

The two shift directives provided in the LHS8D1
instruction set are:

Mnemonic Code
SLA D9
SRA 05

The first is used to shift data to the left within
the accurmnulator. The second shifts it to the right.

« naoXje-{TJO[T]O[T]O] 1]O] "=

e nma[T J-{O T]O] 1 [O] 1]O]O]

wroee [1JO]TJO[1JOL1[O]*X] ¢ r1e0

«= [QITIO[T1]O]1]01]*]0]" =

when a shift occurs, the CPU will always see
that the bit at the end of the register (that is being
vacated) is cleared to a logic zero regardiess of its
previous state. On the other end of the register, the
bit being kicked out is fed into the carry flag. Thus,
you can determine the value of each bit as it i3
shifted out by examining the status of that (C) flag.

Did you know that shifting a binary value one
bit position to the left will multiply it by two? Ang,
yes, shifting it to the right will divide it by {wo. As
you might begin to surmise, the shift operationisa
powerful capability to have available when dealing
with higher mathematical procedures, such as
multiplication and division. I{ is also handy
whenever one wants {0 deal with data on a
bit-by-bit serial basis.

Rotates

If you perform mare than one shift operation on the
contents of the accumulator, you will lose some
data. (Remember, after the first shift, the bit that
was shifted out of the register would be
temporarily held in the carry flag. As soon as some
other instruction that affects the status of the
carry flag is executed, including another shift
directive, that bit information will be lost.)

In some situations it may be important to retain
all of the information that was originally in the A
register, but to reposition that data. Two special
directives known as sofale commands enable the
CPU to perform such a feat.

A register rotate directive is really just a shift
with an added feature: the bit shifted out of the
register is placed into the carry flag & the bit
that was originally in the carry flag is fed into the
other end of the register. Thus. the bits In the
accumulator, coupled by the bit in the carry fiag,
form a continuous ring.

'CFlag
[e[{Joel11e[T]o]+{X]
BEFORE
P
Rotate Right
."cFlag
X[1Je[T]e]T]e]i]*[o;
AFTER
‘-

Rotating to the right results in the carry flag
receiving the /east significant bit from the
register. As this is done, the original contents of
the carry flag are placed into the most significant
bit position of the accumulator. The remaining bit
positions are all shifted one cell to the right.

Copyright 1983 POCKET COMPUTER MEWSLETTER fachine Language Programding 23

m
e —— e —— L ey

- Rotating to the left results in the carry flag
receiving the smost significant bit from the
register. As this is done, the original contents of
the carry flag are placed into the /east significant
bit position of the accumulator. The remaining bit
positions are all shifted one cell to the left.

¢ Flag
Jo[T]e[TIo]1]e
BEFORE
g
¢ Flag
[1]-{o]TTo]TIo]T]oIX
AFTER
-

As in the case of the shift directives, there are
only two rotate instructions: one to rotate to the
left and one Lo the right. And, the rotating may only
be done in the accumulator. vou have to bring the
contents of other registers into the A register if
you wart to spin the bits around. Here are the
mnemonics and machine codes for the two rotate
Commands:

Mnemonic Code
RLCA DB
RRCA D1

Please take note of the fact that the initial
conients Of the carry flag will affect what gets
rotated into the accumulator by a rotate directive,
You should know what the state of the C flag is
before executing such an instruction or else the
algorithm being utilized should take account of any
possible ambiguity in the state of that flag.

Manipulating the Carry Flag

From time to time I have pointed out that it is often
crucial to know the status of the carry flag before
executing certain types of instructions. This is
particularly true for rotates, and those add and
subtract commands that utilize the initial contents
of the carry flag.

t Is possible to place the camry flag into a
known state hy executing directives using
operands that obtain the desired results. For
instance, if the value zero is loaded into a register
and then an add-immediate directive is used to add
the value zero o that quantity, the carry flag
would be cleared. There would be no carry from

P.0. Box 232, Seymour, CT 06483

such an adition operation and the carry flag would
reflect that fact. Of course, having te resort to
SUCH 8 procedure every time a programmer wanted
13 make sure that the carry flag was cleared would
be a bit cumbersome. It would also eat up memary
as a lot of extra oata-containing directives mignt
have 1o added 10 a program just to manipulate the
flags. On the other nand, it is beneficial to
remember that in many programming sequences, it
will be possible for the programmer to “"know" the
status of a flag or "force” various flags to a desired
state. In such cases, it Is possible to save a byte by
not having to call on either of the next two
instructions to be presenteq.

Because the carry flag is so central to many
kings of operations, the instruction set does
include two directives that will set it to either
possible state: o/eareo (to the logic O state) or ser
(toalogic 1 condition).

X X|x |
¢ Flag C Flag .
Mnemonic Coge
CLRC F9
SETC FB

Whew! Doesn't that take a toad off your mind?
Time to Review

So how do you feel? Do you realize that you have
already leamed aboul more than o /xaxied?
hirty-rive instructions? 1 hope you feel at least a
bit proud! _

Al this point you should spend some time going
over what you have learned. Try doing some actual
experimenting with the various commands. You
can use POKE directives to tuck small routines
into memory. If you want to execute those routines
from BASIC using & CALL statement, then be sure
and terminate the instruction seguence with the
code 9A, This will direct the CPU ta go back to the
BASIC interpreter when it has finished executing
the machine language routine.

In the next instaliment you will leamn about the
classes of instructions that provide control and
decision—making capability to a computer. Indeed,
you will be introduced to much of the rest of the
instruction set used in the PC-1500 and PC-2.

After that it will be on to presentations of how
various instruction sequences may be combined to
perform practical functions. we will start building
up a library of w&/7iy routines that you can call
upon. You will also leamn how to adapt those
Toutines 10 serve your own special purposes.

You are well on your way to hamessing the 23/
power of your pocket computer!

24 Machine Lawguage Prograwing Copyright 1983 POCKET CONPUTER NEWSLETTER

'

4

MACHINE LANGUAGE

D) 2(9) D) /A

NG

SHARP PC-1500 & RADIO SHACK PC-2

POCKEY COMPUNERS

@cq)yrigﬂ. 1963 POCKET COMPUTER MEWSLETTER

MACHINE LANGUAGE PROGRAMMING
THE SHARP PC-1500
AND RADIO SHACK PC-2
POCKET COMPUTERS

It might be interesting to point out that all of the
instructions discussed in the preceding section
have been directives that operate on data. A
programmer could organize a series of those
instructions in sequential locations in memaory.
when told to do so, the CPU would proceed to
execute each instruction. This sequential type of
operation would continue for as 1ong as there were
valid instructions to be performed. The reader
knows that as each instruction was dismissed with,
the program counter would advance over the
appropriate number of bytes to point to the next
opcode. Typically, this incrementing of the address
contained In the program counter is all that is
needed to guide the operation of the CPU. That
address value always tells the CPU where to obtain
the next byte of information to be processed.

Ah, if only life could be so simple and straight-
forward! Take a step, advance a pointer, Know
where to obtain the next directive. Beautiful. But it
has practical limitations. There can be no freedom
of choice or ability to make decisions in such a
scheme.

To empower a computer with the ability to
alter its course of operation as it evaluates data,
there must be an alternative to blindly following a
set series of instructions. What controls the
sequence in-which instructions are executed? The
program counter. How can this sequence be
altered? By modifying the contents of the program
counter’

Consider what happens, for example, when a
computer is started by applying electrical power.
Special circuits "force” an address value Into the
CPU's program counter. This "tells” the CPU where
to begin executing instructions in memory. If it

PC-1500/PC~2 Hachine Language Programming (Issue 2 of 4)

were not for such foresight on the part of
designers, the machine would theoretically start
trying to execute instructions from whatever
memory location randomly appeared in the
program counter as power was applied. The result
would likely be chaos.

Just as it is useful to be able to load the
program counter with a value when a computer is
started, it is also useful to be able 1o tell the
computer to switch to another seguence of
directives whenever a programyner oesires! Again,
how is this done? By simply altering the value in
the program counter so that it no longer blindly
points to the next sequential memary location.

A type of instruction that will perform this task
is called a jiume command. It may be used to have
the computer skip over a block of instructions or to
jurnp to a particular series of directives.

The fundamental jump directive in the LH5801
has the following mnemonic and opcode:

Mnemonic Code

T x® >3
EEE -

STACK POTMTER
.12 Internal ALU Registers . i

CPU

T — i S SR

Note that the instruction utilizes the
addressing mode that is categorized as afrect
That Is, the opcode must be followed by twa bytes
of Information that provide the address to which
the program is 1o jump. Those two bytes hold the
new address that is to be loaded into the program
counter. 7mal /s all thfs instnaetion does. 1L does
not alter the status of any of the flags. It simply
causes the computer to abruptly stop executing
instructions In one part of memory and start
executing them in another area.

There is, however, one very important thing to
remember when using the jump instruction. The
address specified as the "jump to" location must
contain the opcode of another instruction. That is,
it must contain the first byte of code for another
valid machine language command. Failure to
comply with this requirement has been the woe of
many an unfortunate programmer?

Artificial Intelligence

The concepts underlying the group of instructions
that will be presented now are some of the most
exciting in the computer world. It is this group of
instructions that give a computer the attribute of
being able to make decisions aws o modify its
peravior as a resuit of those choices! They form
the basis for thecretical models that may someday
lead to computers exhibiting actual artificial
intelligence. Some people argue that rudimentary
mooels of such behavior are already possible. Read
on and leam how a computer mimics this power.

The LH5801 CPU has an instruction that may be
considered as a variation of the jurnp directive. It is
referred to as a frac? command. The essential
difference between it and a jump directive is that
it only takes up two bytes of memory instead of
three. One byte for the opcode, a second for a
relative offset value. what is this relative offset
value? It is the number of bytes, forward or
backward, that the CPU is to skip before starting to
execute instructions again!

Of Course you can see right away that this isin
effect a jump directive that is limited in scope. It is
limited because the one-byte offset value means
that the number of locations that can be skipped is
restricted to the maximum value that can be
represented in an 8-bit register. (Remember, the
opcode for a true jump directive is followed by a
two-byte address that can specify a7y location
within the 64 kilobytes of memocry that could
theoretically be assigned to a LH5801 processor.) It
turns out, however, that in practical applications,
most jumps are reiatively short ~— they only need
to skip over a few instructions -- so 7 is
worthwhile in tenms of memory consenvation 1o
use a two-byte instruction and oranc/? 1o a nev,
relatively close location, rather than always

M
having to use a three-byte jump directive. This will
pbecome more apparent as you gain machine
language programming experience.

How does the branch directive actually
accomplish its goal of skipping over a block of
memory? You guessed it. It simply adds (or
subtracts) the relative offset vaiue to the current
value in the program couriter, thereby changing the
program counter to point to a new locationt

The key to the successful use of branch
directives is to thoroughly understand how to
specify the number of skipped bytes. when doing a
forwarg branch you start counting with the
memoary location that immediately fo//ows the
two-byte branch directive. But, you start counting
at. zerp/ For instance, if the forward branch opcode
(8E) was stored at address 78COD (hexadecimai,
remember) with the offset value in 78C1, and the
program was to skip over 7 bytes of code, so that
the next instruction executed was at location
78C8, then the offset value would be specifiedas 6

Henory
-—‘::7300 ilelihhilefiie] st
781 Diololole]iiilo] o Count
7802 P bbbl = @ 0
7803 o it A 0 BN O O 1
7884 ‘,,“ el S G .__"4 S 2
sae7 Lo LUl 23 3% U ORaEer T
_. % 7803 K P 6
L
fw IPe] - PC=PC+02+06=7800~08=78CB
Al Acoumdarer | LT D L] F
H Y u
XM X AL
A ¥ YL
Sp STACK POINTER
1 Internal ALU Registers .1

cPy

(actually, D6 using hexadecimal notation). Note
that the offset value specified is six even though
seven bytes of code are being skipped. This is
because the first skipped byte is numbered zero. Do
you know why this convention is used? It is because
the program counter will already have advanced to
the next byte of memory by the time it is ready to
inplement the offset value! Makes sense, right?

Be careful when it comes time to specify a
reverse branch You can still start counting at the
byte following the offset value, bul you must again
count this as the zero byte and you progress
backwards (towards lower memary addresses) from
that point. Thus, if the reverse pranch opcode (9E)

26 Nachine Langusga Programming Copyright 1983 POCKET CONPUTER MEUSLETTER

——— s T ———

was stored at location 78C4, the offset value was in
78CS5, and the program was to go back to an
instruction that started at location 78C0, then the
offset would again be specified as 06.

Hemory Count.

b v OO % S Y S 1 N O S » 5
: e N ERDE R I |
703 B LT ELE L~ ¥ 3
: 784 (Lj@lelt]rleli|e] 9 - 2
780 loleleteloli{ile) g5 % 1
7806 W w 0
.= Poe [Pe-pe-02-06-78C4-04=78C0

A Accunulator F

U y UL

XH X XL

H Y YL

SP STACK POINTER

1 Invtmrnal ﬂjllhg: Hsters .. -

cPu

It Is absolutely essential that you wioerstand
Now (o specify these offset values in order to
effectively goply these most valuable directives!
Do not leave this section untll you have carefilly
studied this text and the accompanying aragrams
80 are Conrident you naderstand the concepts.

Perhaps one way 10 enhance your understanding
is to recall how these directives affect the program
counter: the offset value is either added to or
subtracted from the program counter, thereby
immediately causing it to point to the new location
at which to find the next instruction. Now, what
value will the program counter have in it at the
time it finishes executing a branch directive? why
the address of the byte that foliows the current
instruction. This has to be the case because the
program counter is always telling the CPU where
to obtain its operational information.

In the case of a forward branch, advancing the
value in the program counter by whatever number
of bytes the programmer wants to advance, less
one to account for the byte assigned the count of
zero, will cause it to be pointing to the desired
location. This is easily demonstrated by assumning
that rather than skipping anything, the CPU is to
simply execute the next instruction stored in
memory. In this case the branch offset value would
be zero. it would be exactly the same thing as
though the program counter had merely advanced
itself to the start of the next instruction, as it
normally does, when it had finished executing the
instructiont Naturally the FB 00 (forward branch

Copyright 1983 POCKET C(MPUTER MEUSLETTER

with a zero offset value) directive, while it can be
specified, has little practical value. The exampie
may, however, heip illustrate how the instruction
WOTKS.

In the case of the reverse branch, where you
want to go back a certain number of steps, you have
to remember that the program counter is aiready
pointing to the next instruction it would normally
execute if the branch did not occur. The offset
value will now be swiracted from the value in the
program counter. If the count of two is subtracted
from the program counter at this point, what wiil
happen? Right. The program would instantly be
caught in an endless loop. This is because the
hapless program counter wouid be reset to point to
the opcode of the reverse branch instructionitself.
It would repeatedly perform the same directive
over and over again. Remember this well: g reverse
oranc? with an ofrset value of two Is a sure way 1o
progvice CPL lackup!

In summary, a plain forward or reverse branch
is merely a shortened form of a jump directive. It
simply uses orrset souressing rather than direct
addressing. It is, however, the many various forms
of the forward and reverse branching instructions
that give the LHS801 CPU its gdecision-making
capability.

Flagging a Choice

Remember all those CPU flags we discussed
earlier? Now is when you learn how essential they
are in controlling the operation of a computer!

Those flags can be "tested" by instructions,
such as the branch group being presented here.
That is, as part of the operation of a particular
instruction, the status of a flag can be examined to
determing its current state. Then, depending on the
state found, the final operation of the current
instruction can be altered. In the case of the branch
directives, the alteration to the operation is as
follows: If a tested flag is in a desired state (the
test condition is £7242), then the branch procegure
will take place, orerwise it will not/ Naturally, if
a particular branch instruction is not executed,
that is, if the branch (jump) does not take place,
then the instruction that follows the branch will be
executed Jnstead or being branched (jimpeq) over!
Presto! You now have the capability of changing
the path of instructions that will be followed
aepending on e rlag conditions that exist at the
time a program is actually being perforrmed Great
stufft

Take, for illustration, the cogftional rorwarg
oranch If zero directive (represented by the
mnemonic FBZ). Agaln, purely for illustration, let
us suppose that the offset value accompanying the
opcode was 04, so that the computer would branch
ahead aver the four bytes (to the 27 byte} if the

flachine [anguage Programwing 27

Henory
—-‘::nco e ji[1jelt]e! 8B
7501 [ololejejeli (olo} 04 Count
o 7862 [eli1jel:[olelo] 68 -t 0
7803 [elijifi[i]e]e]®} 78 —» 1
78c4 [O[11TIoli[e[1]6] 6A 3 2
7aes [| |ojoie) 00 & 3
" 7806 K ﬁ, ‘
- IPc PC=PC+02 or P{=PC+02+04

X
¥
STACK POINTER
1l Internal ALU Registers &

B E .

L ERE RS

CPU

commarkl was executed. And, to complete the
picture, imagine that the instructions LDUH #78
and LDUL #D0 (which are each two-byte
directives) foilowed the branch directive. wWhat
would happen as this series of commands was
encountered by the CPL?

The FBZ #04 would be encountered. The CPU
would examine the status of the zero flag. If it was
set (trug) then a count of four would immediately
be added to the program counter. 77us would cause
the computer o skip over the next four bytes or
information in memory and continue executing
instructions at the AR oyte. Thus, the LDUH #78
anc LDUL #D0 directives would 70f be performed
J£ and only If. the zero flag was found to be set at
the actual time that the branch instruction was
executed. On the other hand, if the CPU found that
the zero flag was c/eared (false) at this time, then
the branch would not take place Instead, the
program counter would merely advance in anormal
fashion thereby causing the LDUH #78, LOUL #00
directives to be performed.

You have now seen haw a branch directive may
be used to cause sumething to be done or not done.
In this examgple, the 16-bit U register would be set
to point tc address 7800 if, and only if, the zero
flag had been set when the branch directive was
encountered. Otherwise, whatever previous value
had been in the U register would be left there.

The converse Instruction is also avallable as
part of the LHS801's repertoire. That is, there is a
directive: forwargtranch onnon-zero (FBNZ). This
instruction is exactly the opposite of the one just
described. If the zero flag Is cleared {i.e., the
register that controlled the flag was non-zero),
then the forward branch /s perforrned. If the zero
flag is set, then the forwarg branch Is /07 taken.

28 nochine Language Programning

M

There are six other conditional forward branch
instructions that perform similarly, based on the
status of the carry (C), half-carry (H) and overflow
(V) flags. Thus, there are a total of nine variations
of the forward branch directives: one wiconditional
and eight conaitional.

Mnemonic Cooe
FB #m 8E
FBZ #mn 88
FBNZ #mn 89
FBC #amn 83
FBNC #mn 81
FBH #mn 87
FBNH #0n 85
FBY #n 8F
FBNV #m 8D

Similarly, there are a total of nine
varigtions of the reverse branch directives:
one wconditional and eight conaitional.

Mnemonic Code
RB #fn SE
RBZ #n 98
RBNZ #mn 99
RBC #n 93
RBNC #nn 91
RBH #nn 97
RBNH #n 95
RBV #Hn o
RBNV &N 9D

Note that the only difference between the
forward and reverse branch directives is the
direction in which the jump occurs. Forward
branches move ahead in memory (resulting in a
higher address value in the program counter). The
reverse branches move backwards in memory
(resulting in a lower address value in the program
counter).

(Readers who are pianning on becoming MLP
Masters might aiso note that the only difference in
the opcodes is that the reverse group tums on one
more bit. Thus the most significant digit in the
opcode becomes a 9 instead of an 8.)

Having such a complete set of conditional
pranch directives eases the task of developing
machine language programs. Note, for instance,
that having both branch on zero and branch on
non-zero directives, is really a convenience. A
programmer could obtain the same logical result in
a program If only one of those directives was
avaiiable, through proper positioning of the code
that was to be skipped. Having both possibilities
present as instructions, however, makes life easier
for the programmer. Say "thank you" to the chip
gesigner, please.

Copyright 1983 POCKET CONPUTER NEWSLETTER

e

See for Yourself

Let's examine a little program that demonstrates
the use of branch directives. Actually this example
Is a mogification of a simpie routine that originally
appeared in the Instruction manual that is supplied
with the Radio Shack PC-2. The machine language
routine to be presented will cause whatever is in
the liquid-crystal display (LCD) to be displayed In
inverse format. A flashing display is then made by
coupling the machine language directives o a
simple BASIC program.

Here Is the series of machine language
instructions that will be utilized:

Mrermonic
LDXH #76
1 DXL #00

Description
Load X~-high with value 76.

Load X-low with 00.

Load accumulator with the
contents of the address pointed
to by register X.

Exclusive OR (invert) the bits in
the accumulator. (A commonly
used p "trick".)
Store the inverted value In the
address pointed o by X, then
automatically increment the
value in the 16-bit X register
s0 that it points to the next
location in memory!

Compare the contents of X-low
with the hexadecimal value aE.
If the result of the comparison
is non~zero (Le., X-low is not
equal to &E), reverse branch
back to the LDA (X) command.
Compare the contents of X-high
with the hexadecimal value 77.
If the resuit of the comparison
is zero (L.e.,, X-high is equal to
77), forward branc? ahead 0
the RTS command.

Load X-high with 77.

Reverse branct 10 do the
LDX1. #00 instruction again and
go through second half of LCD
buffer area.

RT3 Special command that will pass
control back to BASIC program.

The machine language routine as just presented
is in what is referred t0 as gssemly iang/age or
mnemonic form. This is also sometimes referred to
as a source cooe listing. Note that there is no
indication of where the instructions will be stored
in memory within the computer nor is the actual
opcode used by the CPU even presented. Instead,
just the mnemonic representations for the
instructions that will be used are listed. This is the

LDA (X)

EORA #F

STAI (X)

CPX1_ #AE

RBINZ #08

CPX- #77

FBZ #04

LDXH #77
RB #12

Copyright 1983 POCKET COMPUTER NEUSLETTER

method of notation that experienced machine
language programmers use as they think about and
create routines that will ultimately be executed Dy
the CPUL

Before such a listing can be used by a computer
such as the Sharp PC-1500, the assembly listing
must be converted to what is known as the machine
readable or agject code form. This process is also
known as gssenbling a program. It consist of
nothing more than translating the mnemonic
representations for the instructions into the actual
binary patterns recognized by the CPU and
assigning themn to specific memory locations
{addresses) in which to reside.

The process of assembling a program is readity
accomplished using manual methods, particularly
when the program is smail. All that is requiredis a
lookup table that gives the machine code for each
type of instruction that is being invoked. It may
alsn be necessary to ascertain specific addresses,
such as when data is being stored or jump
instructions are being used. And, in the case of
branch directives, it is necessary io calculate
offset values. However, it should be noted that ali
of these processes are essentially mechanical in
nature. That is, a computer can readily be
instructed as to how to accomplish such
translations and perform address caiculations.
Hence, it should come as no surprise that it is
possible to construct an assembler program that
will process a mnemonic source listing and convert
it to a final object code listing. Professional
machine language programmers who work at
developing machine language routines on a
continuous basis alrost always use such a program.
It relieves them of the tedious task of performing
such translations manuaily.

Alas, students using this tutorial should planon
becoming adept at using manual assermily methods.
The routines presented herein will readily yield to
such rudimentary methods while providing many
useful insights. The development of an assembler
program for the {LH5801 CPU that would runon a
PC-1500 could easily take several person-rmonths
to develop, would use a substantial amount of
memaory, and would likely find a rather limited
market.

Here is how the above routine might appear in
"assembled” form:

Address Code Mnemonic
78C0 48 76 LDXH #76
78C2 8A OO LDX3. #D0
78Ca 5 LDA (X)
78C5 BDFF EORA #FF
78C7 A STAI (X)
78C8 8E ZE CPXL #4E
78CA 99 08 RBNZ #08

Nachine Language Programwing 29

P e —

78CC ac 77 CPXH #77
78CE 8B D4 FBZ #04
7800 a8 77 LDXH #77
7802 9E 12 RB #12
7804 9A RTS

Does it make sense to you? 1 hope so! Note that
we have (arbitrarily) decided that the code will be
stored in memory starting at address 78C0 (using
hexadecimal notation). Do you recall that memory
locations 78C0 through 78CF are normaily used to
store the string variable A$ by the PC-1500 BASIC
interpreter? tocations 78D0 through 78DF are
normally used to store the string variable 8$. Do
not use these variables while this routine is
residing inmemory!
If you have Norlin Rober's LMD program (as
recommended in the preceding section of this
tutorial), you can use the monitor portion to load
the above code directly into memory. If thisis the
case, then you can skip the first three lines of the
following BASIC program.
1000: POKE &78C0, &
AB, &76, B4R, O
, 9,080, 8FF, &
Al

1010: POKE &78C8,&
43, 8AE, 599, 8
, &AC, &77, &88

B
1020: POKE &7800, &
AB,&77, 89¢, &
12, &9A
1030: INPUT "YOUR
HESSAGE?", X$
1040: CALL &78C0
1050: FOR X=1T0 50
NEXT X
1060: GD10 1040
Note that the first three lines of this BASIC
program store the desired machine codes into
memory. The remaining lines are used 1o
dernonstrate the action of the machine ianguage
routine. If you do not use lines 1000 - 1020 of this
BASIC program {pecause you use a monitor to load
in the machine codes) then make sure you ao not
use & RUN commard o execute the program’ 1f
you do so, you will simply wipe aut the machine
codes that were stored where variables A$ and B$
are kept by BASIC! This is because BASIC clears
out (initializes) those locations whenever it is
given a RUN command. Instead, use a GOTO
directive -~ such as GOTO 1030 -- to execute the
BASIC program without initializing the BASIC
variables.
A few words as to what the machine ianguage
Toutine does is undoubtably in order at this point.
You see, the PC-1500 maintains a display

S —

“buffer” (a holding zone) in locations 7600 througn
7640 and 7700 through 7740 in memory. This
effectively splits the LCD into left and right
nalves with each block of memary serving one half
of the display. {This is a simplification. The
addressing of the display s actually more
complicated. But, considering it as consisting as
right and left halves will do for the sake of this
discussion.) The machine language routine being
demonstrated does the foliowing:

It sets the address 7600 {the start of the left
half of the display buffer)into the 16-bit X register
of the CPU. It then fetches a byte of data from the
address pointed to by the contents of the X Tegister
into the accumulator. That byte of data is then
jnverted using an exclusive OR Instruction
*against” a byte where all the bits have been set to
a logic one state. The inverted data is then stored
back into the same memory location in the display
buffer. However, the STAI () instruction, you may
recall, autormnatically increments the contents of
the X register so that it points to the next location
in the display buffer (in this case).

Since the first (left) half of the display buffer
ends at address 7640 and we do not want to alter
memory beyond that location, a test is used 10
getermine when that address has been exceeded.
This is accormplished by comparing the lower byte
of the X register against the value 4E (the value
immediately after 40). This is the value that the
lower part of the X register will contain as soon as
the STAI (X) instruction has finished executing
(when the X register contains the address 764D)
Remember that a compare directive simply sets
the CPU flags based on the results of the compare.
Thus, if the comparison of X-1ow against the value
4E is non-zerc, then the CPU “knows” (in this
situation) that the X register has not reached the
vaiue 764E. The RBNZ #08 directive thus routes
the CPU via the program counter pack to execute
the LDA (X) directive (at address 78CA in the
assembled listing). A program loop has effectively
been formed. This loop or series of instructions wiil
be repeated until X-low attains the value 4E. At
that point, with the comparison being equal to zero,
the reverse branch will not take place. Instead, the
CPXH #77 directive (at address 78CC) will finally
be executed.

This compare determines if the entire buffer
has been processed (1.e., both halves) by checking to
see if the high portion of the 16-bit X register is
set 10 the hexadecimal value 77. If this is indeed
the case, then the routine is finished. A forward
branch (FBZ #04) is used to direct the programto a
special instruction (yet to be introcuced) that will
conclude the operation. However, if X-high is not
yet 77 (in which case it must be 76 as that is what it

Z0) nachine Language Programming Copyright 1963 POCKET COMPUTER NEWSLETIER

e !

LDXH #76 point to laft half

Set X register to]
L of display buffer.

Set X vegister to

LDX. #00 point to start of
current half of

| the display buffer.

Fewch & byte from
LDA (X) l the display buffer.
|
Exclusive Or to
EORA #FF invert all bits.
]|
[Place inverted byte) 3
STAIL (X) back in buffer and ‘

LCD DISPLAY

h

e

e
I g
;..-‘

Set X register to !,/
LOXH #77 point to right half § -

of display buffer.
o 2 | s (o)

Copyright 1963 POCKET CONPUTER NEUSLETTER Machine Language Programming

e i—

is initially set to by the program), then it must be
set to that value (77) so that the rignt half of the
display buffer can be processed. when that is the
case, then the RB #12 (reverse branch) instruction
is used to send the program back up to the LOXL
#00 instruction at address 78C2. This resets the
lower part. of the X register too, so that the region
from 7700 through 778D can now be processed by
the same series of instructions that originally did
the processing when the X register held values in
the range 7600 - 764D!

Sa what do you think? There is a little machine
language routine with barely a baker's dozen
directives and yet look at all the work it is ‘doingt
And look at atl the details involved. Is it worth
learning how to do these types of maneuvers?

To summarize, that little routine essentially
scans the contents of the display buffer. As it
obtains each byte, it inverts all the bits. Those bits
determine whether each dot making up a single
colunn in the display is on or off. Thus, the
operation results in the display being switched
from normal to inverse mode. (The process is
somewhat complicated by the fact that the actual
display buffer is spread over several separate
sections of memory. Such inconveniences
frequently occur in the world of machine language
programming.)

To make a flashing display (that altermates
between normal and inverse moodes), the machine
language routine is coupled to a simple BASIC
program. {The resulting comblnation will be
referred to as a /r7d program, in that it contains
both BASIC and machine language coding.) This
BASIC program (besides poking the machine codes
into memory) allows the user tc define a message.
(That is, set up the display buffer with something
nifty for demonstration purposes.) It then uses the
machine language routine to invert the display.
This inversion will take place in the blink of an eye
because the machine ianquage routine is executed
in just a few milliseconds. Next, a BASIC loop is
used to insert a time delay. The program then jumps
back to invert the display again. This causes an
alternating or flashing effect. If the time delay
(line 1050 in the BASIC program) was not. praovided,
the program would performn so fast that you would
barely be able to see the aiternating effect. (You
can experiment with the rate of flashing by
changing the "TC" value in line 1050.)

Say, have you noted that a machine language
branch directive is the eguivalent of a GOTO
statement in BASIC? Good.

The Super Looping Branch

AR, the prowess of chip engineers! The game of
one-upmanship continues even in the world of

rnicrocomputers. The LHS801 CPU can execute a
very special type of branch instruction that has
special application in the area of forming program
loops (a section of a program that is repeated a set
number of times). This instruction has the following
mnemonic and machine code:

Mnemonic Code
BNZD #nn 88

The mnemonic stands for Lrang/t on an-2ern
an? cecrement. ‘what this instruction does is test
the value in the 8-bit UL register. If it is non-zero,
then the value in the immediate byte that follows
the opcode will be suiracted from the program
counter. If it Is zero, then the program counter is
advanced in the normal fashion so that the next
instruction stored in memory will be executed.
Regardless of the results of the test of the UL
reglster, the contents of that register will also be
gdecremented. Note that the decrement takes place
after the test has taken place. Note also, that
while the test is for a zero condition in the UL
register, this test does 7ot affect the status of the
zero flag (or any other regular CPU flag).

To see the practical application of this special
type of branch directive, suppose you wanted to
perform a particular sequence of instructions five
times. To use the BNZD instruction, you would first
load the value 04 into the UL register. {Can you
recall the directive that would accomplish this?)
Note that the setting up of the UL register must
take place outside of the series of instructions that
will make up the program loop. (If this advice isnot
followed, the computer will get caught up in an
“endless loop" situation. This can be most
embarrasing for the careless programmer.)

For the sake of Illustration, assume the
sequence of directives that was to be repeated
resided in six bytes. After including the two bytes
used by the BNZD directive itself {the opcode and
the branch offset value), the proper offset value
(immediate data byte following the BNZD opcode)
for this example would be 08.

Can you mentally step through the operation of
this instruction for the above illustration? Let’s do
it just tocheck things out. ...

The first time the BNZD #08 directive is
encountered, the UL register will initially contain
the value 04. This is certainly non-zero, so the
offset value D8 will be subtracted from the value in
the program counter at the conclusion of the
operation. This will cause the computer to “loop
back" and re-execute the same series of directives
starting eight bytes back from where it was at the
time it Anfsner executing the BNZD command.
(Remember, when the CPU has finished executing
an instruction, the program counter will have

%2 Nachine Language Programming Copyright 1983 POCKET CONPUTER MEWSLETTER

B e —

autornatically been advanced the number of bytes
consumed by the current directive. Thus it will be
pointing to the address immediately following the
two bytes used by the BNZD #08 directive itself)
Algo, at the conclusion of this first encounter, the
value in UL will be decremented so that it is left
with a vaiue of 03.

As the BNZD directive is encountered on the
second time through the series of directives, the
L register will contain 03(stiil non-zero), thus the
reverse branch will again be performed and UL will
gecrease to a value of 02.

Hemory

780 [pleli|ejol1jolel 24

78C1 [DlofolololiTell] 04 Count,
i 7802 bR T S

78C3 7 L

78C4 6

7865 5t 0

7806 - 4 0

78C7 3

78C8 il 24 p

789 2 1

- 78CA B C 0] & 0

- |PC PC=PC+02-08 or PC=PC+(2

A 1 Accusulator b 1i]F
bH Hﬁ Slolelpl 1106 UL
KM X XL
¥H Y YL
P STACK POINTER

:: Internal AL Registers: '

cPU

This process repeats until the fifth trip through
the "loop” {in this example). This time UL will have
a value of zero when the BNZD directive is
encountered. This means the branch will 7o be
performed. Instead, the program counter will
advance normally. The program loop will thus be
exited as programn execution continues with the
opcode contained i the next byte of memory. Note,
however, that UL will still be decremented ano will
end yp with a vaiue of FF! That is, as the zero value
is decremented, the UL register will underflow to
the all ones (hexadecimal value FF)condition.

This special looping branch is a powerful
directive. The availability of such a command
should be considered a luxury by machine language
prograrnmers. Earlier types of microprocessors did
not have such built~in convenience. You had to roil
your own from scratch. (Can you figure out what
series of instructions to use to mimic the operation
of the BNZD directive?)

The Machine |_anguage GOSUB

Just as you can emulate GOTO statements
using jump and branch directives in machine
language, there are also instructions that provide
subrouting capability at the machine language
level. In this tutorial these types of instructions
will be referred to as A4 Lo subrowtine and call
directives depending on the addressing mode being
utilized.

In the BASIC language, a GOSLIB statement
does the following: the program jumps to a given
line number instead of executing the next available
statement in the program. owever, before
skipping off to the designated line, it saves its
curtent location {more precisely, the location of
the next statement it would encounter had it not
perforrmed the GOSUB). It does this so that it can
eventually return to resume operations where it
had ieft of f before being called away by the GOSUB
directive. The retum location is saved ina Jasé-in
Arst-out (LIFQ) stack that is maintalned by the
BASIC interpreter.

The program then begins executing a new series
of statements starting at the line number indicated
by the GOSUB directive. It executes the new serles
until it encounters a RETURN statement. The
RETURN directive causes the last location stored
in the LIFO stack to be used as the point to which it
is to returmn. Thus the program “returns” to the point
just beyond where the original GOSUB directive
occurred and continues its operation.

Machine language programs can also invoke
subroutines. If a subroutine is located at a specific
memorty address, then an all-encompassing Ao (o
suoroutine instruction may be used to direct the
CPU to do the following: save its current location
(the address of the next tnstruction that it would
normally execute), then jump to a specific location
in memory and begin performing the directives
that it finds at that point. How does the CPU do
this? You aiready know that it can jump to a new
area in memory by changing the value in the
program counter, just as it does for an ordinary
jurmp directive. It can “remember” where it was
before going off to perform the subroutine by
merely saving the "current” value in the program
counter. (The cuy7ent program counter value refers
to the value it would have after acting on all the
bytes making up the jJump to subroutine directive.
That is, the address of the tyte in memory that
follows the bytes used by the jmp to subroutine
instruction.) where does it save the value of the
program counter? why in the location pointed to by
the contents of the stack pointer!

Do you remember what happens when the stack
polnter is used by the CPU? Depending on the
operation, the stack pointer is incremented or

Copyright 1983 POCKET COMPUTER MEVSLETTER fachine Language Programming 33

e S ——— e — | —— | M |

decremented. when it is uset in conjunction with a
jump to sworoutine directive, it operates as
follows: The low portion (least significant eight
bits) of the program counter (which is pointing to
the third byte of memory after the opcode for the
jump to subroutine directive) is stored in memory
at the address pointed to by the current value in the
stack pointer. The vaiue in the stack pointer is
decreased by one. The high portion (least
significant eight bits) of the program counter is
now stored in memory at the new address pointed
t0 by the stack pointer. The stack pointer value is
decremented agaln so that it is ready to point to
the next byte in the current sfack. In other words
the stack is constructed from the “top” of memory
downwards. This can be contrasted to the storage
of instructions themselves which are executed
from the “bottomn® of memory upwards. Said
another way, the program counter normatly
advances, while the stack polnter goes backwards
as it constructs a stack. (But, it goes forwards when
it dismantles a stack!)

Do you understand that a stack In memory
created by the operation of the stack pointer can
be located in any section of RAM? Did you know
that a programmer can create a whole host of stack
areas in memory? Do you realize that a program
that utilizes the stack pointer must first make sure
that the stack pointer is loaded with an appropriate
rmermory address at which to construct a stack?
(Yes, there are directives to accomplish this task.
They will be presented in due course.) Have you

Hemory
7sc0 Gjel [T I [1{®] SE
3¢t olilibilijelelal 78
- 2802 11118 @ 0se Bo
N oy 3 KO Y 3 5
7800 i G
7801 L ahoi ot]
- S SRR A
] .-:,;fi'
—» 78fe leitlif1]i[eloje *’732
J—b 78FF LilIleqo®[o)1)! §03
w|7 P PC=7800
A 1 Accunulator F
1 i L
XH X XL
'r
™ 1 YL
— s $P=SP-02

noticed that while the stack pointer seems 1o
operate in reverse, it ends up storing subroutine
return addresses in the same order as which they
appear when associated with instruction opcodes?
That is, the high portion of a two-byle address
value ends up in the lower-valued address byte of
the stack and the low portion ends up in the stack
byte with the higher address.
The mnemonic and opcode for the standard

Jump to suoroutine directive is:

Mnemonic Code
JSR nnhn BE

Once the program has jumped to the start of a
subroutine, (which must contain a valid instruction
opcode), the CPU will continue executing
instructions iIn its normal sequential fashion. It
does so unti} it encounters a special directive that
must be used to terminate &7 subroutines. It is
known as the setum instruction. (Wow! Just 1ike in
BASIC)) The LHS801 recognizes the following
opcode as the standard szaum /10T SUbroutine
directive:

Mnemonic Code
RTS A

when this command is detected, the program
counter is reset to the two-byte address that was
saved in the stack when the subroutine was called.

ftenory
78C0 |1 @ ililije] BE
78C1 1 1]o[ee] 73
782 |1]118]110;01919} DO

......................... 5» ?803

7800
7801
7802
— 7803

> 78FE

‘—' 78FF

CIEE >3
x
EEE m

cPU

34 fachine Languege Programsing Copyright 1983 POCKET CONPUTER MEWSLETIER

it e——
M

(Provided that the program has been constructed
properly. Read on.)

what actually happens when a RTS directive is
found is the following sequence of events: The
address in the stack pointer register is increased
by one. The contents of the memory location then
pointed to by the stack pointer 15 loaded into the
left-most (most significant) half of the program
counter. The stack pointer value is Increased again
by one. The contents of the memory location it then
points to is fed into the least significant half of the
program counter, The CPU resumes program
execution at the address that has just been loaded
into the program Counter.

Note that if the last thing the stack pointer did
previously was to load a two-byte value (address)
into a stack in memory (such as occurs when
executing @ jump to subroutine directive), then a
RTS directive will result in that saved address
being placed back into the program counter. The
stack pointer is also restored to its previous vaiue.
The LIFO (last-in, first-out) stack process has been
completed.

You might also like £0 take note of the fact that
this orderly process can be subverted Dy a careless
programmer. If for example, the stack pointer is
used for some other purpose (and is not properly
restored) during the operation of a subroutine, then
it will not be able to restore the proper return
address to the program counter when an RTS
directive is encountered. The execution of a RTS
instruction, will however, still cause the program
counter to be loaded with whatever two bytes the
stack pointer happens to be pointing to. woe be it
t0 the haphazard programmer who allows such a
situation to occur. The result is invariably instant
chaos and a totaily "bombed” program!

The use of stacks and their control by the stack
pointer register is of great importance (pesides
their use in keeping track of subroutine return
addresses). There will be a special section devoted
to this particular aspect of machine language
programrning further on in this series.

Special Subroutine Calling Instructions

The LHS5801 CPU can execute several different
forms of the fundamental subroutine call directive.
Unfortunately, for many PC users, the avallability
of these instructions will be primarily of academic
interest. The reason for this will become clear
shortly.

One secondary class of call directives that the
LHS801 can perform uses what is referred to as
tase page incirect adaressing. Instead of the
opcode for the instruction being followed by two
bytes containing an absolute address (of where the
subroutine starts), it is followed by a single byte.
This byte points to the location in a specific block

Copyright 1983 POCKET COMPUTER MEUSLETTER

M

e ————— ——————————————— e Y et

of memory (the base page) where a two-byte
absolute address value may pe found. The base
page used by the LHS5801 is referred to as page FF.
It is the 256-byte block of memory having the
hexadecimal address range FFOO through FFFF,
Note that it encompasses all the addresses wherein
the two most significant aigits (FF) of the address
do not change, nence the reference to the FF_ page.
In the LH5801 the immediate byte that follows
the opcode for this class of call instruction must
contain an “even” value, L.e., 00,02,04,...FC,FE.
This value provides the location anpage FF of the
first byte (high-order portion) of a two-byte
address vaiue. It is this address value to which the
CPU is to jump and begin executing a subroutine.

7ere [eLiitliilorelol 1787
78F [L]1oololel o] fc2;
> £F 0D eillt.oeélm
fr01 LLlt[ol110]elo®
R |1 PC=7800
A | Accusulator F
Qi] W
i A XL
YH y YL
—— |5P 5P=5p-02
“o Internal MU Registers:::i:

Note that since two bytes are required for each
address on page FF and since there are 256 Bytes on
that page, this type of call directive can only refer
to one of 128 different memaory addresses stored on
page FF at any given time.

Now here is the reason why this type of
directive will be of purely educational benefit to
many PC users: in the Sharp PC~1500 and Radlo
Shack PC-2, the address range FFOD - FFFF is
occupied by ROM! It is filled with address values
that refer to subroutines used by the BASIC
package that is similarly installed in ROM. Since
these locations cannot be altered by a machine
language prograrmmer, they will not be of any use to
someone doing machine language programming.
Unless, that programmer can make use of some of

fachine Language Programming 35

the routines contained within the BASIC ROM
itself. (That is not an impossible idea, but it is
peyond the scope of this present discussion.)
Never-the-less, this type of call instruction
does exist. Indeed, it exists in unconditional and
conditional (controlled by flags) form as given in

the following compilation:
Mnemonic Cuode
CALL #mn cD
CAZ #mn CB
CANZ #nn c9
CAC #m C3
CANC #m Cl
CAH #nn C7
CANH #nn c5
CAV #n CF

The conditional forms are similar in concept to
those described for the conditional branch group. If
the flag condition being tested for is met, then the
subroutine call is performed, otherwise the CPU
ignores the directive and simply performs the next
instructionin the current series.

Remember too, that when a call directive is
performed, a return address is saved on the stack,
The return address is the address of the byte that
foliows the two bytes used by the instruction
(opcode and location on the base page). Study the
accompanying diagram to recall, if necessary, how
the contents of the program counter are saved at
the address pointed to by the stack pointer, just as
is cone when a directly addressed jump to
subroutine (JSR) instruction is performed,

From a practical viewpcint, these two-byte
call directives cannot be used unless: (1) You pian
to make use of some of the subroutines stored in
the pocket computer's BASIC ROM or (2) You plan
to unsclder a LH5801 and build your own computer
s0 that you can put the indirect addresses you want
in the FFO0 ~ FFFF biock of memory!

However, it is worth discussing why these types
of instructions are worth having, at least from a
programmer’s perspective. what is the primary
reason for having subroutine capability buiit into a
CPU? It is to conserve on the amount of memory
required in a system by permitting the repeated use
of selected blocks of code!

As code is developed for a large program, it
usually develops that a number of algorithms or
procedures are repeated over and over again, but at
different points in the program. Instead of having
to always insert the same block of code at each
place where a duplicate procedure must take place,
the experienced programmer wiil simply piace the
key series of instructions at a convenient location
in memory and terminate it with aRTS {return from
subroutine) directive. The starting address of that
key block of instructions (subroutine)is then placed

M

as the address bytes of a8 ISR command whenever it
is desired to perform that operation. The net result
is the saving of a lot of memory.

Suppose a particular algorithm occupies 50
bytes of program memary. If it were repeated 20
times within a program, it would consume 1000
bytes of storage. Placing the SO bytes of coce into a
subroutine (adding one byte for the terminating
RTS command) and jumping to it as a subroutine
(requiring just 3 bytes of code each time it was
referenced) would reduce the memory storage
requirement fromm 1000 to just 111 bytes. Itisa
powerful, essential, programming concept.

The two-byte call directive just described can
reduce the overhead even further. As an exeicise,
try determining how much memory the above
example would consume if all references to the
subroutine were through a two-byte call directive.
(Don't forget the two byles consumed by the
address that wouid have to be stored in page FF.)
Do you come up with a total of 93 bytes?

In fact, the example just gilven is quite
conservative in practice. In a cursory study of the
code stored in the ROM used in the PC-1500, it
appears that there are between 1,000 to 2,000
references 1o subroutines within the roughly 16,000
bytes of coding. If it were not for the extensive use
of subroutines, the BASIC ROM coding rmight well
occupy 128K of memory! Just the use of the
two-Dyte call directive over the three-byte JSR
probably saves about 1,000 bytes of storage. That
Tepresents about a six percent reduction in memary
requirements.

with that concept in mind —- that the use of
subroutines saves a 1ot of memory space -- you
probably will not be surprised to learn that the
LHS801 has still another type of jump 10 subroutine
(call) directive. 1t is a ae-oyte calll

How does it do this? The LH5801 CPU simply
recognizes the following opcodes as special call
directives using arather nifty relationship:

Special One-Byte Call Opcodes
C0C2CAC6 CBCACCCE
DO D2 DA D6 D8 DA DC DE
E0 E2 E4 E6 €8 EA EC EE
FO F2 FA F6 F8 FA FC FE

The special opcoge relationship is this: the
opcode itself serves as the reference (o the address
on page FF where the absolute two-byte address of
the subroutine is stored!

Note that only the upper quadrant of the base
page (FF) can be reached by these directives. Of
course, just as in the case of the two-byte caill, ail
the locations are "even-valued” as the odd-valued
locations contain the second part of each two-byte
address that is stored on the base page.

But, these directives all operate in the same

36 Machine Language Programming Copyright 1983 POCKET COMPUTER NEWSLETTER

Nencry

e |PC PC=78ED
A Choomiwor | [TTTT
.UH l'l UL
'XH ‘X AL
'YH '! YL
—— [ep $P=5P-02
i1 internal ALU Registers i1

CPU

manner as the jump to subroutine directive. when
executed, the address of the byte that follows the
opcode will be stored on the stack as the "retumn to"
address. It is a prettly clever little directive, one
not found on typical CPUSs. And, In the case of its
application in the Sharp PC-1500, its use ends up
saving a significant amount of memory.

For instance, working with the example clted
earlier (20 calls to a 51-byte biock of code), the use
of this type of directive would reduce memory
storage requirements to just 73 bytes. (Don't forget
the two-byte address stored on the base page when
considering this case!)

Alas, however, from a practical standpoint the
one byte call directive will be of little use unless
you can get your hands on a loose LHS801 or you
plan to tap into the ROM coding already present in
the PC. It is worth knowing about for just such an
eventuality, however!

A Special Retum Instruction

when certain types of external devices need to
communicate with a computer they generate what
is known as an Jnterrypt signal The LH5801 CPU
responds to such a signal by automatically
performing a special king of jurnp to subroutine
operation. That is, It stops whatever it is currently
aoing (at the conclusion of whatever instruction it
is executing) and pushes the address of the next
instruction it would normally execute ontoc the
stack. It also places one more {tem of information

Copyright 1923 POCKET COMPUTER MEWSLETTER

in the stack: the contents of the CPU flag (F)
register! It does this so that the present state of all
the CPU (programmabile) flags can be preserved.
Finally, it jumps off to one of several addresses
that are stored in the upper locations of page FF.
Just which one is dependent upon the type of
interrupt that is being performed, The detalls of
this selection will be reserved for later discussion.

It then proceeds to execute whatever
instructions it finds at the address it has been
directed 10 as though it were a subroutine. That is,
it keeps going until it finds a retumn Instruction.
However, since it stored three bytes of informatjon
on the stack, it needs to perform a special kind of
return procedure in ordger to return to the place in
memory from whence it was originally operating
when the interrupt took place. There Is a special
return directive that performs this extraordinary
procedure:

Mnemonic Code
RTI 8A

The mnemonic stands for “return from an
interrupt subroutine.” when it is executed, the CPU
will first increment the value in the stack pointer,
then fetch whatever is in the memory iocation
pointed to by the stack pointer and place it into the
CPU flag teqister. 7is action affects ali of e
OPU/ flags by restoring them (o whatever state

Hemory

76C0

78C1

78C2 Pad
PR #= 7803 EEREE L3
i . EaNRONS

g AEDEEDIN

7800 LifiEcEipbEngadiy

7801

7802

————§ 7803

7?

S () PC=7803
A Accurul ator F
UH U u
XH ;(A
Yo ¥ L
——— {sp SP=5P+03
1.0 Internal ALY Registers ;'@ ..

CcPU

Hactdne Language Programming 37

E e e —i—

they hao wren the Internl caused tem o be
storeg’ The CPU then increments the value in the
stack pointer again, fetches the high part of the
return address from the stack, increments the
stack pointer once more and fetches the low part of
the return address. The return address obtained is
placed into the program counter, thereby causing
the CPU to resume activity with the next
instruction in memory after the one being
performed when the interrupt originally occurred.

In summary, the RTI instruction is just like a
RTS except that it takes une more byte off the
stack. This extra byte is used to set the states of
the various CPU flags. Thus, while a reguiar retuin
directive never atters CPU flags, all flags will be
affected by areturn from interrupt command.

Since the use of interrupts is strictly limited to
special situations dealing with extermal nardware,
many programmers will never have to be concerned
with its practical application. Just make sure you
don't use it accidently, however. Else you could be
in for all kinds of surprises caused by a misaligned
stack pointer and a revised set of flag conditions!
Decimal Addition
One of the first instructions 1 introduced in the
first part of this series was the reguiar old binary
addition girective. The LH5801 CPU is capable of
performing another type of addition directive
kriown as decimal adjusted addition. It is somewhat
more complicated than an ordinary binary add.
Hence an explanation of its operation was not
included in the previous discussion. After ail, 1
didn't want 1o scare you off when you were just
getting started. If you are still with me at this
point, 1 figure you have enough gumption to deal
with just about anything dished out!

Basically the way a decimally adjusted
operation works is to divide a byte into two parts
consisting of four bits each. (Four Dits are
sometimes referred to as a nibble in data
processing lingo.) Each 4-bit half-byte is then
treated as a decimal value. That is, it is "adjusted”
(during the operation of a "decimal” instruction) so
that the four bits represent values in the range O
through 9. Any carry from this procedure is either
reflected in the H (half-carry) flag or C(carry) flag
depending on which nibble is involved.

The essence of all this is that you Can
effectively work with numbers in decimal format
(actually, binary coded decimal [BCD] format)
instead of always having to work in strict binary
notation. It turns out that there are drawbacks to
working in this format so that it is not as easy o
use as it sometimes appears at first glance.
However, scme programmers like to work with
BCD procedures. The LH5801 has the fundamental
gecirnal-oriented instructions that lets those

e — e —

so-inclined work in this moge. Here, for starters,
are the three decimal add directives that aliow the
contents of the memory location pointed to by the
U, X or Y registers to be decimal added to the
accumulaton:

MMnemonic Code
DADA (U) AC
DADA (X} 8C
DADA (Y) 9C

And here is the formal explanation of how they
gperate: (1) The hexadecimal value 66 is added
(internally) to the initial contents in the
accurnutator {which is assumed to be in BCD form),
(2) The initial content of the carry flag (C) is added
to the least significant decimal digit position, (3)
The value in the iocation pointed to by the data
pointer register (which is assumed to be in BCD
form) is added to the accurmulator, (4} The
intermediate result obtained at this point is
adjusted to yield final BCD digits by adding in a
value that is a function of the half-carry (H} flag
and carry (C) flags, (5) Any BCD averflow from the
final result in the most significant BCD digit
position will be reflected in the carry (C) flag, (6)
The status of the Z and V flags may also be affected
by the results of the operation, (7) The priginal
contents of the remory location (addend) are not
altered by the procedure.

The decimal adjusting operation performed in
step (4) of the above description consist of adding
particular values (internally) to the accumulatlor
depending on the states of the H and C flags. /7 /s
essential to realize that these Flags are operating
in such & manner so as to ingicate overriows or

Accunul atox
0jolo111]110]0} 1 (initially)
: £66 Addad
Int.ez.l_mlly

Int.a_mnl
Result #1

-

[} carry fFlag
FE EE R E 1 E e

Internal
Result #2

Decinal
Ad j=ust
(@ele@ala it ag

Carry Flag
{result)

38 Machine Lanquage Programming Copyright 1983 POCKET COWPUTER MEWSLETTER

BCO values Ffrom e3ch nibble during this process.
Tne exact vailue that wiil be added to "adjust” the
results may be determined from this table:

Carry Half-Carry Decimal-Adjust value

0 G 94
0 1 AD
1 0 FA
1 1 00

The accompanying diagram representing the
operation of a decimal addition instruction should
nelp clarify what often seems to be a somewhat
gbscure procedure, whether the actual internal
process is understood Dy the programmer is not
really critical. The important concept is to reatize
that if you start out with values in BCD format, you
will end up with values in BCD format, provided
you utilize these special BCD directives.

Decimal Subtraction

A stmilar set of directives exist to facilitate
subtraction in BCD formal:

Mnemonic Coge
DSBA {U) 2C
DSBA (X) 0C
0DSBA (Y} 1C

The rules applying {c the operation of these
directives are as follows: (1) Decimal adjusted
arithmetic is performed, (2} The status of thecarry
flag serves as a borrow indicator at the start of the
operation, (3) The value in the accurmulator is
assurmned to be in BCO form at the dbeginning of the
operation, (#) The content of the memory location
pcinted to by the data pointer register (assumed to
be in BCD form) is deducted from the accurnuiator,
{5) The result is decimal adjusted using the status
of the half-carry (H) flag and carry (C) flags to
determing the adjusting guantity, (6} Any BCD
underflow from the maost significant BCD digit wiil
be reftected by the status of the carry (C) flag at
the conclusion of the operation, (7) The status of
the Z and V flags may also be affected by the
results of the gperation, (8) The original contents of
the memory (subtrahend) location are not altered
by the procedure.

The adjusting value used in step (4) above,
which is dependent upon the values of the carry and
half-carry flags at the time of the operation, is the
same as that given in the table presented for the
decimatl addition directives.

BCD Rotate instructions

To facilitate working in BCD notation, the LH5801
can also perform several kinds of BCD (or nibble)
rotate and swap operations. This permits quick and
easy manipulation of BCD digits within the
accumulator or between the accumulator and a

location in memory.

The simplest of these directives is the RDA
(rotate digits in the accumulator) command. This
effectively swaps the right and left BCD digits
{nibbles) within the A register.

101! I_@l@

Accunulator
Before

Digits
Rotated

foccumilator

i1 [elelolol 1] "

There is also a command that rotates the least
significant nibble (BCD digit) of the accumulator
into the most significant nibble of the memory
location pointed to by the contents of the X
register. As this is done, the original most
significant nibble of the memory location is shifted
to the right, to accupy the least significant nibble
position. This BCD digit is also copied into the
most significant nibble of the accumulator. Finally,
the original least significant nibble of the memory
location is transferred to the right-most nibble of
the accumulator. The result of all this is called a
digit rotate right and has the mnemonic RDR {X).
The accompanying diagram will help clarify what
can be a somewhat confusing operation.

AT

e o
= A
Basnv oty AR RN

In summary, what effectively happens is that
the accumulator ends up containing the original
contents of the memory location, while the
memory location ends up having the former least
stgnificant niople of the accumulator in its most
significant pits and the former most significant
nibble of itself shifted over to its least significant
bits. Yow sad note that the origingl most
signiricant 8BGO in the scoumudator will te lost by
e execution of s direptive!

A similar directive with the mnemonic RDL ()

Copyright 1983 POCKET COWPUTER MEWSLETTER Maochine Language Programming 39

is used to rotate digits between the memory
location pointed tc by the address in the X register
and the accurmuiator, in the opposite direction. The
most significant BCO digit of the accumuiator is
passed to the least significant nibble of the
memory location. The original most significant
BCD digit of the memaory location is transferred to
the same position in the accumulator. The original
least significant nibble of the mermory location is
shifted left to the most significant nibble position.
It is also passed to the least significant BCO digit
position in the accumulator. This is the sn-called
aigit rotate rignt command. Again, the diagram
can heip illustrate the operation.

. Accumulator
Before

Henory
Before

ROR (X)

ITolololol1]e]o %“

Henory
After

In summary, the accumulator ends up having
the original contents of the memory location. The
memory location ends up with its lowest nibbie
shifted over to the high nibble position. The
ariginal high nibble of the accumulator is
transferred to the low nibble of the memory
register. 77e original least significant BCO digit in
the accurmudalor s lost as g consegquence or
DENONTING LIS ISLUCLon.

The mnemonics and machine codes for these
digit rotate directives are summarized here:

Mnemonic Code
RDA F1
RDOL (X) 07
RDR (X) D3

There is one more important point to remember
about the digit rotate instructions: none of the CPU
flags are affected by their execution.

A Good For Nothing Instruction

would you believe there is a instruction that does
apsolutely nothing? There is. whenever the CPU
sees this directive, it just shrugs it chips, advances
the program counter and goes on to the next
location in memory.

But, is this "do nothing" instruction really
completely useless? No. Most machine language
programmers love having it available. It is often

w
e ————————————CR—————— S

used as a "filler” at locations in memory where one
suspects programming changes may have 1o be
made. And, it is often used to "pateh over™ sections
of code that are no longer desired irta program.

The instruction is referred to as a o -gperation
{fondly shortened to "ro-op”) by those in the trade.
Its mnemonic in this text is aptly:

Mnemonic Coade
NOP 33

Since the instruction does nothing but allow the
program counter to advance 1o the next memory
address, you know that it does not affect the status
of the CPU flags.

— N RN
flenoTy
— I PC=PCe}
A R NEE F
UH U uL
NN X AL
YH ¥ YL
s STACK POINTER
“: 1 Internal ALU Registers . ..

cPy

You will learn just how handy this directive can
be the first time you discover youneed to replace a
three-byte directive with a two-byte one in the
middle of a block of machine code!

Switching ROMSs o1 Whatever

The Sharp PC-1500 and Radio Shack PC-2 units
can, as you well know, be connected to a variely of
peripheral devices, such as a printer or RS-232C
communications interface. These devices typically
contain ROM(s) {in the address range 8000 - BFFF).
Some of them contain several ROMs in this same
address range.

You know that the LHS801 CPU cannot possibly
execute two different sets of instructions storedin
two different ROMs at the same time. In fact, if
two ROMs residing in the same memory addresses
were activated simultaneousiy, the result wouid be
electronic chaos. No, the fact of the matter is that
the computer must only allow one ROM (within a
given address range) to be active at a time. That is,
it must tell one ROM when to be active and in so
doing tell any competing ROM to cut itseif out of
the circuit.

This is a rather straightforward procedure from

A0 nachine Langusge Programning Copyright 1983 POCKET COMPUTER MEUSLETTER

an electronic circult standpoint, All it takes is a
signal that can go from a high s1ate to a low state
or the reverse. The output frorn a settable flip~flop
circult is just what is needed for this chore. Guess
what? The LHS801 has several flip-flops (besides
the flags that you already know about) that can be
controlled by special directives.,

Since the PC~1500 uses these flip-flops to
control which ROM is activated In an external
device, they have been assigned mnemonics that
relate to this common use. However it wiil be
pointed out that when the PC is nol connected to a
device that uses these signals, they could be used
for whatever purposes a prograrmmer desired:

One signal line comes out 1o pin 15 (on the 60
pin connector} of the PC. we will refer to this
signal hine as the ROM1/ROMZ line. When the logic
state of this line is at the low level, it is used (o
activate ROM1 in an external device. When it is in
the high condition, it activates ROM2, You can set
this line to the state that activates ROMI (low
level) by executing the ROML instruction. Or, vou
can set it to activate ROM2 {high level) by using
the ROMZ girective. Neat, eh?

ROM1 Hhen 2 RS

—L RON2
address range

4& in menory,

= the R(M1 and
s R{M2 conmands
can activate
one at a tinre.

oCoupy sane

R(N2a The ROH2a ang
ROMZb comnands
can similarly
_Q be used to

[select between
— another two

sets of RiMs.

Similarly another signal line we will refer to as
ROMZa/ROMZb comes out to pin 16 of the PC
connector. when the signal level on this pin is high
it can be used to activate ROMZa. when it is low it
switches the external device over to ROMZb. You
guessed it: executing the instruction ROMZa puts
this line in the high state, while using ROM2b will
place it in the low condition. (The RS-232 interface
uses this signal to switch between two ROMs that
share the address range 8000 - 9FFF)

Mnemonic Code
ROM1 B3
ROMZ AB

Copyright 1983 POCKET COMPUTER MEWSLETTER

ROMZa El
ROMZD E3

You will want to recall these instructions the
next time you start thinking about now you might
control a homebrew external device of your own
design. They would seem 1o provide interesting
possibilities inmarny types of applications.

Lookup Tables

Believe it or not, you have now learned the great
majority of all the instructions that can be
performed by the LHS801 CPU. There are some
more - those that make up what is referred to as
the extended instruction set -- but many of these
are simply extensions of those we have already
covered. In any event, it is appropriate to spend a
little time at this point, getting into the art and
sclence of machine language programming at the
practical, hands—-on, levei.

The first order of business i3 to understand that
it is not necessary to memorize every mnemonic
for every instruction that the machine can
perform. While some programmers eventually do
this, especially after they have worked with a
particular CPL for 3 long time, 1 do not recommend
that anyone put a lot of effort into acquiring such a
rote skill. The important thing is 10 know what
classes of instructions -- loads, stores, adds,
subtracts, logical operations, etc. -- are available
on the machine and what types of addressing modes
may be used. This is the conceptual level at which
the successful programmer must learn to think.

All of the other aspects of machine language
programming may be accomplished by rote table
lookup! All you need to have on hand is the
appropriate lookup tables. Two such tables are
provided on adjoining pages.

The first table is organized according to
machine code values. It is used when you want to
disassermnble machine code. That is, when you need
1o know what a particular numeric value means to
the CPL. Alongsige each value that can serve as a
CPU opcode is its mnemonic representation. You
should note that some numeric values do not invoke
a aefined Yesponse from the CPU. 7hese undefined
values stoula riever be used as gocodes within a
program. In other words, the fact that a numeric
value is not defined as representing an instruction
does not mean that it can safely be used as a NOP
(no-operation) directive. It should aiways be
assumed that the use of such a value could produce
wpredictable resuits. Hence, they should mever
serve as opcodes within a program.,

The second table is organized according to
mnemonic representation. It is used when you want
to assemble a program. That is, when you want to
convert a list of mnemonics (with which the

Nachine Language Progranming 41

Lookup Table In Machine Code Order

42 nachine Language Programming Copyright 1983 POCKET CONPUTER MEUSLETVER

Code Anenonic Code Nnenonic Code Hnenonic Code Anenonic Code| Nnenonic
00 {SUBA AL 30 TR B7 |CPA #inn F4 lcaLl F4
01 suea (X) 3t 7B B8 |ROM1 F5 (STT (%){¥}
02 (ADDA ML 3F 7c B3 IANDA #nn Fo iCALL Fé
03 [ADDA (X) 40 [INXL 70 BA {JP nnon F£7 JCPAI (X)
04 jLDA XL 4 [sTal (X} 7E BB [ORA nn Fg leALL FB
05 |tbA (X) 42 [DEXL 7F bt Fo |CLRC

06 |CPA XL 43 {5TAD {X) BG {SUBA XM BD |[EORA /imn FA [CALL FA
07 {cra {X) 44 |InX 81 {FBNC #nn BE [JSR nnnn FB |SETC
08 {STA XM 45 Al (X) 82 |ADDA XH BF |BITA #nn Fe {CALL FC
09 1ANDA (X) 46 |DEX 83 |FBC #on Co {CALL CO FO

oA [STA XL 47 |LDAD (X} 84 |iLDA XH C1 |CANC #nn FE (CALL FE
o8 |oRa (X) 48 jLDXH finn 85 |FBNH #nn 2 [CALL €2 FF

oc {DSBA (X} 49 {AND (X) #nn 86 [CPA XH c3 [cac #on

0D {EORA (X) 44 (LDXL #on 87 |[FBH itnn c4 CALL C4

oF [5TA {X) 48 |OR (X} #nn g8 IBNID #nn ¢S5 iCAMH dinn

OF |BITA (X) 46 |CPXH #nn 89 IFBNZ #nn L& jCALL C6

10 [SUBA YL 40 [BIT (X} #nn BA |RTI C7 |CAH ion

11 |suBa {Y) 4F [CPHL #nn 88 (FBZ #on ca (CALL Ca

12 JADDA YL 4F [ADRC (%) Mon 8C |DADA (W) €9 {CANZ #nn

13 |ADDA (Y) S0 JINYL 80 [FBNY #nn cA ICALL CA

14 DA vt 51 |STAI (¥) 82 |FB #nn CB |CAT #mn

15 |LDA {Y¥) 52 IPEYL §F IFBV finn ¢C [gALL £

16 |[CPA YL 5% {STAD (Y) 90 {5UBA YH O [CALL Mnn

17 [cPa (V) S4 JINY 91 {RBNC inn CE CALL CE

18 [STA YH 55 |LDAL (Y) 92 1ADBA YH CF iCAY /nn

19 aNDA (Y) 56 [DEY 93 |RBC #nn D0 {CALL DO

1A STA YL 57 [LbaD (Y 94 [LDA YH D1 IRRCA

18 lora (V) S8 H.DYH #nn 95 |RBNH #nn g2 |CALL D2

1c |osea (¥) 59 [AND (Y) fnn 96 [CPA YH 03 [ROR (X}

10 JEORA (Y) 5A |LDYL #mn 97 {RBH #nn D4 |CALL D4

1€ [sT8 (¥} 58 {OR (Y) #nn 98 D5 |sRa

iF |BITA (Y} 5¢ |CPYH #nn 99 |RBNZ {inn D6 |CALL D6

20 fsuBm UL 50 |BIT (Y} #nn 9a [RiS 07 {ROL {%)

21 isuea (U) SE ICPYL #nn 9B [RBI #nn o8 |CALL DB

22 |AbDA WL 5F |ADNC (Y) #nn ot [DADR {Y) Dy [sLa

23 jADDa {u) 60 {INUL ot [RBKV finn DA |CALL DA

24 JLDA UL 61 {STAL (U} 9E (RB Mnn DB IRLCA

25 {Loa (U} 62 |DEUL 9F {RBY #inn pC JCALL DC

26 |CPA UL 63 [3TAD (V) Al |SUBA UH 0D |INA

27 LPA (Y) 64 |[INU Al |SUBA nnnn DE |CALL DE

28 |STA LH 65 iLDAL (V) A2 |ADDA UH OF |[DEA

29 |anDa (V) 66 |DEU AS [ADDA nnnn EQ |CALL EO

2A |STA L 67 |LDAD (V) A4 [LDA UH Et |ROM2a

28 |ORA (U} 68 |LOUH #nn A5 ILDA nnnn E2 lcALL E2

2¢ |ossA (V) 69 |AND (V) #on A6 {cPR UR £3 R

20 |EORA (V) 6/ |LDUL #on A7 JCPA nDRN E4 |CALL E4

2 {STA () 68 |OR {U) #on A2 |ROM2Z ES

ZF |BITA (V) 6C [CPUK #nn A9 1ANDA nnnn E6 |CALL EG

30 60 [BIT (V) imn AA |LDS# pnnn E7

31 5E |CPUL #nn AR LORA nnnn EE ICALL ES

32 6F {ADNC (V) #nn AC {DADA {U) £9 |AND nann d#nn

33 70 A0 [EORA nnnn €A [CALL EA

34 71 & {STA nnon EB |OR nnane Arn

= 72 AF |BITA nnnn E¢ |CALL EC

36 73 BO ED IBIT nnnn #nn

37 74 Bl |SUB& #nn £E {CALL EE

38 |NOP 75 B2 EF {ADNC nnnn #nn

39 76 B3 |ADDA #nn Fo |CALL FO

b1} 77 B4 F1 [RPA

3B 78 85 LOA #nn F2 {CALL F2

3¢ 79 B6& F3

Lookup Table in Mnemonic Order

fnenonic Code noenonic Code Hnenonic Code Bnenonic Code Nnenonic Code

30 ANDA #rn BY CPA UH A6 L0AD (X} 47 STI (XXY) FS
31 ANDA (U) 29 CPA UL 26 ltoad (v) 57 SUBA #nn B1
32 ANDA {X) 09 CpPA XH 86 LBAT (V) 65 suBA (1) 21
33 ANDA (Y) 19 ICPA XL 06 LDAT (X) £5 sUBa (X) 0
34 ANBR nonn & CPA YH 9% LBAT {Y) 55 SUBA (Y) 1t
35 BIT (U) #nn 60 CrPa YL 16 LDS nonn Ah SUBA nonn Al
36 8IT (X) #n {4 CPAL (X) F? LDUH #nn &8 5UBA UH &0
37 BIT (Y) #nn |SD CPUK &nn 60 LOUL #inn 6A SUBA UL 20
39 BIT annn #nn |ED CPUL #nn 3 LDKH #nn P SUBA XH 80
3A BITA #nn BF CPXH dnn 4 LOXL #nn 44 SUBA AL 0o
38 BITA {1) F CPAL oy 3 LDYH #on 58 SUBA YH 90
3 BITA (X} of CPYH #inn 5¢ LDYL. #nn 5A SUBA YL 10
30 BITA (Y) 1f CPYL #nn 5€ NOP 38
3 8ITA nonn [DABA (U) AC or (U) #n ;]
3F IBNZD #nn 88 DaBA (%) 8 0R (X) #nn 48
70 CAC #nn 3 DADA (Y) 9 oR (Y)Y mon |58
71 CAH #nn c? DEA oF OR nnnn #nn |EB
72 CALL #inn ¢ DEY 66 ORA #inn BS
73 CALL CO ()] DEUL 62 ORA (U) 28
74 CALL C2 €2 DEX 46 ORA (X) of
75 CaLL C4 £4 DEXL A2 ORA (¥) 1B
76 CALL €6 €6 DEY S6 ORA PN]
7 CALL C8 c8 OEVL 52 RB #nn 9E
78 CALL CA Icn DSBA (U) p.r RBC #mn 93
79 cALL ¢¢ oo osea (X) oC RBH Hnn 97
7R CALL CE CE DS8A (¥) ic RENC #rn 91
7B cALL Do Do EORA #inn BO IRBIH Boky 9%
¢ CALL D2 62 ECRA {U) a0 RENY #nn 90
70 lcaL pa D4 EORA (X} 1!!] RBNZ #nn]
7E CALL D6 06 EORA (Y} 10 REV #nn 9
7F CALL DB (i1 EORA nnnn AD RBZ #nn 98
98 CALL DA DA FB #nn 8t RDA F1
BO cALL DC oe FBC #nn 83 ROL (%) 07
B2 CALL DE DE FBH énn 87 ROR (%) b3
B4 CALL ED |eo FBNC #nn 81 RLCA DB
B6 CALL F2 E2 FBNH #nn 85 ROK1 B8
BC CALL EA E4 FENV #nn 80 RO a8
I€5 CALL ES E6 FONZ #on 89 ROM2a F1
€7 iCALL EB E8 FBY #nn BF RCM2b £3
F3 CALL EA £A IFBZ #nn a8 RRCA 101
FD CALL EC £C INA 11} RII 84
FF CALL EE £F ™ 64 RIS 94

ADDA Hnn B3 calL Fo Iro TRUL 60 SETT FB

apDa (U 23 cALL F? F2 INX 44 SLA M

ADDA (X) 03 CALL F4 F4 INXL 40 SRA 05

ADDA (Y} 13 CALL F§ F6 INY sS4 $TA (U} 2

DDA onnn a3 CALL FB g Nt S0 s1a {X) oF

ADBA UH a2 CALL FA FA P nonn BA STA (¥) 1E

aDDA UL 2 CALL FC FC JSR nnon BE STA Annn AE

ADDA XH 82 CALL FE IFE iLDA #nn B8s STA O .}

ADDA KL 62 CANC #nn £1 Loa (B 5 STA L 28

ADDA YH 92 CANH M 5 Lba (%) 0s STA X 08

ADDA YL 12 CANT #rn c9 LD& (¥} 15 S$TA XL |oa

ADNC (V) #nn 16F AV finn cf LDA nonn |8 STA ™ 18

ADRC (X) Ann [4F CAZ #on cB thA UH A STA YL 1A

ADNC (Y) #nn {SF CLRC Fa thA L 24 STAD (U) 63

ADNC anan #nn |EF CP& #nn 87 LDA XH 84 STAD (X) 43

AND (U) #on |69 ¢PA (V) 27 LDA XL 04 STAD (¥} 53

A (X) Bon |49 tpa (X) 07 LbA YH 94 STAY (U) 61

MO (Y) #on 159 cPA (V) 17 oA vt 14 STAI (X) q

AND nonn #an {E9 CPA NN a7 LDl (V) 67 STAl (¥) 51

Copyright 1983 POCKET CONPUTER MEUSLETTER flachine Language Programming 43

e

rnachine language prograimmer works and thinks)
into the machine codes {(numeric values, binary
pattems) that the CPU utilizes.

These two tables contain all the instructions
that have been presented so far in this text. They
will be most valuable to you in the future. Treasure

them well!

Initial Program Development

Na machine language prograrmmers worth their salt
barge into writing a machine language routine.
Those that attermpt such a brute-force usuaily end
up wasting a lot of time. The numboer one rule inthis
kind of programming is: geciok exactly what It Is
that the computer 1s to do!. The second rule is:
wilte It dowr.

Now this may seem silly to have to spell out.
But the fact of the matter is that many people who
leam programming using a high language level such
as BASIC fail to realize how rigorous the process
becomes at the machine language level. If you
make a mistake or change your mind when using
BASIC, you can usually just insert a new line here
and delete a line or two there to correct the
problem. Insertions and deletions don't go over so
easily when using machine 1 .

The act of actuslly writing down, using simple
English, the proposed operation of a machine
language routine serves several purposes. For one,
the process forces a careful review of what you
have been planning. This methodical outlining of 3
process frequently reveals flaws that may have
been invisible when the matter was mulled over
purely in the slippery recesses of your mind.

Second, this written record can become a guide
and checklist as the actual machine language
routine is developed. In view of the fact that it may
take rmany hours -~ spread over a period of days --
to actually code a substantial routine, having such
a written plan to refer to can save alot of time. it is
amazing how much your mind can forget if it is not
periodically refreshed. Proper work habits can
have a powerful impact on the overall progress one
achieves while doing this type of programming.

Of course, if you want to amplify your written
descriptions by creating flowcharts, then you
should certainly do so. As a general rule, because
of the level of comptexity involved, the mare
programming aids you can provide for yourself, the
smoother things will go at the machine language
level.

Mapping Memory

Ancther parameter to think about before you start
writing a program is where you wiil store the
instructions in memory. You will also need to

consider whether there will be any locations used
for data storage. It is a good idea to at least rougn

— 94— 4000
griginal 2K
Py - sm
H
e
1
! o
Stock PG-1500
Ti‘-il-llllllll 4 a0
Original 2K
llllllﬁ 4 G480
«4— 65000
- E57FF
R sl
/
Cf~151 Nodule Installed
«— 3800
“4— 54000
Orlglnal V4 4
o — — 64800
<— €5000
«— E5800
<« C5FFF
CE-155 Hodule Installed
4— 62000
<4 £2800
ol aff— £3008
4— 53800
o T *— C4000
Original 2
pp——p———— i GAFFF
11 AEEERENE

CE-159 fodule Installed

| = Hodule RN

AA Mactine Language Progromming Copyright 1983 POCKET COMPUTER MEUSLETTER

out what is referred to as a memory mga This is
simply a block diagram that indicates what ranges
of memory addresses will be used for specific or
general purposes.

The actual locations you use inmemory to store
a program and/or data will, of course, depend on
how miich memory you have installed in your PC.

If, for instance, you have a PC-1500 with a
CE~155 RAM module installed, then your RAM
addresses will run from 83800 - 85FFF. This gives
you 10K of RAM. Other modules give other address
ranges and amounts of memory as illustrated in the
accompanying diagrams.

Remember that normally the BASIC interpreter
utilizes all of available RAM. However, you can
protect (block off) a section of RAM so that BASIC
does not use it. This is accomplished by giving the
NEW XXXX directive where XX(X represents an
address. when invoked, BASIC will not store a
user's program below the specified aodress. Thus, if
You have an 8K {CE-155) module installed and you
enter NEw 34000, then the area below $2000
(83800 - 33FFF) will be protected from use by a
BASIC program.

If you only plan 1o deal with small machine

language routines, you may want to tuck them away
in the special RAM locations normally used to
store BASIC variables. Accompanying diagrams
identify the address ranges used for such storage.
However, if you do use these areas for rmachine
language instructions, it is absolutely vital that
you remember the following: mever wse ay
variable wihose rnormal starage location tias beer
usunped for machine 18nguage puposes and make
sure that you do not use the BASIC statement
CLEAR. If you fail to heed this advice you will find
your ML routines suddenly peppered with zero
bytes or other unwanted values.

A Machine Language Worksheet

Once you have decided where you plan to store a
routine and any associated data and you know
exactly what the program is going to do, you can
start thinking about what machine 1
directives to use. As you select each instruction, it
is & good idea to write down the mnemonic for the
instruction opcode along with any operands or
addressing information on a program worksheet,
‘You may also want 1o assign tabels as substitutes
for addresses at this potnt. Ang, it is a good idea to
write down a description of exactly what the
instruction will accomplish in relation to the
overail program.

A copy of the type of worksheet I like to use for
machine language programming is provided for you
to make duplicates of, if desired. Development
WwOrIK is done using the right side of the worksheet

Copyright 1983 POCKET COMPUTER MEUSLETTER

(in the three columns marked Labels, Mnemonics
and Comments). Later, the mnemonics can be
"assembled” into machine code and assigned to
specific memory iocations by filling in columns on
the left side of the sheet.

-4 ¢
ES I < 57060
F$ < 7000
G$
. \.vq.h__,‘..., aaaaaaaaa g et < £7000
H$ wadl 4}— G70ED
NS «4— &T0F0
0s < E7FF

< 67150

P$ sememed — £7160

Qs <— €170
R$

N I - o 67100

X$ 4— 7160

L < C7IF0
7%

:
i

X

Y 4 t79C3
i &4~ C79CF
BASIC nwmeric varlsbles memory nap.

Nachine Language Programming 45

How to Assemble a Program

The process of converting the mnemonics usedby a
programmer into the actual numeric values used by
a computer when the program is executed is known
as assemvling a program. A program in mnemonic
form is often referred to as the sawrce code The
final product of the assembly process is calied the
object coge.,

The converting of source code (the mnemonics)
to object code (the machine code) is a relatively
simpie process. However, the process can be rather
tedious. This is especially true if the program is
lengthy or if it is freguently revised. For that
reason, most professional machine language
programmers like to work with an assemdler
program. This is a program that automatically
processes a text file containing mnemenics and
translates it to machine code.

Naturally, an assembler program must be
especially designed to assemble code for a specific
CPU. Since the process invotves translating
mnemontcs into machine codes (table lookup), one
of the things necessary for the functioning of such
a program is a complete lookup table. Such a table
takes a fair amount of memory when stared in the
memory of a computer. I estimate that a fully
functional assembler program for the PC-1500
might consume same 7 to 8 kilobytes or more of
memory. Ten—kilobyte PC-1500 systems are
common these days (since the basic 2K PC can be
expanded by adding a CE-155 8K RAM expansion
module). Even 18-kilobyte systems can now easily
be configured (Dy installing a CE-161 16K RAM
module). However, there are still substantial
reasons for not attempting to work with a true
assembier program ina PC-1500.

One of these reasons is that, when an assembler
program is used, it is necessary to pass the source
code {mnemonic listing) Lo the assembler. The ideal
way to do this is to store the mnemonic listing as a
text file in memory. Of course, 16 do this you now
need storage room for that text flle, to say nothing
of room for an editor program to create such a file.
Finally there is the problem of what to do with the
object code created by the assembler program.
Again, a nice solution is to be able to store the
finished code directly in memary. Alas, this eats up
still more of that precious commodity: RAM

Conventional desktop computer systems often
get around the problem of handling source and
object code by using what is referred to as a
multiple-pass systemn. The source listing is first
created using an editor and stored on an external
floppy disk. Then the assembler program is loaded
inte memory. It processes the mnemonic source
file from the disk systemn and stores the object
code it produces back on the disk. This final

e o e e —

machine code can then be loaded into the
appropriate memory addresses and executed as a
machine language program. Since a floppy disk can
process files rapidly, the entire process of
assembling even & relatively large program might
take just a few minutes on a desktop system.

Alas, following the same type of procedure
using the audio tape storage capabilities of the
PC-1500 would consume vast amounts of time. It
could take 30 minutes or more just 1o attempt the
assembly of even a small program. This hardly
seemns practical. Even 3 beginner can assembie a
modest machine language routine using manual
table lookup methods in substantially less time.
Thus, the manual method will be used in this text!

The process is easy, especially if you write
down the mnemonics for the instructions you want
1o use on an appropriately formatted worksheed,

All you have to do is decide the memory address
of where you want, to start storing the object coge.
Note this address in the PG (high address Dyte
value) and LC (low address byte value) colurmns on
the worksheet. Now ook up the machine code for
the mnemonic that is being translated (using the
alphabetically-arranged lookup table). Place this
code value in the column identified as B1 on the
worksheet opposite the corresponding mnemonic.
Next, determine whether the instruction uses
additional bytes. That is, if it must be followed by
addressing information or immediate data. (This
information is also available from the lookup
table.) If so, insert the necessary information (in
numeric form), & byte at a time, in the columns
titled B2 through BS.

Once this has been accomplished for an
instruction, you can go on to the next line on the
worksheet. At this point you can fill in the starting
address of the next instruction simply by counting
the number of bytes utilized by the preceding
directive!l Thus, if a three-byte directive was
stored beginning at address &7151, then the next
instruction would De stored beginning at address
&7154.

The only time things can get a little difficult is
when the program containg what is known as
forwarg refererces. That is, when it coniains
jurnps , calls or branches to sections of the program
that have not yet been assernbled. The reason this
tan cause problems is because you will not initiatly
know the absolute addresses at which such
referred-to directives will be stored. Yet, to
properly assemble the machine code for such
references, you will eventually need to specify this
information precisely.

Ah, but the situation is not hopeless. Anytime
you encounter such a directive, you simply set
aside the appropriate number of bytes needed to

46 nNachine Language Programming Copyright 1983 POCKET COMPUTER NEWSLETTER

Lc

B3

LABELS PNENONICS COMENTS

DATE:

ROUTINE: PAGE OF

Copyright 1983 POCKET CONWPUTER MEWSLETTER Nachine Lanquage Programming 47

complete the reference. In the case of branches,
this is always one byte. A jump directive requires
two extra bytes to specify an absolute address. A
call directive will also usually require two bytes,
(You rmay rermermber that several special classes of
call directives may use just one or no acditional
bytes. However, since the vectors used by these
types of calls are occupied by the BASIC ROM in
the PC-1500/PC~2, most programmers will not
have occassion to use these special cases.) By set
aside, I mean mark the appropriate columns (such
as B2 and/or B3) on the worksheet as being
reserved. You then count those Dytes in order to
determine the starting address of the next
instruction to be noted on your worksheet. when
the actual address of the referred-to instruction is
eventually determined, you can go back and fill in
the appropriate values in the reserved column
locations. A few programming examples in the
future will clarify this procedure. It i5 quite
straightforward, though it does require taking care
to insure accuracy.

This matter of forward references within a
machine language program is the reason
programmers like to work with /atels instead of
absolute addresses. The column titled "Labels” on
the worksheel is provided for this purpose.
whenever you want to refer to particular points
within a program, you can tag them by creating
your own reference names. You can then specify
references to those points using the label names.
Thus, instead of the mnemonic for a jJump directive
being P 87060, you might write P THERE (in
the worksheet column titled "Mnemonics™). The
referred-to point in the program would then be
gppropriately identified on the worksheet Dy
placing the name of that tag(THERE)in the "Label”
columin. Again, this methadology will be illustrated
in future programming examples.

Loading and Testing a ML Prograrm
Once the machine code for a program has been
assembled by hand, it is necessary to load it into
the appropriate locations in the memory of the PC,

In the case of a small Toutine, this caneasily be
accormplished using the POKE directive that is
avaiiable in BASIC. The format of this statement
is: POKE X,Y where X represent an address and Y
stands for the code to be stored therein. Thereisan
alternate format for this statement. The address
specification may be followed by a series of data
values separated by commas. Thus, a statement
such as POKE &7050,848871,84A850 would
specify that the hexadecimal values 88,71, 4A and
S0 were 1o be stored in the four bytes of memory
starting at the hexadecimal address 7050,

If you pian on doing a substantial amount of ML

w

programming, then the use of @ so-called monitor
program can be of great practical value. A monitor

program in this context is one that assists the
programmer in the process of storing machine
codes into memory, examining and altering the
contents of memory locations, and so forth. | would
recormmend that a serious ML enthusiast consider
obtaining the Loader/Monitor/Disassernbler that
is sold by PON This is an integrated package of
routines that greatly facilitates working in
rmachine language on a PC-1500 o1 PC-2.

Once a ML routine has been stored inmemory it
may be executed by calling it from a BASIC
program. Alternately, a monitor program may he
used to check its gperation. If a complex routine
does not operate as expected, it may be necessary
ta debug the routine. Debugging ML Toutines canbe
very difficult without the assistance of a monitor
program. Thus, it is extremely important to pian
the operation of a ML routine carefully so as 1o
guard against errors.

An errant ML program will often resuit in the
PC "locking up.” The only way to recover from such
a state is through the use of the reset button on the
back of the unit. As you undoubtably know, using
the reset button can cause all of mermory 10 be
erased. You then have o start prograrm loading all
over. This can be a rather discouraging event.
Careful planning and coding of your routines can
significantly reduce the chances of this occurTing.
However, you probably won't consider yourself
property initiated into the realm of MLP untll you
have had a routine "bomb" and lockup your PC.

The only thing worse than lockup is ta discover
that you left out an important step in your program
somewhere near the beginning. This means all of
the instructions beyond that point must be
relocated, forward references aitered, and so forth.
After a few mistakes of this nature, you will gaina
profound appreciation for the cultivation of good
programiming work habits that can heip reduce the
chances for making such erTors.

In the next section of this series I will present a
number of practical ML programming routines. In
addition to their egucational value, these routines
can be the start of your own personalized library of
frequently used ML procedures and algorithms.

In the meantime, why not make some duplicates
of the worksheet form and try your hand at creating
sofme useful ML routines?

Hachine Language Prograsming
the Sharp PC-1500 and Radio Shack PC-2
is published by
POCKET COMPUTER NEWSLETTER
P.0. Box 232, Seymour, CT 06483

48 Rachine Language Programming Copyright 1983 POCKET COMPUTER NEWSLETTER

MACHINE LANGUAGE PROGRAMMING

Readers of the series Mavine Languoge
Programming the naip PC-1500 and Raolo Shack
AC-2 (produced in 1983 as a separate publication
by PON) will especially appreciate the following
article. As such readers know, the serles was
abruptly terminated oue to serious iliness on the
part of the author.

what follows Is a sample of how the author had
planned to continue the series by bullding upon the
instyuction set foundation that had been laid in the
early installments. Enjoy!

MACHINE L ANGUAGE PROGRAMMING
THE SHARP PC-1500
AND RADIO SHACK PC-2
POCKET COMPUTERS

Once a truly interested ML fan acquires an
understanding of the types of instructions that are
available on a machinge, he or she soon develops an
itch to do some real ML programming. Let’s satisfy
that urge right now.

Clearing Memory

when batterles are Installed in a PC, the individual
bits in memory will “come up® In random states.
Some set to the logic 1 state, some cleared to the 0
state. Sometimes it Is not desirable to have areas
of RAM in such a chaotic condition. One way for a
ML programmer to set an area In memory to a
known conditon is to fill it with zero bytes. That is,
load bytes set to the value zero Into a specific
range of memory adaresses. Sounds like a pretty
simple procedure, right? It is! And it can be done in
a whole lot of different ways.

Suppose, for example, that you wanted to clear
out the section of memory normally used to store
the fixed string variables A$ D$. These are
stored in memory addresses 878C0 - &78FF.

One way to accomplish this job would be to 1oad
CPU register A with the value zero. Next, the
starting address of the area to be cleared might be
set up In CPU register X. Once this had been done,
STAL (X) directives could be used to stuff the
contents of the accumulator (register A) into

FOR PC-1500 & PC-2 USERS =

successive locations in memory as pointed to By
the contents of CPU register X. Remember, the
STAL (X) Instruction automatically advances the
value in X each time it is executed, There Is jusr
one more parameter to consicer. How many time s
must the STAI (X) directive be repeated in orger +
clear out the gesired biock of memory?

Since the size of the memory block Is Known i~
this exampie, a counter could be established, say
register UL, Each time the STAI (X) command w.»
performed, the count in UL could be decrermente d
when this count reached zero, 1t would be time 1
stop stuffing zeros into memory. Thus, one Cou
use the sequence of directives (after the STAI (x)
instruction) consisting of: DEUL and RBNZ #nn
That is, decrease the count in register UL and i /™
is still non-2ero, then 100p back to repeat the STAL
() directive. If this method was used, in th,
example, then register L would initially haver,
be set to the decimal count of 64 (hexadecimal 4.)
representing the number of bytes in memory (from
&78CD through &78FF) that were to be cleared. Sge
the accompanying listing for a detailed example o>
this method.

If you were wide awake when you read t..
previous section of this serjes, then you mick
rernember that this type of situation is ideal for t -
use of the BNZD #nn instruction. Since, howewve
the BNZD directive tests for zero Lerors
decrements the contents in L, then the cou«
fnitially placed in UL must be one less than ta,
number of loops (locations to be cleared), Thus,
this specific example, If BNZD was used, registes
UL would need to start out with a count of decim «
63 (which is hexadecimal 83F). An accompanyi
listing illustrates this method, too.

Yet another way of determining when o ster
looping would be to check for an appropricic
address value In CPU register X. In this case, whee
the value in X exceeted &78FF (l.e,, reachc-
&7900), then it would be time to discontinue tic
clearing operation. There are several ways tha
type of procegure mignht be implemented,

One way would be 1o set the ending value (s. v
&78FF in this case) into another CPU register. Chu
register Y would be avallable for such use in the
example. A comparison could then be meo
petween the contents of X and Y each time that .t
was advanced by the STAI directive. when thu
value in X exceeded that in Y, then it would {«
appropriate to stop the clearing operation, Seeti

POCKET COWPUTER NEUSLETTER Issue 36

Program Routine for Clearing Memary Using RENZ Instnction.

PCILC KL [MR85 84|85] LABELS | MMENONICS COMENTS

00 |00 [BS |00 [CLAMY LDA #00 Load register A with zero.

0 02 |48 |78 LOXH #78 Set up register X to point to 16-bit address £78C0.

00 [04 l4A [CD LNl #C0 Set up register X to point Lo 16-bit address G78(0.

00 06 [6A |40 LOUL M40 Set up counter (64 decimal here) in register UWt.

o¢ los |a joLemy qSTAY (X) Stuff contents of A into nemory, then increnment pointer.
00 o9 |62 DEWL |Decrenent. the counter value in UL (UL=UL-1}.

00 oA |99 |04 RENZ CLRN] If countar is not Zero, jump back to stuff another byte.
Program Rautine for Clearing Memory Lsing BNZD instruction

PG JLC 6L | B2 {55 | 84|85 | LABELS ENONICS COWIERTS

00 |00 [BS OO CLRMMZ |LDA #00 jLoad Tegister A with zero.

00 |02 |48 |78 LOXH #78 Set up vegister X to point to 16-bit address €78C0.

00 |04 J4A [CO LOXL #CO Set up register X to point to 16-bit address 678C0.

00 |06 |6a |3F LDUL #3F Set up counter (63 decinal here) to count-1 {64-1=63),
00 {08 (& leemm2 sTAT () Stuff zero byte into memory, advance memory pointer in X.
00 |09 ({88 |03 IUIZD cLm2 Check UL for zero, loop back if non-zero, (UL=UL-1}.
PrOgram FRuoutine for Clearing Mamoey Using Compare Gperation to Terminate L oon

MRl R[] B]LEAS NENONICS CONENTS
o¢ |00 |85 |00 lctrn3 |LDn w00 |Losd register A with zero.
00 oz |48 |78 LORH #78 Sot up ragister X to point to 16-bit address 676CQ.
00 Jo4 |an |[co LDXL #CO Set up register X to point to 16-bit address 678CO.
00 (06 |41 jcLRM3 |STAI (X) Stuff zero byte into menory, advance memory pointer in X,
00 {07 |os CPA XL Check XL for zero (indicating address §7900 reached).
00 Jos |99 IIM IW CLRM3 lLoup back to stuff next location if KL is not zero.
example program listing.

An even easler way, in this particular case,
would merely be to test for the value in XL going to
zero. That is because, when XL exceeds FF
(because X reaches 78FF), it will go to the value DO
as X advances 1o the value 7900. That just happens
to be the point at which we want to stop clearing
memory in this particular example! A listing of this
method is also provided for examination.

By now you should be convinced that ML
programming is not an exact science. There are
usually countless ways to approach a particular
objective. Sometimes you can custamize your
approach depending on specific parameters. For
instance, if you are trying to conserve your use of
memory, you might try to devise a sequence of

8 Issus 3¢ POCKET CONPUTER MEMSLETTER

directives that uses a minimum amount Of space.
Or, you might be interested in maximizing speed of
program execution. In that case, you could work
towards selecting directives that could be
performed in the minimum amount of time. (Do 7ot
make the asswnption that the fastest program is
the one with the fewest instructions! Various
classes of instructions require different times to
complete their execution. It may require a very
detailed study in order to find a sequence of
instructions that accomplishes an objective in a
minimum amount of time!) In most practical
applications, however, the actual sequence of
instructions setected is not at all critical. Select or

create a method you like and try it out! —r

Y

-—_—-_._._.“______
Diagram Mamory Map of Clearing Cperation.
™ 0000
0001
Program %
Storage e
Area 0007

Cleared 78c4
Hemory

APractical Memory Clearing Application

Have you ever developed a BASIC program that
used a temporary variable array? That is, an array
that you needed to continuously clear out in
between operations with other arrays? If so, you
know that you had to create a special program loop
that would initlalize all the elements in that
specific temporary array. You could not use a
BASIC command such as CLEAR as that would
wipe out &7 of the other variables and array
elements used in the program, something that we
assume for this example, would not be desired.

Of course, there is nothing wrong with creating
a BASIC program loop to clear out the elements in
an array. Itis just that, if the number of elements in
the array Is large, the process can take some time.
If the clearing operation has to be done frequently,
the amount of time devoted to this one aspect can
become quite exasperating.

However, as a ML prograrmer, it {s possibie to
devise a scheme to clear out the elements of an
array in the proverbial “olink of an eye. Let us see
how this could be done.

First, it is necessary to know a few facts about
the operation of the BASIC interpreter provided in

“

the PC-1500 (and Radio Shack PC-2). As you may
be aware, the interpreter program stored on ROM
organizes RAM memory in a specific fashion to
serve its purposes. Thus, the lower range of
available user memory is assigned for use by the
PC's “softkeys" as the REServe memory area
Immediately above this area (in terms of mesmnory
addresses) is where user program statements for a
BASIC program (or multiple programs) are stored.
Finally, the “top" or highest address value
locations in RAM are used for the storage of user-
gefined arrays and variables.

when the pocket computer is first tumed on,
the ROM program determines the bottom and top
addresses of user RAM. The "page” (high order 8
bits) value of these locations are stored in the
system RAM at addresses 87863 and 87864
respectively. This procegure is necessary as the
range of user RAM can vary depending on which
RAM expansion moaule (such as the CE-151,
CE-155 or CE-161), if any, is Installed in the PC.
Thus, for example, if an 8K module was installeq,
location 87863 would contain 838 {which is the
page portion of the address 43800 where RAM
memory would begin) Location 87864 would
contain &50. This is the page portion of the address
86000 which is one more than the top user RAM
address (8SFFF) that Is available in such a system.

{Knowing this information makes it possibie to
design a procedure that will automatically take
account of the amount of memory in a user's
system when it is used.)

When a BASIC programmer wants to create a
variable array, it is necessary to 1ssue a DiMension
statement. This statement essentially blocks out
space in user RAM for storage of the array
elements. For purposes of illustration let us
assume that the DIMension statement is the flrst
statement contained in the user's BASIC program.
Let us further assume that it is expressed as
follows: DIM Af6)*d. This means that a string
array named A%(} is being specifieqd, that there are g
total of 7 array eiements (numbered 0 - 6) betng
feserved and that each element is to have room for
4 characters.

when the BASIC interpreter encounters this
DiMension statement it will do the following:
deterrnine the top of memary (by exarnining system
RAM location 87864), reserve 28 bytes of memory
immectiately below this location for storage of the
array elements (7 elements with 4 characters
reserved for each one), immediately below this it
will record the array "nheader* information, (using 7
bytes of storage for this purpose). A summary of
this process 1s shown in the accompanying diagram.

POCKET COWPUTER MEVSLETTER Issue 36 9

Diagram Memary Map far Clearing an Array.

8
g
é

5FF¢ —&

5FF4 —&

5F0 —

SFEC —

SFES —

SFE4 &

5 —»

35 —»

300 —»

IREARRNAI

R8(s)
(%)
a8(4)
8(3)
M(2)
8(1)
#6(0)

Hoader for Ab()*4

The reason why it is necessary to assume that
the DiMension statement is the first statement in
the program in this description, is because any
other arrays (or user-created variabies) will be
stored "beneath” this initial array. Thus, locating
other arrays can become complicated and such
cormplications are not needed at this point in the
M. programming educational process. Right?

It will be worth knowing, so that you might
customize such a routine to your own specific
purposes, the following additional information
about array elements: (1) The number of characters
reserved for each element of a string array is
precisely the number specified after the asterisk in
the DiMension statement. If an asterisk is not used
to specify such a value (which is limited to the
range 1 to 80), then a value of 16 is assumed by the
BASIC interpreter. (2) The number of characters
reserved for each element of a numeric array is
a/ways eight! This is because all numeric values
stored in such array elements are assumed to be in
floating-point BCO format.

An Array-Clearing M. Routine

If we assume an array size of seven elements
{numberea 0 through 6), with an elernent length of 4
characters, then we can calculate that the space
needed by the array elements Is exactly 28 bytes.
{(Note that this excludes the 7 bytes needed by the
array *header.” This Is just as well, however, as we
go not want to erase the contents of the array
header?)

8y examining the contents of memory location
87864, we can locate the start of memory.
Actually, this location yields the first page aadress
that lacks RAM, 50 user memory really begins on
the highest possible address (&FF) on the next

:
|
|
§
z
%

&

:

conbnts

s

BELSBRARYIEE g

238288288 EEE |y
RERSBgEIxERE

B32f353633RE
ﬂ”;ﬁigégaas E

-

Set up register X to point to 16-bit address £78C0.
Set up register X to point to 16-bit address $78C0.
Set up register Y to point to 16-bit address €7900.
Set up register ¥ to point to 16-bit address £7900.
Load register A with zero.

Stwif zero into menory, advance menory pointer.
Put contents of YH into the accumulator.

Conpare (YW-XH) to see if pointer page values are same.
Loop back if page values are not the sane.

Put. contents of YL into the accumlator.

Conpars (VL-XL.) to see if pointer values are sane.
Loop back if page values are not the same.

10 Issue 36 POCKET CONPUTER MEUSLETTER

Program Rautine rar Clearing Arrdy Flernents.
PG [LC | 81 | B2 | B3 | B4 | 65 | LABELS MENICS COMENTS
71 [50 {58 |78 CARRAY (LDYH #76 Set up register Y to point to 16-bit address G7864.
71 |52 |54 |e4 LDYL #64 This is where top of menory value stored by RO routines.
|54 |15 Lba (Y) Fetch top of nenory value into accunulator.
71 |55 |OF DEA Decrenent page value by one to point Lo next lower page.
7L |56 |os STA XH Store top of aemory (adjusted) page value in register XH.
71 |57 |48 |FF LDXL #FF Store low portion of top of nemory address in Xi.
T 59 |6A J1C CARRAL |LDUL #1C Set up counter (26 decimal here)} in register UL.
71 |58 65 |00 LDA #00 Load the sccumulator with zero.
7T 5D |43 CARRAZ {STAD (X) Stuff accunulator into nenory, then decrenent pointer.
71 |SE |62 DEW Decrenent the counter value in UL ({L=UL-1).
71 I5F]99 {04 REBNI CARRAZ? |If counter not Zero. jump back to stuff another byte.
71 |61 %A RIS

lElse, exit back to caller when counter equals zZero.

lower page. Thus, if location 87864 contains the
value 860 (indicating page &60 in the address
86000), the last location in RAM is at location &FF
in the next lower page (85F) or at address 85FFF.
(This is precisely what would be encountered if a
PC-1500 had an 8K RAM module such as the
CE-155 installed.)

From there it is a simple matter to set up
pointers and a byte counter within the CPU in order
to erase the desired block of memory. However,
now it wil be appropriate to decrement the
memory pointer as locations are cleared (instead of
incrementing it as was done in previous routines).
See the accompanying listing for the actual series
of instructions that can accomplish this cbjective,

Check It Out with A Hybrid Program

You can test the operation of the array clearing
routine by combining it with a BASIC program. The
BASIC portion of the program can be used to
DiMension the array, load the machine]

routine into memory using POKE directives (since
it Is fatrly short), and Initialize the array with a set
of known values,

Next, the Initial values placed into the array
can be displayed for checking purposes. The
array-clearing ML routine can then be “calied™
using the CALL statement provided in BASIC. The
contents of the array can then be displayed again
to verify that the elements were properly cleared.
This process may be repeated as long as desired for
observational purposes, Here is the listing for such
a nwrid p

1000 “AA™DIH AS(6

Y*4
1010 GOSU8 "cc*
1020 “BB"GOSUB "D
D-
1030 GOSUB “EE"

1040 CALL 47150

1050 GOSUB “tE”

1060 GOTO “BB"

1090 END

1100 "CC"POKE &71
50, 858, &/8, &
oA, &15,4&
DF, 8, 84A

1110 POKE &7158, &
FF, 8647, &1C, &
85, 0, 843, 362
L899

1120 POKE &7160, 4
L80A

1130 RETURN

1200 "DD"FOR A=0
T8 6

1210 A$(A)=STRS (
A)+STRS (A)+
STRS (A)+
STRS (R)

1220 NEXT A

1230 RETURN

1500 “EE"WAIT 20

1510 FOR A=0TD 6

1520 PRINT A;©

1%, A%(A); "

-:MNT -

1530 NEXT A

1540 “FF"RETURN

g
LY

(The nomenciature /2xrid in this text refers to
programs that combine BASIC and machine
langquage mmethods within one general program,

such as illustrated by this array~clearing example.}

Note that the ML routine s tucked Into memory
the
string variables P$ and O$. Keep this in mind if you
intend to meld this array-clearing capability into

locations that are normally used for storing

some other prograrm

POCKET CONPUTER MEMSLETTER Issue 36 11

