POCKET COMPUTER

PC-1350

MACHINE LANGUAGE REFERENCE MANUAL

SHARP.

FOREWORD

Since the release of the PC-1350 on market, we have had great
number of questions from users regarding the machine lan-
guage of the PC-1350.

To meet with such demand from ardent users, we are now send-
ing this text for study of the machine language of the Sharp's
original design SC61860 Microprocessor in concern with the
PC-1350 system. Because the text is edited on the basis of user
questions, it may not support quality as a guidebook. In such an
event, you are suggested to make reference to microprocessor
guidebooks published on market, in addition to this text.

Your opinions and questions are welcome through our products
distributor.

NOTE: Machine language program, which controls hardware dir-
ectly, gives you more various functions than BASIC programs.
However, you should check your machine language program enough
to make no error before executing it because single wrong key oper-
ation may upset the program or occasionally make the machine
break down. Sharp Corporation assumes no liability or responsibility
of any kind arising from the use of programs or program materials or
any part thereof.

Contents

INTRODUCTION. ...ttt ettt ettt ettt et et e st e st e sbteesbteesateenaneenane 1
TERMS AND CONCEPTS....co oottt ettt et ettt e stee et eebeeeaeeenseeensaeenseeens 3
The Binary and Hexadecimal Number SyStem..........ccccveeieiiieniiiieeiiie e 4
Binary ATTTRMETIC.vviiiiiiiiiee et e et e e e e e ar e e e e eeaaeeeeeeaaeeas 7
Logical and Bit Shift Operations..........ccuueieeeiiiiieeeiiiiiee e e e e 10
Binary Coded Decimal..........c..oooiiiiiiiiiiiiieee et 13
Variable and Pro@ram StruCtUTEcccviiiieiiiiiiieieiiiee et 15
SYSTEM CONFIGURATION.......oiiiiiiiiiiiieitteie ettt ettt ettt st 21
SyStemM MeEMOTY IMAP......uiiiiiieiiiiiiiieiee e e e eeeee e eee e e e e e e eeebraeeeeeeeeeeesnnasaaeaeaeaeesenannns 24
TRE CP ULttt ettt ettt et e et e et eeateesbeeenseeeane 25
The Instruction EXecution CYCle.........cooiiiiiiiiiiiiiiiieeciiiiee et eeiteee e ee e 29
BASIC Program ATEAScccoeeeeuiiiiiiiieeee e ettt e e e e e ettt teeeeeeseeeseaataeeeeeeeeesesnnnnnes 30
MACHINE-LANGUAGE PROGRAMMING.......coootiiiiiiiiiiiiienieeieesieesie e 33
Using the PEEK FUNCHONooiiiiiiiiiicieece ettt vaee e 35
Using the POKE Statementcccceeeciiieiiieeeiie e eiee et eeee e eeae e seneeeessae e 38
Running a Machine-language Programcccoouviiiiiiiiiiiieciieee e 39
The CSAVE M Statementcooiiiiiiiiiiiiiiie ittt ettt et et e e 40
The CLOAD M SEateIMENLcc.eeiiiiiiiieiiieiie ettt ettt sttt st e e 41
Sample Program 1: Simple Programccccciiieoiiiiiiiiiiiiie e 42
Sample Program 2: Converting Binary Numbers to Hexadecimal Numbers................. 45
PCo1350 T/O ittt ettt ettt sttt e et e et e eateesaseeenseeenseeeneeenneeens 51
LCD DISPIAY...utiiiiiiiieeiiieecite ettt ee et e et ee e et e e e sttt e e eatteeesssaeeessseeessaeeesssaeensseeeessaaanns 53
The KeYDOATd.oooiiieeiiie et e et e et e et e e e e e eneeas 55
The Serial INTETTaCE.eiiiiiiiiiee et 57
Other I/O INETTACES.couuiiiiiiiieiieet et st 64
THE PC-1350 INSTRUCTIONS LIST ..ottt ettt 65
1.Move Data INStIUCTIONS.ccouuieriiiiiiieiiee ettt e 68
1.1.Load IMMEdIate.......cccouviiiiiiiiiiiccciiiee et et 68

| 3] 0 o RO P OO U U U UPPPPPORRPPRPP 68

| 3] o+ O OO ST U P OO PP PR OUPPTOOUPPRROPPPRI 69

LIDP MMttt et et et et ettt e et e et e ebeeeneeesaeenneas 69

| 51 05) B PP SUPRUPPPRPR 70

50 PSRRI 70
1.2.Load/Store a register into/from the accumulator..............cccoeeevieeecieeeniieeenee. 71

| 51 D ST TSSO PSR TUPPOPPRTOP 71

N 1 1 SO SR RS RUSRPPP 72

1.3.Move data between memory and the accumulator.............cccccceveeriiiiiieeeennes 72

ST D ettt sttt et e st e et e e nnteeneee 73
1.4.Move data from one memory address to another.............occcceeeiiiiiiiiiiiieeeennn, 74
IMIVIMID ...ttt ettt ettt et e et e et eebee e nteenteeaeas 74
MV DMLt ettt ettt et et ettt et e 74
1.5.Exchange data between tWo regISterS......cccuuiiieiriiiieeeeiiiie e 75
EXAM. .ottt e ettt ettt et be e 75
EXAB .ottt et et e e e et e e naeeneas 75
1.6.Block move of data in MemMOTY........c.ccccuiiiieiiiiiieeeeieee et 76
IMIVIW ettt et et sttt ettt e 76
IMIVB e ettt e e e ettt e et e e aeeene e 76
MV WD ...t ettt st sttt s bt e e b e sabee 77

1Y VA 27 5 2RSSR 77
1.7.Block exchange of data in MEemMOTY.........cceeveiiieeiiieeiiiie et 78
E X ettt ettt st et 78

E X Bttt ettt ettt ettt et nteenes 78
EXWD ettt sttt et et 79
EXBD... ettt et e et e naeenneas 79
1.8.Increment or deCrement @ TEZISLT........uurerruieeeriieeeiieesieeeereeeeieeeeeeeeeeeaeeenes 80
INCP..ceee ettt et st et e et e et e e abeesaeeaaeetaeenneeenes 80
DECP.... et et ettt et eaneas 80
IINCT ettt sttt ettt sttt s 81
D) 2 3 RS UPRRPSP 82
1.9.Increment or decrement an external memory address register......................... 83
SRR SUUPRR 83

| D) O O SRRSO PPIUPPPRUPPRROPOO 84
1.10.Increment or decrement re@iSter X...........cceevuireeeeiiiieeeeeiiiiieeeeecieeeeeeeireeeeenns 84
2 OSSPSR 84
DXLt et sttt sttt bees 85
1.11.Increment or decrement TEZISTET Ycoouviiieeeiiiiieeeeeieee e et ee e eevree e e veee e 85
4 TSRS SPPRT 85

| 4 TSRS PSRRTS 86
1.12.Fill a block of memory with a single value............ccccceeeiveiiiiiiiiiiiiiiiieeee 86
FILIM .ottt et ettt ettt et 86

28 1 51 5 PRSPPI 87
2.Arithmetic, Logical and Shift INStrucCtions...........ccccveeeeiieeecieeiiieeeeee e 88
2.1.Add/Subtract Immediate, ACCUMUIALOT...........cceeiiiiiiiiiiiiiee e 88
ADTA Nttt et e e e nae e 88
SBIA Nttt bttt st ate et enae s 88

SBIIM Nttt ettt st et et ettt ettt e et e naeeeaees 89
2.3.Byte Binary Addition or SUbtraction.............cceecueeeeiiieeeiiieeriie e 90
ADM et ettt sttt e st nnee 90
SBIM ettt et e a bttt naes 90
2.4.Byte Binary Addition or Subtraction with carry........ccccccceveeeriiiiiiiiiiiiieeeee, 91
ADCM ettt e 91
SBEOCM ..ottt ettt et et ettt e e e be e e beeeabeeenaeeenbeeenaeeenee 91
2.5.2 Byte Binary Addition or Subtraction...........c.ccccueeeeeriiiieeeiniiiee e 92
ADBu. ettt ettt sane e 92
N 27 2 OSSPSR 92
2.6.2 Block BCD Addition or SUbtraction.............cceveeeriieeeiiie e eeeee e 93
F N B)\ OSSR 93
SBIN ettt ettt et bt et e et e e bt e e beeenbeeenteas 93
ADW e et e e ettt e et e e e bt e e nae e e et e e eanaeas 94
SBW ettt et ettt ettt e et e e tteeenbeenateen 94
2.7.Block Shift 4 DitS......ceeieiiiieiiie et e 95
SRW ettt et e et et et e et e e bt e e taeenste e teeenaeeenaeeenneas 95
SLW et ettt ettt et ettt e et e st e st 95
2.8.L0GICAl OR ... 96
ORITA N ettt et e et e et e et e et esabeeebeeebeeenneas 96
ORIM Nttt st et et e sbt e et sbt e e bt e e nbe e 96
(0] 2 D TSP 97
ORMA L e ettt et sttt st e b 97
2.9.L0ZICAl ANDoviiiiiiieee ettt e e e e a e e e nraae s 98
ADNTA Dttt ettt e st e st e et e st e st e sabeeeateens 98
F LY, 1Y/ 5 o DO USSP 98
ANTD Nttt et ettt ettt e et e nee e enee 99
ANDMA ettt ettt et 99
2.10.Bit Text Immediate...........ccooevuiiiiieiiiiiieeeiiiee et e e e e 100
TSTA Nt ettt ettt et e et e be e bt e bt e e naeeens 100
I 01 I 4 OO SRR 100
I 1D OSSR STS 101
2.11.Compare IMmediate...........cccveiiieeiiiiiiieiiiiee e e 101
(03 5 7. § FO TS SS 101
CPIM Nttt ettt e sttt e st e e st e e saeeas 102
(03 1Y 2N USRS SPR 102
SWARP. ..ttt ettt et e sttt e et e et 103
2.12.Shift Bits 0f @ BYLC.....oiiiiiiiiiiieceee e 103

2.13.Set or Reset The Carry Flag........coocuvveeiiiiieiieeeeeeee e 104
Sttt sttt st et 104

R C ettt et ettt et ettt eaeeeteeen 105

3.JUMP INSIUCTIONS. ...eeeeiiieeiiieeeiiee ettt ettt e e e e e e e se e e e sseeeennsaeeenneeas 106
3.1.JUMP REIALIVE.....viiiiiiiiiic ettt e e e e e e as 106
TREP Nl 106

JRCEM N 107
3.2.JUMP ADSOIULC....coeniiiiie ettt et e e et e e e e aeeenes 108

TP e ettt 108
3.3.CASE1 CASE2 This is a conditional branching instruction 109
CASET CASE2Z....ooeeee ettt ettt 109

4. Other INSIUCHIONS.uviiiieiiiiiee ettt e et e e e et e e et e e e e esaaaeeeenraeeeeesnsraeeeas 111
PUSH. ..t et ettt st e st e et et eeaaeeeaee 111

POP ...ttt et e 111

LIOOP Nttt et et et e et e s beeebeeeneeenneeens 112
LEAVEttt s 112

(7N I 3 USROS UPRURURRPI 113

CALL MMttt et e e ettt e e et e e e e st ee e s e nnaeeesesnnnaaeeeanns 113

RN ettt ettt st e s te e et e et e et eenseeesteesasaeensaeensaeenseesnseeas 114

INOPW . ettt ettt ettt et s e e st e e sae e e e e enee 114

NOPT et ettt ettt sttt e e e e e e 115

[T 1 USSR 115

OUTIC ettt ettt ettt ettt e sbt e et e e e e enaee 116

OUTA . ettt e et e st e e st e et e e ateebeeensaeesteeseesnseesnseesnseens 117

OUTBi ettt et ettt e st e st e st esbeesabeesabeesans 117

OUTE ..ttt ettt et st sttt e s e st e sabeesanee s 118

DN A ettt ettt et e et e ettt e bt e et e e e beeeateas 118

DN B ettt et e 119

TEST Nttt ettt ettt e et e et e et e eneeeneeeneeas 119

CUP ettt ettt st s e st e st e st e e st e enateennteens 120

DN ettt ettt e ettt e et e e et e e te e e teeenbeeenteeenbeeeabeeenbeeenseeenteennreens 121
APPENDIXES.ottt et e sttt e st e st e esbeesateesnbeenateens 123
SPECIIICALIONS.eviieeeeiiieee ettt e et e e et e e e e etr e e e e e eaaseeeeensnseeeeennsaeeeas 124
MACKINE COAE....cooiiiiiiiiiieee ettt ettt e et e e st e e e aaeee s 129
Internal Representation of BASIC..........ooooiiiiiiiiiee et 130
AV (53810 2 E: o TP PUPPUPPRR 131
SYStEM SUDTOULINESevviiieiiiiiiie ettt e et e e e eareee e s e nbaeeeeennnraeeeeens 143
Data Recording FOIMALScoociiiiiiiiiiiiiee ettt e et e e e ee e e 162

Recording ProCEAUIESccooviiiiiiieiiiie ettt ee e ettt e e tre e e e e eraeeeeens 164

Key Code Table........ooiiiiiiiiieeeieeeeee ettt e e e e e e e e e e e e e neres 175

CPU Internal Block Diagram and Pin Signals..........c.cccecevieiriiiiiiiiiiiieeeee e 176
LST EXPIanation.....ccc.uviiiieieiiiiieeeeiiiiie e et ee e ettt e e e et eeeeeeavaeeeeeetaaeeeeenssaeaeeesnnaeaaeannns 177
Gate ATTay (SCO0220).....ceeuieeiieeiieeieeetee et ettt e et e st e st e st e sbeesabeesabeesabeesaneesneeens 179
Explanation of Display LSI (SC43537)....ceuiiieeiie et 181
CE-201 M Circuit Diagram (flat LSI)cccvviiiiiiiiiieee e 183
CE-516L Circuit DIagramcccccoecuiiieiiieeeiiie ettt e e eaee e e eeneeeenes 186
CE-130T Circuit DIagrami.........cccceeeeiiiiiiiiieeiie ettt e 187
CE L30T ettt ettt et ettt st e et e e bt e eabeeenbeeeabeeenbeeenbeeebeeens 188

CIRCUIT DIAGRAM (1. PC-1350 CPU CiFCUIt). ... evveeereeeeeeeeeseereeseeeeeeseseeeseeseenns 191

INTRODUCTION

For many programmers there comes a time when, regardless of the size
or sophistication of the machine they program, they become dissatisfied
with the exclusive use of a high-level programming language such as BA-
SIC. Perhaps they want to make more efficient use of the available
memory, they want to decrease the execution time of programs or perhaps
they simply want to understand more about how the machine solves the
problems presented to it. Whatever the cause, the programmer will need to
learn about the assembler language or machine language of the particular
machine being programmed.

This manual has been written to introduce the PC-1350 assembler and
machine language, the command language for the ESR-H central pro-
cessing unit.

While this manual provides much information about the PC-1350 and
its resident BASIC, it was not intended to be a technical reference manual.

The material here assumes little beyond a working knowledge of BA-
SIC and the operation of the PC-1350. Fundamental mathematical con-
cepts, such as binary number systems, are reviewed in the context of their
application to machine code programming. Likewise, fundamental ma-
chine code concepts are reviewed in the context of their application to the
ESR-H language. This manual provides all the information needed to
write a program in mnemonics, translate it into machine language and
enter it into memory.

The transition from BASIC to machine language programming can be
difficult. Machine code commands, being closer to what the machine un-
derstands, are even further from natural languages than the high-level lan-
guage BASIC. In fact, many BASIC commands require more than ten or
even twenty lines of machine code to accomplish similar actions. Also,
space must be thought of differently at the machine code level. One must
deal with fixed registers, fixed addresses, and the particular protocols for
moving information from one location to another. However, the skills one
developed while programming in BASIC, or which are developed pro-
gramming in almost any computer language, will be invaluable in making
the transition. With a bit of patience and study, you will become an able
programmer for the ESR-H.

TERMS AND CONCEPTS

The Binary and Hexadecimal Number System

Binary

Memory in a computer consists of groups of binary digits, called "bits". A
binary digit can have one of only two different values, 0 or 1. In the PC-1350, as
in many other computers, 8 bits are grouped together to form one memory posi-
tion, called a "byte". The left-most digit of a byte is called the "high-order digit"
or "most significant bit" and the right-most is called the "low-order digit" or
"least significant bit" .

Each byte of memory has a unique location, and the description of that loca-
tion is called an "address". Some addresses, those in internal memory can be de-
scribed with 1 byte (or sometimes even less than 1 byte) of information. Others,
in external memory, require 2 bytes. Any byte of memory can contain several
different kinds of information, but it is always in binary form, a series of eight
0's and 1's. The interpretation of the pattern of 0's and 1's in a particular byte is
determined by the internal logic or programming of the machine or by an ex-
ternal program. More will be said about memory addresses and the kinds of in-
formation that can be stored in memory in a later section.

Since the only kind of numbers the computer can recognize are binary ones,
any communication with the machine must be done using binary numbers.
Every digit of a number in our familiar decimal system represents a power of
10. Likewise, each of the eight bits of a binary byte represents a power of 2.

The following illustration shows a decimal and a binary number having the
same value 236, and what each digit of the two numbers represents.

Decimal 102 101 100
236 2 3 6
v 6 = 6 1sdigi
3x10 = 30 101 =10
2x100 = 200 102=100
Total 236
27 26 25 24 23 22 21 20
11101100 1 1 1 0 1 1 0 O
} 0xt = 0 1sdigit
0x2 = 0 21= 2
1x4 4 2= 4
1x8 = 8 23= 8
0x16 = 0 24= 16
1x32 = 32 25= 32
1x64 = 64 26= 64
1x128 = 128 27= 128
Total = 236

To convert a decimal number to binary, the following method of successive

divisions by 2 can be used.

236
118
59
29
1

- w~N BN

The binary equivalent is 11101100.

NDNDNNDNMNDNMNDNDDN

118
59
29
1

O =~ w~N b

Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder

0—-0 (lowest bit)
0—-0
1—-1
11
0—-0
11
1—-1
1> 1 (highest bit)

Binary representation of numbers, with its series of zeros and ones, can be

very confusing to humans. Because of this, various alternate ways of represent-

ing binary numbers are often used. One of these alternate notations, hexadecim-

al, is used in programming the PC-1350.

To convert an 8 bit binary number into hexadecimal, the 8 bits are first di-

vided into 2 groups of four bits, then each group of 4 bits is assigned a single di-
git value. The result of this is a 2 digit number which has the same value as the

8 digit binary number. In order to represent each of all the possible values (0-

15) of a 4 digit binary number with single digit, we need 16 distinct characters,

one for each of the 16 values.

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001

© o NO O A~ WN -~O0O

1010 = 10
1011 = M1
1100 = 12
1101 = 12
1110 = 14
1111 = 15

Decimal representation
requires 2 digits for these
values

As can be seen in the table above, the decimal digits 0-9 are not sufficient to
represent all of the binary combinations of 4 digits; another 6 characters are
needed. Any characters could be used, but the standard for hexadecimal in com-
puters is to use the alphabetic characters A-F. 16 is the "base" of the hexadecim-
al system, just as is 10 (with 10 distinct digits) for the decimal system and 2
(with 2 distinct digits) for the binary system.

The 16 digits of the hexadecimal system and their binary and decimal equi-
valents are:

Hexadecimal Binary Decimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MMUOQO W >»>»O© o NO AN wN-2 O
RS NG N N . —.
O PRODROID ©®O®NO O WN-=2O0

It is important to remember that all of the numbers, in spite of their different
appearance, in a single row across the 3 columns have the same actual value.
1110 = E = 14, but when one is working with these numbers E is much easier to
keep track of than is 1110, especially when it is surrounded by other similar
numbers. 23F016 is considerably less confusing to the human eye and brain
than is 001000111111000000010110, which is the only form of the numbers that
makes sense to the computer.

Binary Arithmetic

The rules for binary arithmetic are similar to those of decimal arithmetic. Ad-
dition can be summarized as follows:

0+0=0
0O+1=1
1+0=1
1+1=10

Here 10, the binary equivalent of decimal 2, can be thought of as a 0 and a

If for example, we add 3 and 1 in binary,

1 1 1
11 11 11 11
— — —
+ 01 01 01 01
0 00 1002 =410

we first add the one's place column. The total is 102, so we put a 0 in the
sum's one's place and carry 1 into the two's place (the second column). The
second column is then added, with again a result of 10, so a 0 is put in the two's

place column and a 1 is carried to the four's place column, giving us the result
of 100 (base 2) or 4 (base 10).

With eight bits, it is possible to represent numbers from 00000000 to
11111111, or in decimal, 0 to 255 (= 28 -1). With two bytes, of 16 bits, we can
represent numbers from 0 to 65535 (= 216 - 1). In order to represent negative
numbers, we treat the high-order bit as a "sign bit". With single byte numbers,
since this bit cannot now be used as a part of the numeric representation, the
range of the number becomes - 127 to + 127. With two byte numbers, the range
becomes - 32767 to + 32767.

Binary -3 =1000011, + 3 = 00000011
Binary - 03 =100000000000011, + 3 =0000000000000011

One of the most commonly used forms of representation for negative binary
numbers is what is known as "Two's Complement Representation". This repres-
entation allows us to add a negative number, i.e. subtract, using the addition
command. A "one's complement" of a binary number is formed by reversing all
of its digits. For example, the number-5, in one's complement form would be:

00000101 (5)
11111010 (- 5) One's Complement

By adding 1 to a one's complement representation of a negative number, we
get the "two's complement" form of the number.

11111010 One's complement form
+1
11111011 = Two's complement form of - 5

If we use the two's complement representation for negative numbers, we can
use the same simple addition rules for subtraction and for addition of negative
numbers. Take, for example, the subtraction 7-5. First, the five is put in two's
complement form, then it is "added" to 7.

00000111 = 7
11111011 = -5 (Two's complement form)
(1)00000010 = 2 (plus a binary carry)

If we ignore the carry, the answer is 2.

One consideration with this form of representation is that the result of an ad-
dition of 2 single byte numbers may require more than 7 bits. This condition is
called "overflow" , since the extra bit required to represent the results "over-
flows" into the high order sign bit. An overflow beyond the entire 8 bits of a
byte is called a "carry". The extra bit of a carry is lost, but the occurrence of a
carry causes the Carry Status Flag to be set to 1 to alert the programmer to the
condition. An overflow into the high order sign bit will produce a false sign in
the result of a binary addition under two conditions.

1. If both are positive and one or both have a large value.

sign
bit
(0) 1111111 + 127 (Largest positive number which can be
represented in 7 bits)
+ (0)0000010 +2
(1)0000001 -127 (False negative, interpreted as a 2's

complement because of the 1 in the sign bit)

The result has a false negative sign. Any combination which would have a
result of more than + 127 (for a single byte number) would cause this error con-
dition.

2. If both are negative and one or both have a large value.

sign

bit

(1)0000001 -127 (Largest negative number which can be
represented in 7 bits in 2's complement
notation)

1
N

+(1)1111100 (in 2' s complement notation)
(1)(0)1111101 + 125 (False positive, not interpreted as a 2's
complement because of the 0 in the sign bit)

Carry is lost,
Carry Flag set

The result has a false positive sign. Any combination which would have a
result of more than -127 (for a single byte number) would cause this error con-
dition.

The programmer must check for these two error conditions by testing the
Carry Flag and the sign bits themselves when they suspect that the result of an
operation might cause an overflow error.

Logical and Bit Shift Operations

In addition to binary addition and subtraction. there are several binary logical
operations and bit shifts which should be understood by the programmer.

Logical OR—The logical OR operation compares bit by bit all 8 bits of 2 in-
dividual bytes and produces a result based on the following conditions:

If both bits are 0, result =0
If either bit is 1, result =1

All of the possible combinations and results are:

Byte A ByteB Result

1 Bit 1 Bit
0 0 0
0 1 1
1 0 1
1 1 1

This operation can be used to place a 1 bit in selected location(s) of a byte. If
we want to add a negative sign bit to a positive number. for example, to change
5 to 7, we can do the following:

A 00000101 5
OR with B 00000010 2
Result 00000111 7

Only the 2's position bit has been changed.

10

Logical AND—The logical AND operation compares each of the 8 bits of
two bytes and produces a result based on the following conditions:

If both bits are 1, result = 1
If either bit is 0, result = 0

The possible combinations and results are:

Byte A ByteB Result

1 Bit 1 Bit
0 0 0
0 1 0
1 0 0
1 1 1

This operation can be used to remove or test for a 1 bit in selected location(s)
of a byte. If we want to change the 7 we produced in the OR example back into
a 5, we could do the following:

A 00000111 7
AND with B 11111101 253
Result 00000101)

Again, only the 2's position bit has been changed.

11

Bit Shift Operations—Two instructions that shift the bits of a single byte to
the right or left are provided in the PC-1350 instruction set.

1. Shift Right—Each bit of a byte is shifted one bit position to the right. The
Least Significant Bit, which is pushed out of the byte, is stored in the Carry Flag
Position and the previous contents of the Carry Flag is stored in the Most Signi-
ficant Bit of the byte. This operation gives a result that is the same as dividing
by two, and is useful for division routines.

2. Shift Left—Each bit of a byte is shifted 1 bit position to the left. The Most
Significant Bit, which is pushed out of the byte is stored in the Carry Flag Posi-
tion and the previous contents of the Carry Flag is stored in the Least Signific-
ant Bit of the byte. This operation gives a result that is the same as multiplying
by two and is useful for multiplication routines.

SHIFT RIGHT

AT AT ATA AT T T T

CARRY

SHIFT LEFT
R AN S S-S S

CARRY

12

Binary Coded Decimal

Another type of representation of numbers that provides greater accuracy for
such applications as accounting, where more precision is necessary, is called
BCD or Binary Coded Decimal. The decimal numbers 0-9 can be represented in
binary in four bits, one half byte (called a "nibble"). Since only a half byte is
needed, two decimal numbers can be coded into each byte. This representation
of decimal numbers is called "Packed BCD". Some of the binary values that can
be expressed in 4 bits, that is, binary 10-15, are not needed to express the
decimal digits 0-9. These unneeded values are not used in BCD and can cause
some problems in BCD arithmetic. However, the BCD instructions in the PC-
1350 instruction set automatically make the necessary adjustments so the pro-
grammer need not worry about them. The BCD values 0-9 are shown in the

chart below:

BIN DEC BCD BIN DEC BCD BIN DEC BCD
0000 = 0 0 0101 = 5 5 1010 = 10 Not Used
0001 = 1 1 0110 = 6 6 1011 = 11
0010 = 2 2 0111 = 7 7 1100 = 12
0011 = 3 3 1000 = 8 8 1101 = 13
0100 = 4 4 1001 = 9 9 1110 = 14

1111 = 15

A number expressed in BCD must be limited to a fixed number of digits, in
the PC-1350 it is 10 digits. In order to represent numbers that are larger than the
largest number, or in the case of fractions, smaller than the smallest number that
can be expressed in 10 digits, a representation called Floating Point is used. Es-
sentially, what this format allows is the elimination of the need to represent zer-
os on either side of the decimal point and subsequently the elimination of the
bytes needed to hold these zeros.

Equivalent numbers can be represented by shifting the location of the decim-
al point and multiplying them by 10 to the appropriate power. Thus the decimal
number 23,000.00 could be represented as:

2300.00 x 101

or 230.00 x 102
or 23.00 x 103
or 2.30 x 104

13

Numbers to the right of the decimal point are represented by exponents with
a minus sign. The number .00023 could be represented as:

.0023 x 10-1
or .023 x 10-2
or 23 x 10-3
or 2.3 x 10-4

All of these combinations are possible, but in the PC-1350 the number is rep-
resented with the decimal point to the right of the left-most digit:

2.3 x104
23X 104

14

Variable and Program Structure

The internal format of numbers and variables is described in the following
paragraphs.

(1) Internal format of numbers

A number is represented using 8 bytes. A numeric value consists of an expo-
nent, mantissa sign, and mantissa.

Numbers from -9.999999999 x 1099 to 9.999999999 x 1099 can be represented.

%/—/_v_/
Exponent Mantissa Mantissa Rounded
sign off

i) Exponent
* The exponent is represented using two decimal digits.
The most significant digit is always zero for positive numbers.
* Negative numbers are represented using a complement.

901 (1079 to 099 (1099)

ii) Mantissa sign
e Zero is used when the mantissa is positive.

* Eight is used when the mantissa is negative.

iii) Computation correction
* Computation correction is performed only during computation. Normally,
it 1s reset after rounding off.

(Example) Assume that a number is stored in 6CFOH to 6CF7H (fixed variable B)

6CFOH 6CF7H
00H 30H 15H O00H O00H 00H O00H OOH 1500
00H 00H 12H 34H 56H 00H 00H O0H 1.23456
99H 70H 12H 34H 56H 78H 90H OO0H 0.00123456789
00H 88H 12H 34H 00H 00H 00H O0H -1.234X108

Table 1
The same internal format is used for numbers in operation registers in the CPU.

15

(2) Internal format of character strings

* When a character string is stored in a variable other than a fixed variable
(including A() arrays), the ASCII code of the contents of the character

string is stored directly.

* When a character string is stored in a fixed variable, the character variable

code (F5H) is set at the beginning. The remainder is stored in ASCII code.

(Example) Assume that character string PC1350 is stored in Z$ (6C30H to

6C37H).

6C30H

6C37H

F5H

50H

43H

31H

33H

35H

30H

O0H

Character
string
code

P

* When character string operations are processed in a CPU operation re-

gister, the internal format is not the same as in the case of a variable; char-

acter string information is represented using 8 bytes (4 bytes of actual

data), and the actual character string exists in the address indicated by the

character string information.

DOH: character string identification code

The length of the character string can be from 01H to 50H.

. . . U DOH ADDH ADDL |LENGTH
| — |
Invalid data DOH Beginning of the char- Length of
acter string the charac-
ter string

Beginning of the character string: The address in the string buffer can be used to indicate
the beginning of the character string. The acceptable range is from 6E60H to 6EAFH.

(Example) Assume that character string information is contained in operation

register X, and the actual character string SHARP exists in the string buffer.

10H

17H (RAM in CPU)

DOH

60H

6EH

05H

16

6E60H

6E64H

‘53‘48H‘41H‘52H‘50H‘

S

H

A

R

P

(3) Variable name configuration

The name of the variables created in variable area such as AB$ or X(5,5) are
represented using two bytes which indicate the ASCII code of the variable
name, whether it is numeric or character, and whether it is an array or not.

Upper byte Lower byte

ASCII code for the first character

Lower Byte
1) When the variable name is a single character (array only)
Number array — 80H is stored.
Character array — AOH is stored.
11) When the variable name consists of two or more characters
If the variable is character, 40H is added to the ASCII code of the second
character. If the variable is an array, 80H is added.

Variable name Code

B1 4231H

CcC 4343H

D (2) 4480H

EE (1) 45C5H

F$ (1) 46A0H

GG$ 4787H

Z7Z$ (2) 5A1AH
Table 2

When an A() array is used as an extension for fixed variables A through Z,
the variable name (code) is 4000H.

(Example) Assume that A$ (1,2) * 3 is declared for an array.

2Byte 2Byte 3Byte 3Byte 3Byte

A$ (0,0) A$ (0,1)

41 A0 | 00 15 02 01 03 Address significance

data data
Variable Number of Secon First Data
name total memory d sub- sub-
bytes+3 script script Length of character string

(88 for a number)

17

(4) Program configuration

Each line of a program is represented by a line number, line length, program,
and end code.

I

\‘ \‘ ODH
-~ -~
Line number Line Program C/R Line number Line

length length

For the following program (with no RAM card)

10 PRINT A
20 END

the following data is stored.

Address Data
6030H FFH ... Code indicating the beginning of the BASIC program

31H O0H
32H 0AH } 10
33H 03H ... Line length
34H DEH ... PRINT
35H 41H LA
36H ODH ... CIR
37H O0H
38H 14H } 20
39H 02H ... Line length
3AH D8H ... END
3BH ODH ... CIR

603CH FFH ... Code indicating the end of the BASIC program

Table 3

18

(5) Reserved area configuration
Reserved area consists of address 6F6FH through 6FFEH in system RAM.
Reserved contents are catalogued in the following format.

i) Reserved key code
There are 18 reserved keys. Each reserved key is catalogued using a reserved
key code.
Reserved key | Code Reserved key | Code
A 81H L 8CH
B 82H M 8DH
C 83H N 8EH
D 84H S F3H
F 86H \% F6H
G 87H X F8H
H 88H 4 FAH
J 8AH spc F1H
K 8BH = F4H

Table 4

ii) Reserved contents are written after each reserved key code. Delimiters are
not inserted between reserved programs. Reserved programs are written in the
order they are catalogued. If a program is re-catalogued, the previous program is
deleted, and the new program is added at the end of the catalogue.

iii) If NEW is executed in the reserved mode, the reserved area is filled with
hexadecimal zeros. Therefore, unused area will contain O0H.

(Example) Assume that the following contents are catalogued in reserved area.

Catalog sequence Reserved area Catalogued contents
1 A PRINT
2 S "ABC="
3 D GOTO
4 = INPUT
5 SPC 12345
Table 5

Least signi-
ficant digit

Three
most signi-
ficant digits

6F6
6F7
6F8
6F9
6FA

I

81,

DE,

F3,

ol

42,

#3., | a0,

22, |84, |C6y|F4,

DFy

F1,

31y

32y

33,

34,

35,

00,

_ All OOH

T

Table 6 System RAM

20

SYSTEM CONFIGURATION

The SHARP PC-1350 Pocket Computer is divided into four functional blocks
and some support devices. The four functional blocks are: the central processing
unit (CPU), the random access memory (RAM), the read-only memory (ROM),
and the I/O interface. These functional blocks are connected by three buses: the
16-bit address bus, the 8-bit bidirectional data bus, and the control bus. Figure 1
shows the configuration of the SHARP PC-1350 Pocket Computer.

CRYSTAL 0 DATA BUS |

! { K:) 10
RAM /0 INTERFACE PORTS

| Ji
TIL__ T 17 0|W

CPU
+ 5V

L]

GND

CONTROL BUS

] |

ADDRESS BUS

Fig. 1 A Simplified Diagram of System Architecture

The PC-1350 operates on dc 5-volt power supply and runs on the 768 KHz
basic system dock. The basic system clock is generated in the CPU. Its clock
frequency is derived from the 768 KHz quartz crystal which is external to the
CPU.

The CPU controls the flow of data to and from, and between the other system
blocks. It places one byte of data or code at a time on the data bus from one
memory or I/O block (RAM, ROM, or I/O interface) and takes it into itself
(fetch) or further stores it in another memory or I/O location in the same or an-
other system block via the data bus (move).

The location (or address) of the data that the CPU is to read, store, or move is

designated by the 16-bit address bus. This address is generated by the CPU. The
PC-1350 address bus can address up to 64K main memory locations.

22

The control bus carries various control signals generated by the CPU. The
CPU controls the overall timing of the system operations using the control sig-
nals placed on the control bus.

ROM stores data which can be read but which cannot be altered. It is used
primarily to store program code. The ROM block shown in the figure is 32K
bytes and contains the PC-1350 BASIC interpreter. The CPU also incorporates
8K bytes of internal ROM which holds the PC-1350 command interpreter.

RAM is a memory device which data can be written into and read from. It is
used to hold intermediate values of computations and BASIC variables during
execution. User programs are also loaded in RAM for execution.

The 1/0 interface block consists of interfaces for the keyboard, the LCD dis-
play, the CE-126P printer, and the CE-127R cassette recorder. This block is con-
nected to the CPU and other system blocks through the address, data, and con-
trol buses. Except the LCD display, all I/O interfaces are controlled by programs
written in either BASIC or machine language. The LCD display can and should
be controlled only by means of machine-language programs because of its com-
plexity.

23

System Memory Map

The system memory map is shown below.

QO00H
BKB internal ROM
2000H T -
|
I gk % Option RAM card area
| RAM card
| image
16KB 1 FOOOH
4000H C P DISP1
RAM card : S
| DISP1 image
) 8KB 7200H
RAM card DISP2
! 7300H
l DISP2 image
6000H l / 7400H
RAM 1 DISP3
6800H 7500H
RAM 2 DISP3 image
7000H 7600H
DISP4
DISP KEY port 7700H
DISP4 image
8000 7800H
DISPS
7900H
DISPS image
79FFH
not used
32K8 ROM JEOOH
KEY port
FFFFH

For details see Appendices

Fig. 2 System Memory Map

24

The CPU

The CPU is the center of the PC-1350 Pocket Computer. It fetches instruction
code, interprets it, and, depending on the instruction, loads data from memory,
performs arithmetic operations on the data, and stores the processing results in
memory.

The CPU is made up of the arithmetic/logical unit (ALU), the data pointer
(DP) register, the program counter (PC), the 96-byte internal RAM, general-pur-
pose registers, and the control unit which controls the internal operation of the
CPU. Figure 3 gives a schematic diagram of the PC-1350 CPU.

8 BIT DATA BUS

P T 1T
|
PC

DP

ri
§ 00 J L INTERNAL RAM

* 16 BIT ADDRESS BUS

T{JJA|B | Xe| XuYo|Yul K| LM N

7 BIT ADDRESS BUS),

SYSTEM STACK IA| IB|FO

Q
U
T
C

5C 5D 5E 5

m

Fig. 3 A Simplified Diagram of the ESR-H CPU

In addition to the 16-bit address bus, 8-bit data bus, and control bus, which
connect the CPU to the other system blocks, the CPU has a 7-bit internal bus.
This internal bus is used to address the location of the internal RAM which is
used as internal registers.

The ALU performs arithmetic and logical operations. It takes one or two op-
erands, performs an arithmetic or logical operation, and stores the result in a re-
gister, usually the A register in the internal RAM.

25

There are two flags in the CPU, the carry (C) flag and the zero (Z) flag,
which are affected by the operation of the ALU. The Z flag is set (loaded with a
1) if the result of an operation is zero and reset (loaded with a 0) if it is nonzero.
The C flag is set if the operation generates a carry and reset otherwise. These
flags can be tested, set, and reset directly by user programs.

The flags are used to control the flow of program execution. They are ex-
amined by conditional instructions that cause execution to branch to a different
portion of the program depending on their state.

Not all PC-1350 instructions affect the flags. Which instructions affect flag(s)
and which instructions do not are described in the description of the individual
PC-1350 Instructions.

The DP register is 2 bytes wide and used to address a location in external
memory.

All load and store instructions are performed on the memory location desig-
nated by the DP register. The DP register can be incremented, decremented, or
loaded with an immediate value or the data that is moved from the X or Y re-
gister in the internal RAM.

The PC is a 2-byte register which contains the address of the instruction to be
executed next. It is incremented sequentially to point to the next instruction as
instructions are executed. The PC may be loaded directly with a nonsequential
address by a flow-controlling instruction such as JUMP or CALL.

The P, Q and R registers are used to address the internal RAM. The P and Q
registers normally designate internal registers in the internal RAM. The R re-
gister holds the value that points to the top of the system stack in the internal
RAM. These registers are 7 bits wide, which is adequate to address the 98-byte
internal RAM.

The internal RAM contains 12 internal registers including an accumulator,
the work area, the system stack area, and the I/O port registers. The internal re-
gisters are named I, J, A, B, X1, Xh, Y1, Yh, K, L, M, and N. They are arranged
in the internal RAM as shown in Table 7.

26

ADDRESS REGISTER
00 I
01 J
02 A
03 B
04 XL
05 XH
06 YL
07 YH
08 K
09 L
0A M
0B N

Table 7 Internal Ram Registers

The I and J registers are 1 byte wide and used as index registers. They con-
tain a byte offset with respect to a base address. The I and J registers are as-
sumed by block move instructions as holding the number of bytes to be moved.

The 1-byte A register functions as an accumulator. It is used to store the result
of an arithmetic or logical operation performed in the ALU. Most data move-
ment operations (as directed by load and store instructions) are carried out via
the A register. The B register is a I-byte spare register and used in the same way
as the A register.

The X and Y registers are used as address pointers. They are 2 bytes wide
with the lower order byte occupying the lower address in the internal RAM. The
X register is typically used by the IXL instruction to point to the address whose
contents are to be loaded into the accumulator (A register). The Y register is typ-
ically used by the IYS instruction to point to the address in which the data in the
accumulator is to be stored.

27

The K, L, M, and N registers are 1-byte general-purpose registers. They may
be used to hold intermediate values of computations.

The internal RAM contains four I/O port registers at locations 5C, 5D, 5E,
and 5F in hexadecimal. These registers hold a I-byte data which is to be sent to
an I/O device with the OUTA, OUTB, OUTF, or OUTC instructions.

The internal RAM also has a system stack. The system stack is of the last-in
first-out (LIFO) structure. The top of the stack is always pointed to by the R re-
gister. Data may be pushed into and popped out of the stack area, 2 bytes at a
time. The first data that is pushed is placed at the bottom of the stack and the
latest data, which is to be popped out of the stack first, is placed at the top of the
stack. The stack starts at internal RAM address 5B in hexadecimal and grows
downward or toward the lowest address in the internal RAM. The stack is used
to hold temporary data and the return address of subroutines. The PUSH, POP,
CALL, and RTN instructions, when executed, automatically increment or decre-
ment the contents of the R register that points to the top of the stack.

28

The Instruction Execution Cycle

This section describes how an instruction is executed in the CPU. Under-
standing the basic mechanism of instruction execution will help the user con-
struct programs in PC-1350 machine language.

As the execution of an instruction starts, the CPU places the contents of the
PC on the address bus. The program code addressed by the address data on the
address bus is then placed on the data bus. The CPU fetches the code on the data
bus into one of its registers called the instruction register (IR). The control unit
of the CPU interprets the code and generates internal and external control sig-
nals in the sequence established by the code to perform the specified operation.

After the instruction is fetched, the PC is automatically incremented by one
to point to the next address. If the instruction requires the second and third oper-
and bytes (e.g., LIA or LIDP), the CPU reads them and the PC is incremented
accordingly to designate the instruction to be executed next. Thus, when the ex-
ecution of an instruction is completed, the PC points to the next sequential in-
struction.

The above steps are represented in terms of machine cycles of the CPU. Dif-
ferent instructions require different number of machine cycles and therefore
take different times to execute. The number of machine cycles that each instruc-
tion requires is stated in the individual instruction descriptions that are given in
a later section.

29

BASIC Program Areas

A BASIC program is stored in RAM memory starting at address 6030 in
hexadecimal. The location of the program are as that are used by BASIC pro-
grams are illustrated in Figure 4.

USER AREA
6000

Header & System Pointers
602F
6030 BASIC program Source
6900 Recommended Machine Code Starting Point
6C2F Array Storage
6C30

Predefined Variables
6CFF
6D00

Various System Pointer
6F6E
6F6F

Reserve Key Information
6FFF

Fig. 4

Space for simple and dimensioned BASIC variables are dynamically alloc-
ated in memory starting at address 6C2F. This area extends toward the lowest
address of memory. In Figure 5, this variable area starts at address 6C2F and
ends at 6900. User supplied machine-language programs should be placed
somewhere between these two areas. In the example shown in Figure 5, a ma-
chine-language program can start at address 6900 provided that the BASIC pro-
gram does not extend beyond this address. Also, the BASIC variable area must
not grow beyond the last address of the machine-language program.

30

6030 Start of BASIC Program

l\ Yy w @ End of BASIC Program

6200 Start of Machine Code Program

End of Machine Code Program
T 8

End of Dimensioned Variables

6C2F Start of Dimensioned Variables

(A) must not be greater than 6900.
must not be greater than C.

© must not be less than B

Fig. 5

A system memory area starting at 6F01 in hexadecimal contains the locations
of the BASIC program areas. They are listed in Table 8.

31

Location (hexadecimal) Contents

6F01 Low byte BASIC program starting address

6F02 High byte (contains FF)

6F03 Low byte BASIC program ending address

6F04 High byte (contains FF)

6F05 Low byte Starting address of the last

6F06 High byte merged BASIC program (contains FF)
6F07 Low byte Simple and dimensioned variables
6F08 High byte starting address

6F1C Low byte Starting address of the currently

6F1D High byte executing program (contains FF)

6F2B FOR-NEXT pointer
Current top address

6F2C GOSUB pointer
6E06

FOR-NEXT stack area
6ESF
7090

GOSUB stack area
70A3

Table 8 BASIC Program Area Control Table

32

MACHINE-LANGUAGE PROGRAMMING

33

PC-1350 BASIC provides one function and four statements to facilitate the
user to handle machine-language programs from his or her BASIC programs
and pass information between them. They are the PEEK function and the
POKE, CALL, CSAVE M, and CLOAD M statements. The PEEK function
reads the contents of a memory location. It is used to receive argument informa-
tion. The POKE statement loads a byte of information into a memory location.
It can be used to place machine-language code directly into desired locations in
the user area. The CALL statement transfers CPU control to a user-supplied ma-
chine-language program. The CSAVE M statement saves a machine-language
program onto cassette tape and the complementary CLOAD M statement loads
a machine-language program into memory from cassette tape. This section
shows with examples how to load and run user-supplied machine-language pro-
grams using these BASIC facilities.

34

Using the PEEK Function

The PEEK function is used to read the contents of memory locations. It takes
one argument which evaluates to an address expression. The general format is
shown below.

PEEK < expression >

< expression> specifies the memory location to be peeked. It must be an ad-
dress expression which is evaluated to a hexadecimal value from &2000 to
&FFFF. The PEEK function returns the contents of the memory location spe-
cified in < expression > in the form of a decimal number. The memory contents
may be viewed by displaying them on the screen with the PRINT statement.

The PEEK function may be used to find the address of memory areas. For ex-
ample, the function call

PEEK &6F01

should return a decimal number of 48 (30 in hexadecimal). A subsequent PEEK
call with the next memory address (&6F02) as its argument should return 96 (60
in hexadecimal). Since address data is 2 bytes long and always stored in
memory with the lower order byte first on the PC-1350, these two bytes form an
address value of &6030 in hexadecimal, which is the starting address of the user
BASIC program (see Figure 5).

The sample program given below illustrates the use of the PEEK function.
This program takes a dump of contiguous memory locations. When executed,
this program asks for the beginning address of the location you want to look
into and the number of bytes. When you press the RETURN key, the program
will display on the screen addresses and their contents in hexadecimal re-
peatedly for the number of bytes you specified.

35

10: INPUT "ADDR?"; A
20: INPUT "BYTES?"; B
30: FORI=0TO (B-1)
40: X=PEEK (A+l)
50: P =INT (X/16)
60: Q= (X-16"P)
70: |IF P>9 THEN LET P=P+ 7
80: IF Q>9 THEN LET Q=Q+7
90: P=P+48:Q=Q+48
100: PRINT (A+l);""; CHRS$ P; CHRS$ Q
110: NEXT I
120: END

Variable A holds the starting address you entered. Variable B holds the num-
ber of bytes to be looked into and is used as the control variable for the FOR
loop formed by lines 30 through 110. In the FOR loop, the memory contents are
placed in X and then divided into two hexadecimal values and stored in P and
Q. On lines 70 and 80, a check is made to determine if the hexadecimal number
fall between A and F. On line 90, the hexadecimal numbers are converted to AS-
CII code. Line 100 prints the address and its contents. The CHRS$ function con-
verts the ASCII code to its character representation.

Given a starting address of &6030 and a byte count of 17, the above program

will give the following display (provided that only the above program is loaded
in the BASIC program area):

36

24624 FF
24625 00
24626 OA
24627 0B
24628 DF
24629 22
24630 41
24631 44
24632 44
24633 52
24634 3F
24635 22
24636 3B
24637 41
24638 0D
24639 00
24640 14

The first code FF in the above display identifies the beginning of your BA-
SIC program. The next two bytes indicate the line number of the first statement
in binary. The following code B is the length of that statement. DF is the intern-
al code for the BASIC statement INPUT. 22 represents a double quotation mark
(" ") and 41 represents the letter A. The subsequent several codes are alphabetic
characters. 0D at address 24638 identifies the end of the statement. 00 and 14
form a pointer to the beginning of the next tine.

Reference: Program Line Format

BASIC program lines are stored in the BASIC program area in memory in
the format shown below.

B ODH
-~ -~
Line number Line Program C/R Line number Line
length length

Fig. 6

As shown above figure, a BASIC program line consists of the line number, line length,
program line, and termination code fields.

37

Using the POKE Statement

The POKE statement loads specified memory location(s) with data byte(s). It
is typically used to bury machine-language code into the BASIC program area.

The POKE statement has two formats:

1. POKE expression, expression
2. POKE expression, expression, ... , expression

The POKE statement in format 1 stores the value of the second expression in
the memory location designated by the first expression. The POKE statement in
format 2 stores the values of the second and subsequent expressions in the con-
tiguous memory locations starting at the address designated by the first expres-
sion. The second and subsequent expressions must be evaluated to values
between 0 and 255.

Enter the following POKE statement for an example:

POKE &6900,&12,&06,&02,&D7,&37

The results of this statement can be examined using the preceding sample
program for the PEEK statement. A sample run is given below.

Sample Run

ADDR? &6900

BYTES? 5
26880 12
26881 06
26882 02
26883 07
26884 37

38

Running a Machine-language Program

User-supplied machine-language programs are executed as subroutines which
are called from BASIC programs. A machine-language program can be loaded
into a free BASIC program area for execution using, for example, the POKE
statement. A machine-language program is started by a BASIC program by
transferring CPU control with the CALL statement.

The CALL statement takes one argument which specifies the starting address
of the machine-language program to be executed and transfers control to that
address. For example, the statement

CALL &6900

initiates the execution of the machine-language program in the program area
starting at address &6900.

Since a machine-language program is a subroutine, it must end with a RTN
machine-language instruction (a machine-language program can have more than
one RTN instruction). When a RTN instruction is encountered during execution,
CPU control is returned to the BASIC program, immediately following the
CALL statement that called the machine-language program.

Several examples for running machine-language programs are given in the
following sections.

39

The CSAVE M Statement

The CSAVE M statement saves the contents of the specified memory area
onto cassette tape in the machine-language format. It has the following general
format:

CSAVE M "filename"; < expression-1 >, < expression-2 >

"filename" is the name of the memory data with which data is to be recorded
on cassette tape. < expression-1 > identifies the beginning of the memory area
and < expression-2 > the end of the memory area. These parameters must be
evaluated to address values. They are required and you must specify both para-
meters.

For the tape formats of the BASIC programs and data, see Appendixes.

40

The CLOAD M Statement

The CLOAD M statement loads cassette tape data into memory in the ma-
chine-language format in the same location at which it was saved. It has the fol-
lowing general format:

CLOAD M "filename"; < expression >

"filename" is the name of the data stored on cassette tape. You cannot omit
the filename. < expression > must be evaluated to an address value. If it is spe-
cified for a machine-language program, execution starts at this address immedi-
ately after the program is loaded (auto start feature).

41

Sample Program 1: Simple Program

The simple machine-language program given below loads a number 6 (6 is
arbitrarily chosen) into the accumulator and places it in memory location 6DF0
in hexadecimal. This location is selected because it is the address that follows
immediately the end of the BASIC variable area and will do no harm to the PC-
1350 when the location is altered. Here is the example machine-language pro-

gram:
LIA 06
LIDP 6DFO
STD
RTN

The LIA instruction loads the accumulator A with immediate number (06).
The LIDP instruction loads the DP register with 2-byte address data (6DFO0).
STD stores the data in the A register in the memory location pointed to by the
contents of the DP register. The last instruction, RTN, returns control to the BA -
SIC program that called this program. When this program is executed success-
fully, a 06 will be placed in memory location 6DF0.

To run the above program, you must "hand-assemble" it, that is, you must
represent the program in code that the PC-1350 can understand. A table such as
shown below will help you assemble the machine-language program.

Addr | Machine Code | label | OP Code | Operand(s) Comments
6900 LIA 06 Data to be stored
LIDP 6DFO
STD
RTN
Table 9

42

The Addr column contains the addresses in memory where the machine codes
are to be placed. The Machine Code column contains hand-assembled codes.
The use of the Label column will be described later. The OP Code column holds
the machine-language instructions in mnemonic form. One machine-language
instruction must be placed in each row. The Operand(s) column contains the op-
erand(s) on which the operation specified by the OP code is to be performed.
Some instructions take one operand and other instructions two. There are in-
structions, such as STD and RTN, which take no operand. The Comments
column may contain any remarks you want to make. You should write down
here what the instruction does for what purposes so that you can later recall
what is going on with the program.

After completing the Addr, OP Code, and Operand(s) columns, translate the
instructions into machine code referring to the PC-1350 instruction descriptions
given in the later portion of this manual. For example, the instruction LIA 06
can be translated into 0206. 02 is the machine code of the LIA instruction and
06 is its operand. Because this instruction takes up two bytes of memory, the ad-
dress of the next instruction must be 6902. Place this address value in the
second row of the Addr column. LIDP is translated into 106DF0 where 6DFO is
the operand of the LIDP instruction and designates a memory location. This in-
struction occupies 3 bytes, so the next instruction starts at address 6905. STD is
1 byte long and has a machine code of 52. Write 52 in the row labeled 6905. Fi-
nally, fill the next row; write down 6906 in the Addr colurnn and 37, which is
the machine code of the RTN instruction, in the Machine Code column.

Addr | Machine Code | label | OP Code | Operand(s) Comments
6900 0206 LIA 06 Data to be stored
6902 106DFO LIDP 6DFO
6905 52 STD
6906 37 RTN

Table 10

43

When the table is completed, load the machine-language program into
memory using a BASIC program. Because this program is fairly short, you
could do it with a single POKE statement. The sample code below uses two
POKE statements for readability.

200: POKE &6900,&02,&06,&10,&6D,&F0
210: POKE &6905,&52,&37
220: END

Enter and run the above program. If the PEEK program which is discussed
previously is still in memory, you can check to see how the program is loaded in
memory.

After making sure that the program code is loaded properly in memory, enter
the following program code:

300: POKE &6DFO0,0

310: PRINT "BEFORE "; PEEK &G6DFO
320: CALL &6900

330: PRINT "AFTER "; PEEK &6DFO0,0
340: END

The above program initializes the "interface" address to 0 and prints its con-
tents before and after a call to the sample machine-language program.

If the program executes successfully, the BEFORE value should be 0 and the
AFTER value should be 6.

44

Sample Program 2: Converting Binary Numbers
to Hexadecimal Numbers

The second sample program converts binary data to a hexadecimal number.
The program is basically identical to the program lines 50 through 90 of the pre-
vious PEEK program, though a different algorithm is used. The program in-
cludes some additional machine-language programming principles.

The program can be divided into several code segments. The first code seg-
ment starts at address 6900 and ends at address 690C. It places F5 in the first
byte position of the preallocated variable Y. F5 identifies that Y is a character
variable (see the description on the BASIC internal variable structure).

The first six instructions load the 16-bit Y register in the internal RAM with
the memory address one byte less than the address of the beginning of the preal-
located variable Y. Although the DP register is normally used to point to
memory locations, it is hard to update its contents. To update the DP register
contents, it 1s most easy to load the DP register with the contents of the X or Y
register which is easy to update. The PC-1350 has many instructions which load
the DP register with the contents of the X or Y register after incrementing or
decrementing the register.

So the Y register is first initialized (6900-6908). The LIA instruction at ad-
dress 6909 loads the required byte (F5) into the A register. The IYS instruction
at address 690B increments the Y register, loads the incremented Y register
value into the DP register and stores the contents (F5) of the A register in the
memory address pointed to by the DP register, that is, the beginning of the
preallocated variable Y (because of the auto increment feature).

Load and run the program segment you constructed so far. Examine the con-
tents of the Y$ variable with the previous PEEK program to see whether F5 is
placed in the correct memory location. Do not forget to clear Y$ with the as-
signment statement Y = 0 or other BASIC statements. This stepwise program-
ming, that is, writing and testing a program in small chunks, is recommended
for building good programs.

45

Addr |Machine Code| Label | Mnemonic | Operand(s) Comments
6900 12 06 LIP 06 Address of YL
02 02 37 LIA 37
04 DB EXAM
05 50 INCP address of YH
06 026C LIA 6C
08 D8 EXAM 6C38=Y$
09 02 F5 LIA F5 char variable header
08 26 IYS store in Y$
690C 106D FO LIDP 6DFO "window" address
690F 57 LDD get byte
6910 34 PUSH save copy
6911 58 SWP set up high nibble
6912 78 69 1D CALL (1) convert high nibble
6915 58 POP get copy
6916 78 69 1D CALL (1) convert low nibble
6919 02 00 LIA 00 00 = end of string
691B 26 IYS place null in Y$
691C 37 RTN return to basic
691D 64 OF (1) ANIA OF mask off top nibble
1F 34 PUSH save copy
20 75 0A SBIA 0A will set carry if result is
negative
22 3A 06 JRC (2) if number is decimal,
jump, if hex, continue
24 58 POP get binary value
25 74 37 ADIA 37 add ALPHA offset
27 2C 04 JR (3)
29 58 (2) POP get binary value
2A 74 30 ADIA 30 add NUMERAL offset
2C 26 (3) IYS store HEX CHAR in Y$
2D 37 RTN return calling routine

Table 11 Binary to Hexadecimal Conversion

46

The next two instructions (addresses 690C-690F) load the contents of the
window into the accumulator (A). The PUSH instruction saves the copy of the
accumulator onto the stack. Do not forget to pop out this data at a later time;
otherwise, the correct return address could not be set up when a later RTN in-
struction is executed.

The SWP instruction exchanges the higher and lower nibbles of the byte in
the accumulator. The subroutine at addresses 691D through 6920 converts the
lower nibble in the accumulator into a hexadecimal character.

The CALL instruction is used to invoke a subroutine in external RAM
memory (CALL may be used to call a program in memory below 1FFF). The
CALL instruction, like the BASIC CALL statement, requires an absolute ad-
dress argument. To give the correct address argument to the CALL instruction
during hand assembly, leave two bytes of space after the operation code of the
CALL instruction (78). When the address of the target subroutine is later estab-
lished, fill this space with that address. In this example, the two CALL instruc-
tions at addresses 6912 and 6916 invoke the subroutine that starts at address
691D.

The first subroutine call converts the higher nibble of the accumulator to its
hexadecimal character representation and places it into memory addressed by
the Y register. The subsequent POP instruction gets the copy of the byte saved
by the PUSH instruction at address 6910. The second subroutine call now con-
verts the lower nibble of the byte to its hexadecimal character representation.
The two instructions at ad dresses 6919 and 691B place a null character (00) in
memory after the two hexadecimal characters. A null character identifies the end
of a character string. The subsequent RTN instruction returns control to the BA-
SIC program that called this machine-language program.

The subroutine between 6910 and 6920 does the binary-to-hexadecimal con-
version. The subroutine first tests the given nibble to see whether it is greater
than 9. If it is smaller than or equal to 9, the subroutine adds a constant 30 in
hexadecimal to the nibble to put it in the range 30 to 39 in hexadecimal, which
correspond to the ASCII numeric characters 0 to 9. If the nibble is greater than
9, the subroutine adds a hexadecimal constant 37 to put the nibble in the range
of 41 to 46 which correspond to the ASCII letters A to F.

47

The ANIA instruction at address 691D masks off the higher nibble to leave
the lower nibble in the accumulator. Subsequently, the nibble is saved for later
processing. The nibble in the accumulator is then checked whether it is greater
than 9 by subtracting 10 (OA in hexadecimal). If the nibble is smaller than or
equal to 9, an offset for letters is added to the nibble. If the nibble is greater than
9, which is indicated by the carry flag being set, the program jumps to the in-
struction identified by label (2) to bypass the above-mentioned conversion step.
The JRC* instruction tests the carry flag and, if it is set, causes control to trans-
fer to the location (address 6929 in this example) identified by the operand field
of the instruction.

The code from addresses 6924 to 6928 converts a hexadecimal number to a
ASCII letter by adding an offset for letters (37 hex). The POP instruction at ad-
dress 6924 restores the hexadecimal number into the accumulator.

The code from addresses 6929 to 692B simply converts a hexadecimal num-
ber to its ASCII equivalent by adding an offset for ASCII code (30 hex).

The result of the conversion is stored in the BASIC variable Y$ by the IYS
instruction at address 692C. The subroutine is then exited by the RTN instruc-
tion at address 692D.

* Relative versus absolute jumps

The PC-1350 has two types of jump instructions: absolute jumps and relative
jumps. The absolute jump instructions require a 2-byte operand while the relat-
ive jump instructions require a 1-byte operand. In either case, the value of the
operand is algebraically added to the PC during execution so that execution con-
tinues at a nonsequential address.

To determine the value of the operand of a relative instruction, find the ad-
dress of the destination and subtract from it the address where the operand is to
be placed, that is, the address of the relative instruction plus 1. In this sample
program, the address of the operand is 6923 and the destination address is found
to be 6929 in hexadecimal, so the value of the operand is calculated as 6929 -
6923 = 6.

Relative jumps are trickier to calculate and are more likely subject to errors

48

than absolute jumps. A thumb of rule is to first write a program using only abso -
lute jumps. After the program is extensively tested and proved to run normally,
substitute relative jumps for absolute jumps. The advantages of relative jumps
are that they take less memory and execute a little faster than absolute jumps
and that they need not be modified when a program is to be relocated in
memory.

The sample program below illustrates how to use the machine-language pro-
gram from a BASIC program. The program asks for the starting address of the
data to be converted to ASCII characters. Then it fetches a byte from the spe-
cified data area with the PEEK function, places it in the window at 6DF0 with
the POKE statement, and calls the machine-language program at address 6900
with the CALL statement. The PRINT statement on line 70 displays the results
of the conversion stored in string variable Y$. The program repeats the above
sequence for the specified number of bytes.

10: INPUT "ADDR?"; A
20: INPUT "BYTES?"; B
30: FOR I=0 TO (B-1)
40: X=PEEK (A+l)

50: POKE &BDFO0, X
60: CALL &6900

70: PRINT (A+1);" ":Y$
80: NEXT |

90: END

The machine-program can be loaded into memory using the BASIC program
given below.

400: POKE &6900,&12,&06,&02,&37,&DB,&50

410: POKE &6906,&02,&6C,&DB,&02,&F5,&26

420: POKE &690C&10,&6D,&F0,&57,&34,&58,&78,&69,&1D
430: POKE &6915,&5B,&78,&69,&1D,&02,&00,&26,&37
440: POKE &691D,&64,&0F,&34,&75,&0A,&3A,&06

450: POKE &6924,&5B,&74,&37,&2C,&04

460: POKE &6929,&5B,&74,&30,&26,&37

470: END

49

PC-1350 1/0

The PC-1350 is provided with several I/O devices. The I/O devices include a
keyboard, a liquid Crystal Display (LCD), a serial interface, and a cassette re-
cord.

The following sections describe the PC-1350 I/O devices with sample driver
programs.

52

LCD Display

The PC-1350 employs an LCD display consisting of 150 dots horizontally
and 32 dots vertically. Each dot on the screen is mapped into a bit in video
memory; that is, a dot is turned on by setting on the corresponding bit in video
memory. The video memory starts at address 7000 in hexadecimal. A vertically
aligned 8 dots form a display pattern as shown in the figure below. A display
pattern is represented by a number consisting of 8 video memory bits with each
bit assigned a weight as shown in the figure. The LCD video RAM map is
shown below.

~— 30 dot —. — 30 dot — — 30 dot — .— 30 dot —. ,— 30 dot —.

{ & & & & & & & & & &
8 dot| & 63 3 4 i ¢ & 4
g ™= 94pf ™~ Hg ™™ 30 T "qa ™ 3
l 0 D O D O D O D 0O D
[- e R e R -
7 3 7 3 it F.i7 7. 7 7
8 dot| O —~— 0 2 ~~ 2 4 -~ 4 6 —~ 6 8 —~— 8
a4 5 4 5 4 5 4 5 4 5
0 D O D O D 0 D O D

& & & & & & & & &
7 7 7 7 i 7 i 7 7
0 2 T 2 4 4 6 B B8 o g
7 5 7 5 7 5 7 5 7
B E B E B E B E B
=
L&EA
&75
&7E
Fig. 7 LCD Video RAM Map

53

The LCD display is controlled by the lowest order bit of internal RAM loca-
tion 5F in hexadecimal. Turning on bit 0 of address SF enables the display and
turning off bit 0 disables the display. The program given below turns on the
LCD display.

Addr Machine Code | OP Code | Operand(s)
6900 125F LIP 5F
6902 6101 ORIM 1
6904 DF ouTC
6905 37 RTN

Table 12

This program outputs the contents of internal RAM location 5F with its bit 0
set to 1 to enable the LCD display. Note the use of the ORIM instruction. It sets
bit 0 of the internal RAM location addressed by the P register with the other bits
left intact.

The above code can be called as shown in the following sample program:

500: POKE &6900,&12,&5F,&61,&01,&DF,&37

510: END

520: CLS

530: CALL &6900

540: POKE &7000,&01,&02,&04,&08,&10,&20,&40,&80,&00,&FF
550: GPRINT

560: END

The POKE statement on line 500 loads the machine-language program in
memory at address 6900 in hexadecimal. The CALL statement on line 530 calls
the machine-language program to enable the LCD display. The data to be dis-
played on the screen is placed on the screen by the POKE statement on line 540.
The GPRINT statement on line 550 turns on the screen accordingly.

54

The Keyboard

The PC-1350 keyboard has two groups of keys. One group of keys are
scanned and read via the input/output lines IA1 through A8 (the keys that form
a triangle in the key matrix diagram given at the end of this manual). The other
group of keys are scanned by the scan signals KO1 through K07 that are sent
from an I/O port under program control, and read from lines IA1 through IA7
(see the key matrix diagram).

Key data from the first key group can be read by first sending the contents of
the CPU IA port register at internal RAM address SCH as a strobe signal and
taking in the contents of the same IA port into the A register with an INA in-
struction. For example, the following machine-language code can be used to
read only the ENT key data:

LIP 5CH
LIA 8 Sends strobe signal I1A4 from |A port register.
EXAM
OUTA
LOOP
WAIT 30 Wait.
INA
TSIA 10H Read in and test bit IAS in A
JRZ LOOP register and repeat if IA5 is zero.
RTN

If the ENT key has been pressed, the INA instruction in the above code
should place code 18 in hexadecimal in the A register. This is because the INA
instruction reads in bit IA4 that has been set as a strobe signal. Also note that bit
8 (most significant bit) of the IA port at address SCH corresponds to IA8 (most
significant bit) of the CPU A register and that bit 1 (least significant bit) of the
IA port corresponds to IA1 of the CPU A register.

95

The second group of keys are scanned by strobe signals K01 through KO07.
These signals are generated by writing appropriate scan data into the key port
that is located in the RAM are a between 7EO00H through 7FFFH. Keyed in data
can be read by taking in the contents of the IA port that are connected to lines
IA1 through IAS into the A register using an INA instruction.

Since the key port address is duplicated in memory addresses between
7EO00H through 7FFFH, you can specify any address within this area as the key
port. The relationship between the strobe data bits and the lines KO1 through
K07 is shown below.

MSB LSB
Data bits Bit 8 Bit7 <—> Bit1
K01-KO07 bits KO7 =<-——» KO1

Here are sample programs for generating scan signals.
Example 1: Generating K02

LIDP 7EOOH
LIA 02H
STD

Example 2: Generating K06

LIDP 7FO0OH
LIA 20H
STD

56

The Serial Interface

The PC-1350 has one serial interface as a serial port. It uses asynchronous
(start/stop) communication and supports only the half-duplex mode. The major
specifications of the PC-1350 serial interface are given below.

1. Communication mode: Start-stop system, Half-duplex mode
2. Baud rate*: 300, 600, 1200 bauds
3. Data length *: 7 and 8 bits
4. Parity*: Odd, even, none
5. Stop bits*: lor2
6. Connector: Dedicated 15-pin connector (see figure below.)
7. Output level: C-MOS level (4 to 6 volts)
8. Interface signals: Input: RD, CD, CD
Output: SD, RS, RR, ER
Others: SG, (FG), VC
%

: Items marked by an asterisk are software programmable.
(1) Serial Interface Connector
The PC-1350 is furnished with a 15-pin connector for the serial interface. It is

located on the right side panel of the main unit. The serial interface connector is
shown below.

LCD

— — SENE,
4‘ PC-1350 right side panel

Pin Mo. 15 Pin No. 1

Fig. 8 Serial Interface Connector

The PC-1350 uses eight pins out of the 15 pins. The pin assignments and
their definitions are summarized in the table below.

o7

No. Signal Name Symbol Direction Description

1 Frame Ground FG Protective ground.

2 Transmit Data SD Output | Output data.

3 Receive Data RD Input Input data.

4 Request to Send RS Output Set on in the transmit mode and off in
the receive mode.

5 Clear to Send CS Input Response signal to send request. A 1
indicates that the PC-1350 can send
data.

7 Signal Ground SG Signal ground. Gives the reference
voltage for the interface signals.

8 Carrier Detect CD Input A 1 enables the PC-1350 for recep-
tion and a 0 disables the PC-1 350 for
reception.

11 Receive Ready RR Output |When set to 1, indicates that the PC-
1350 is ready for reception.

14 Equipment Ready ER Output |When the serial port is selected, set
on to indicate that the PC-1350 is
ready for communication.

10&13 VvC Power source.
Table 13
Notes:

1. Other pins are not connected inside the PC-1350.

2. Pins are at the VC level when they are set on and at the SG level when they
are off.

3. Applying a source voltage beyond the permissible range (i.e., voltage differ-
ence across VC and SG) may cause damage to the PC-1350 electronics as it
1s made up of C-MOS components. Take extreme care when connecting the
connector to an external device.

58

(2) Connection
* Connecting a PC-1350 to another PC-1350 or a Sharp PC-5000

The wiring diagrams for connecting your PC-1350 to another PC-1350 and a
Sharp PC-5000 are shown below.

PC-1350 to PC-1350 PC-1350 to PC-5000
SD SD SD SD
RD>< RD RD><RD
RS RS RS RS
CS CS CS Cs
SG SG DR DR
CD CD SG SG
RR RR CD CD
ER ER RR RR

ER ER

Caution: A voltage level shifter is required when connecting your PC-1350 to a
terminal device other than PC-1350 (e.g., PC-5000). An attempt to connect the
PC-1350 to such a device may damage the PC-1350 interior.

59

(3) Programming the Serial Interface

Before communicating with an external device through the serial interface, it
is necessary to execute an OPEN statement. Executing an OPEN statement sets
the ER line to ON. The ER line remains on until a CLOSE statement is ex-
ecuted.

* Sending Data

Figure 9 shows the flowchart of the monitor program for sending data from
the serial interface. It is assumed that the ER line has been turned on.

The send program checks the CS line every time it sends a byte. The CS sig-
nal cannot be ignored; the serial interface will not send a byte if the CS line is
off. The monitor subsequently enters the wait state. Since the monitor does not
have a timer function, the transmission will be interrupted if the CS line is set
off during processing. After the CS signal is turned off, one byte may probably
be sent, in the worst case.

After all bytes have been sent, the program sets off the RS line and termin-
ates processing.

* Receiving Data

Figure 10 shows the flowchart of the monitor program for receiving data at
the serial interface. It is assumed that the ER line has been turned on.

The receive program checks the CD tine every time it receives a byte. The
CD signal cannot be ignored. Since the monitor does not have a timer function,
the receive processing will be interrupted if the CD line is set off during pro-
cessing. The monitor subsequently enters the wait state.

The program turns off the RR line to signal the termination of receive pro-
cessing to the counterpart device when it receives a termination code or when it
cannot continue processing due to an error such as parity or framing error.

In either send or receive mode, one device is put into the wait state if the oth-
er device terminates processing. The device that is held in the wait state can be
reset by pressing the BREAK key.

60

{ Send] | Receive :I
L]
Set RS on : \
M
@ on? .
Yes
L
CS on? >H0 ' ¥
Set RR on
Yes
Send data |
CD on? >—2
Yes
i
Receive data
1
Set
termination)
code Termination,_ No
wda? _..—;
Yes
L I
Set RS off 1Y
Set AR off
End i
! End
Fig. 9 Send Processing Fig. 10 Receive Processing

61

The send and receive timing charts are shown in Figures 11 and 12.

Output

-

Start bit

Stop bit

T Besa

Fig. 11 Send Data Timing Chart

e]

CLOSE

ML ------ T

1
|
|
! 1
I
T
Input : :
| |
| Il
Ccs LD
E :
[
| %1 1€ Min. 1.9,8
OPE Output command
Qutput
ER _JI
I
I
RR :
| I
| I
I |
Input 1 |
] |
| 1
CD ﬁ_|' !
. | Start bit
RD : :
I I
]
: '
OPEN Input command

Fig.12 Receive Data Timing Chart

62

Figure 13 shows the relationship between the serial interface signals and the
bit definitions of the I/O ports B and F in the CPU internal RAM.

MSB LSB

C|I|C|R|R|R]|]E PORT B
D|S|D|R|S]|R (5D)H

\ N /
Input Output
MSB LSB
S PORT F
D (5EH
e
Qutput
Fig. 13

The following sample programs set the send data (SD) line to 1 (low level)
and O (high level) :

Setting SD high Setting SD low
LIP 5EH LIP 5EH
ORIM 8 ANIM F7H
OUTF OUTF

Note: Refer to the instructions manual for the PC-1350 for the formats of the
send and receive data and the procedures for sending and receiving data via the
serial interface using the BASIC LPRINT, PRINT # 1, and LLIST statements.

63

Other 1/O Interfaces

1. Printer Interface

The following I/O ports are used to interface to the optional thermal printer
Model CE-126P:

Output
FO2: Data
FO3: Strobe

Input
IB7: Error
IB8: Data Acknowledge

2. Cassette Interface

The PC-1350 writes to and reads from the cassette recorder through the XIN
(input) and XOUT (output) terminals.

3. Programming Note

When controlling I/O port register F in the CPU internal RAM with the
OUTF instruction, be sure to set its bit 0 to 0.

64

THE PC-1350 INSTRUCTIONS LIST

There are 123 machine language instructions for the PC-1350 included here.
The instructions may occur in the following sizes and formats:

1. 1 byte instructions
A. 8 bit operation code
B. 2 bit operation code, 6 bit operand

2. 2 byte instructions
A. 8 bit operation code, 8 bit operand
B. 7 bit operation code, 9 bit operand
C. 3 bit operation code, 13 bit operand

3. 3 byte instructions-8 bit operation code, 16 bit operand
4. More than 3 byte instructions-8 bit operation code 3 or more byte operand

Detailed information about each instruction is given in this section of the
manual.

At the end of the section, the summarized information is listed alphabetically
and by hexadecimal operation code. In the instruction detail list, the instructions
are grouped by similarity of function and the following information is provided
for each:

1. Machine Language mnemonic code

2. A description and diagram of the actions performed by the instruction

3. The number of bytes required

4. The number of bits in the operation code and the operand(s)

5. The appearance of the instruction in memory in binary and hexadecimal
6. Cycles - The number of machine cycles required for execution of the instruc-
tion. This information can be used to select the faster instructions if more than
one instruction or set of instructions could be used to obtain the desired results.
7. Flags - Indicates whether the execution of the instruction will affect the Carry
(C) or the Zero (Z) flag.

8. Other - Indicates other changes that may occur during the execution of the
instruction, such as changes in the contents of registers.

66

Abbreviations used in the instruction descriptions

Registers

Accumulator

Extra Accumulator

Data Pointer-External RAM address
Block Operation Register

Block Operation Register

General Purpose-For programmers use
General Purpose-For programmers use
General Purpose-For programmers use
General Purpose-For programmers use
Internal RAM address pointer

Program Counter

Internal RAM address pointer

Stack Pointer

External RAM address pointer

External RAM address pointer

If the letter appears as above, the contents of the register is being specified.

If the letter appears within parentheses, the contents of the memory address
that is stored in the register is being specified.

Operands
14

n

nm

6 bit literal = an address in internal RAM between 00 and 3F.

7 bit literal value (for registers P and Q)
8 bit literal value (for other registers)

16 bit literal value

67

1. Move Data Instructions

1.1. Load Immediate

The value represented by the operand (n,m,l) is moved into the spe-

cified register.

Lirn

Load the value of n into r(egister)

r = an 8 bits register

n = 8 bits
n —» |
J
A
B
Mnem Appearance in Memory Byte
Op Code Lir » 000|000 |er- 1
Operand n . qﬁ» 2
8 76 54 3 2 1
2 Low Bits Hex
ifr= ofOpCode Op Code
I 00 00
J 01 01
A 1.0 02
B 111 03
2 1
Cycles 4
Flags None
Other None

68

Lirn

Load the value of n into r(egister)

r = a 7 bits internal RAM address register

Appearence in Memory

0/1]0

0

1

r

«——n—»

87654321

n = 7 bits
n —» P
Q
Mnem
Op Code Lir » 00
Operand n >
Low Bits
of Op Hex
ifr= Code Op Code
P 0 12
Q 1 13
1
Cycles 4
Flags None
Other None
LIDP nm

Load the value of nm into 16 bit DP register
nm = 16 bits

n— DPy m— DPL

Mnem Appearence in Memory Op Code
Op Code Lir »0/0/0|1 00|00
Operand n > -n-—»
m > < m 4>
|
8 7 6 54 3 2 1
Cycles 8
Flags None
Other None

69

10

Byte

Byte

1
2

3

LIDL n
Load the value of n into the low order byte of the DP register

Appearance in Memory Op Code Byte

Mnem.
Op Code LIDL 0/0j01/0/0|0]1 11 1
Operand n -« r‘lﬁ 2
87 6 543 21
Cycles 5
Flags None
Other None

LP¢
Load the value ¢ onto P register

¢ =6 bits (00 — 3F)

(- P

Appearance in Memory Op Code Byte

10+——¢—» 80+ 1
8 7654 3 21

Op Codei Operand — P

Mnem.
OpCode | LP¢ —>

+

Operand
Cycles 2
Flags None
Other None

70

1.2. Load/Store a register into/from the accumulator

LDr

Load the contents of r(egister) into the accumulator.
(register A).

r = a 7 bit internal RAM address register

P —» A

Q
R
Mnem. Appearance in Memory
Op Code LDr »0/0/1/0/0|0|e<r-

8 76 54 3 2 1

2 Low Bits Hex
ifr= of OpCode Op Code

P 00 20

Q 0| 1 21

R 110 22

2 1

Cycles 2
Flags None

Other None

71

Byte
1

STr

Store the contents of the accumulator (register A) into
r(egister)

r = an 7 bits internal RAM address register

A —» P
Q
R
Mnem Appearance in Memory Byte
Op Code STr »0/0[1{1]/0/0|<r- 1
8 76 5 4 3 21
2 Low Bits Hex
ifr= of Op Code Op Code
P 0 30
Q 0| 1 31
R 1.0 32
2 1
Cycles 2
Flags None
Other None

1.3. Move data between memory and the accumulator

Move the contents of the accumulator or the address in a register

to/from the address in a register of the accumulator.

LDM

Load the contents of the address in the P register into the ac-
cumulator.

Mnem.

Op Code

Appearance in Memory Op Code Byte

LDM

Cycles 2

Flags

Other

None
None

72

01011001 59 1

87 6 543 21

LDD

Load the contents of the address in the DP register into the

accumulator.

(DP) - A

Mnem.

Appearance in Memory Op Code Byte

Op Code LDD

Cycles 3
Flags None
Other None

STD

01010111

876 543 21

57 1

Store the contents of the accumulator in the address in the DP

register.

A — (DP)

Mnem.
STD

Op Code

Appearance in Memory Op Code Byte

Cycles 2
Flags None
Other None

73

0|10 1/0/0/1]|0

87 6 543 21

52 1

1.4. Move data from one memory address to another

Move the contents of the address in a register to the address in an-
other register.

MVMD

Move the contents of the DP register address to the P register

address.

| (DP) — (P) |

Mnem. Appearance in Memory Op Code Byte
Op Code | MVMD 01010/ 1]0]|1 55 1
87 6 54 3 21
Cycles 3
Flags None

Other None

MVDM

Move the contents of the P register address to the DP register

address.

| (P)— (DP) |

Mnem. Appearance in Memory Op Code Byte
Op Code | MVDM 0/1/0/1/0 011 53 1
87 6 543 21
Cycles 3
Flags None

Other None

74

1.5. Exchange data between two registers

Exchange the data in the accumulator with that in the address in the
DP register or register B.

EXAM

Exchange the contents of the address in register P with the
contents of the accumulator.

Mnem. Appearance in Memory Op Code Byte
Op Code | EXAM 171/0 110 1|1 DB 1
87 6 543 21

Cycles 3
Flags None
Other None

EXAB

Exchange the contents of register B with the contents of the
accumulator.

A—~B
Mnem. Appearance in Memory Op Code Byte
Op Code | EXAB 1110 1/1/0/1]0 DA 1
87 6 543 21
Cycles 5
Flags None

Other None

75

1.6. Block move of data in memory

Move the contents of one or more bytes of memory to another area
of memory.

MVW
MVB

Move the contents of d+1 bytes starting with the address in
the Q register into the d+1 bytes starting with the address in
register P.

d must be stored in register | or J
if d =0, 1 byte will be moved

I —» d
J
REPEAT
(Q) — (P), P+1, Q+1, d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
If MVW 0 0/0/0/1|0|0|0 08 1

876 543 21

Then d = the value stored in register |

Mnem. Appearance in Memory Op Code Byte
If MVB 0 0/0/0/1]0|1]0 0A 1
87 6 543 21

Then d = the value stored in register J

Cycles 5+ 2d
Flags None
Other P and Q registers are incremented

76

MVWD
MVBD

Move the contents of d+1 bytes starting with address in the
DP register into the d+1 bytes starting with the address in the
P register.

d must be stored in register | or J
if d=0, 1 byte will be moved

| —» d
J
REPEAT
(DP) — (P), DP+1, P+1, d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
If MVWD 0/0/0/1/1/0/0|0 18 1

876 543 21

Then d = the value stored in register |

Mnem. Appearance in Memory Op Code Byte
If MVBD 00/0/1/1]0[1/0 1A 1
87 6 543 21

Then d = the value stored in register J

Cycles 5+ 2d
Flags None
Other P and DP registers are incremented

77

1.7. Block exchange of data in memory

Exchange the contents of one or more bytes of memory with the con-
tents of the same number of bytes in another area of memory

EXW
EXB

Exchange the contents of d+1 bytes starting with the address
in the Q register with the contents of the d+1 bytes starting
with the address of the P register.

d must be stored in register | or J
if d=0, 1 byte will be exchanged

I —» d
J
REPEAT
(P) « (Q), P+1, Q+1, d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
If EXW 0/0/{0/0/1/0/0/1 09 1

876 543 21

Then d = the value stored in register |

Mnem. Appearance in Memory Op Code Byte
If EXB 0/0j0/0/1/0|1]1 0B 1
87 6 543 21

Then d = the value stored in register J

Cycles 6 + 3d
Flags None
Other P and Q registers are incremented

78

EXWD
EXBD

Exchange the contents of d+1 bytes starting with address in
the DP register into the d+1 bytes starting with the address in
the P register.

d must be stored in register | or J
if d=0, 1 byte will be moved

| —» d
J
REPEAT
(DP) « (P), DP+1, P+1, d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
If EXWD 0/0/0[1/1/0/0]/1 19 1

876 543 21

Then d = the value stored in register |

Mnem. Appearance in Memory Op Code Byte
If EXBD 000 1/1/0]1]1 1B 1
87 6 543 21

Then d = the value stored in register J

Cycles 7 + 6d
Flags None
Other P and DP registers are incremented

79

1.8. Increment or decrement a register

Add or subtract 1 from the contents of the register specified by the
instruction.

INCP
Add 1 to the contents of register P.

P+1 P
Mnem. Appearance in Memory Op Code Byte
Op Code | INCP 01/01/0/0|0|0 50 1
876 543 21
Cycles 2
Flags None

Other None

DECP

Substrac 1 to the contents of register P.

P-1—->P
Mnem. Appearance in Memory Op Code Byte
Op Code | DECP 01/01/0/0|0]|1 51 1
87 6 54321
Cycles 2
Flags None

Other None

80

INCr

Increment the contents of r(egister) by 1.

| +1 —» |y CZ
J J1
A A1
B B1
K K1
L L1
M M1
N N1
Mnem. Appearance in Memory Byte
Op Code INCr - Sge peIQW e 1
8 76 543 21
Cycles 4
Flags C,Z
Other Contents of Q register change

ifr=
Mnem. Appearance in Memory Op Code
I INCI 0/1/0 0/0|0|0]|0 40
J INCJ 11/0/0 00|00 CO
A INCA 01/00/0/0]|1/0 42
B INCB 1171/00/0/ 010 C2
K INCK 0/1/0 0[1|0]0]|0 48
L INCL 111001000 C8
M INCM 01/00/1/0[1/0 4A
N INCN 111001010 CA
876 543 21

81

DECr

Decrement the contents of r(egister) by 1.

I -1 —» | C Zz
J J1
A A1
B B1
K K1
L L1
M M1
N N1
Mnem. Appearance in Memory Byte
Op Code DECr e Sge pelgw‘f» 1
876 543 21
Cycles 4
Flags C,Z
Other Q register changes
ifr=
Mnem. Appearance in Memory Op Code
I DECI 0/1/00/0/0|0}1 41
J DECJ 111/0/0/0/0 0|1 C1
A DECA 0/1/0 00011 43
B DECB 111/0/0/0/0 1|1 C3
K DECK 01001001 49
L DECL 111/0/0{1/0/0 |1 C9
M DECM ———»0(1/0 0/ 1/0|1]|1 4B
N DECN 111/0/0{1/0 1|1 CB
87 6 54 3 21

82

1.9. Increment or decrement an external memory address register
and move the address from register to DP register

Add or subtract 1 to or from the address register X or Y, move the contents
of X or Y to the DP register.

Ir
Add 1 to the memory address in r(egister) and store the incre-
mented address in the DP register
X —» DP
Y
DP+1 — DP, XY
if r=

Appearance in Memory Op Code Byte
X IX 00/0/0/0|1]|0/0 04 1
87 6 543 21

Appearance in Memory Op Code Byte
Y Y 0o o0/0o/0/0|1]1]0 06 1
87 6 54321

Cycles 6
Flags None
Other Q register changes

83

Dr

Subtract 1 to the memory address in r(egister) and store the
decremented address in the DP register

X —» DP
Y
DP-1 — DP, XY

if r=
Mnem. Appearance in Memory Op Code Byte
X DX 0/0/{0/0/0/1 /01 05 1
87 6 543 21
Mnem. Appearance in Memory Op Code Byte
Y DY 0/0/0/0/0/1 /11 07 1
876 543 21
Cycles 6
Flags None

Other Q register changes

1.10. Increment or decrement register X
and load the contents of the register X address into the accumulator
Add or subtract 1 from or to the address in register X, load the new address

into the DP register and load the contents of new address into the accumulator.

IXL

X —» DP a.Add 1 to the address in register X
DP+1 — DP, X b. Load the incremented address into the DP register.
(DP) - A c. Move the contents of the address in the DP register

into the accumulator

Mnem. Appearance in Memory Op Code Byte
Op Code IXL 0/0{1/0/0/1/0/0 24 1
876 543 21
Cycles 7
Flags none
Other Q register changes

84

DXL

X —» DP a. subtract 1 to the address in register X
DP-1 — DP, X b. Load the decremented address into the DP register.
(DP) —- A c. Move the contents of the address in the DP register

into the accumulator

Mnem. Appearance in Memory Op Code Byte
Op Code DXL 00100101 25 1
87 6 54321

Cycles 7
Flags none
Other Q register changes

1.11. Increment or decrement register Y
and store the contents of the accumulator register into the address in
the Y register
Add or subtract 1 from or to the address in register Y, load the new ad -

dress into the DP register and store the contents of the accumulator into
the new address.

1YS

Y —- DP a. Add 1 to the address in register Y
DP+1 — DP,Y b. Load the incremented address into the DP register.

A — (DP) c. Move the contents of the accumulator into
the DP register address.

Mnem. Appearance in Memory Op Code Byte
Op Code lYS 0/0{1/0/0/1|1/0 26 1
87 6 543 21

Cycles 6
Flags none
Other Q register changes

85

DYS

Y —- DP a. Subtract 1 from the address in register Y
DP-1 — DP,Y b. Load the decremented address into the DP register.

A — (DP) c. Move the contents of the accumulator into
the DP register address.

Mnem. Appearance in Memory Op Code Byte
Op Code DYS 00100111 27 1
87 6 543 21

Cycles 6
Flags none
Other Q register changes

1.12. Fill a block of memory with a single value

Fill either an internal RAM or an external memory block with the

value in the accumulator.

FILM
Store the value in the accumulator into the d+1 bytes of the in-
ternal RAM starting with the address in the P register.
d must be stored in register |
if d=0, one byte will be filled

|l —>d
REPEAT

A — (P), P+1, d-1
UNTIL d = FF

Mnem. Appearance in Memory Op Code Byte
Op Code FILM 0/0/0(1/1/1/1/0 1E 1
87 6 543 21

Cycles 5+d
Flags none
Other P register changes

86

FILD

Store the value in the accumulator into the d+1 bytes of the
external RAM starting with the address in the DP register.
d must be stored in register |

if d=0, one byte will be filled

| - d
REPEAT
A — (DP), DP+1, d-1
UNTIL d = FF
Mnem. Appearance in Memory Op Code Byte
Op Code FILD 000 1/1]1]1]1 1F 1

87 6 543 21
Cycles 4+3d

Flags none
Other DP register changes

87

2. Arithmetic, Logical and Shift Instructions
2.1. Add/Subtract Immediate, Accumulator

Add or subtract the value n to/from the accumulator.

ADIA n

Add the value n to the accumulator

A+n—A CZz
Mnem. Appearance in Memory Op Code Byte
Op Code | ADIA 0/1/1/1/0/1/0/0 74 1
Operand n «—n —» 2
8 76 543 21

Cycles 4

Flags C, Zz

Other none
SBIAn

Subtract the value n from the accumulator

| A-noA C,z
Mnem. Appearance in Memory Op Code Byte
Op Code | SBIA 0O/1{1/1/0/1/0/1 75 1
Operand n - pﬁ 2
87 6 543 21

Cycles 4

Flags C,Zz

Other none

88

2.2. Add/Subtract Immediate, Memory

Add or subtract the value n to/from the register P memory address.

ADIM n

Add the value n to the register P memory address

| P)+n—>(P) CZ

Mnem. Appearance in Memory Op Code Byte
Op Code | ADIM 01/1/1/0/0|0|0 70 1
Operand n - n ——» 2

8 76 543 21

Cycles 4

Flags C, Zz

Other none
SBIM n

Subtract the value n to the register P memory address

| P)-n—(P) CZ

Mnem. Appearance in Memory Op Code Byte
Op Code | SBIM 01/11/0/0|0]|1 71 1
Operand n - n ——» 2

87 6 543 21

Cycles 4
Flags C, Zz
Other none

89

2.3. Byte Binary Addition or Subtraction

Add or subtract the contents of the address in the P register to/from the
accumulator and store the results in the address in the P register.

ADM

Add the contents of the address in the P register to the accu-
mulator and store the results in the address in the P register.

| P)+A—>(P) CZ

Mnem. Appearance in Memory Op Code Byte
Op Code | ADM 01/00/0/1]|0/0 44 1
87 6 54 3 21

Cycles 3

Flags C, Zz

Other none
SBM

Subtract the contents of the address in the P register from the
accumulator and store the results in the address in the P re-
gister.

| (P)-A—>(P) CZ

Mnem. Appearance in Memory Op Code Byte
Op Code SBM 01/00/0[{1]0]1 45 1
87 6 543 21

Cycles 3
Flags C,Zz
Other none

90

2.4. Byte Binary Addition or Subtraction with carry

Add or subtract the contents of the address in the P register to/from the

accumulator with carry, and store the results in the address in the P re-
gister.

ADCM

Add the contents of the address in the P register and the carry

to the accumulator and store the results in the address in the
P register.

| (P)+A+C—>(P) CZ

Mnem. Appearance in Memory Op Code Byte
Op Code | ADCM 171/ 00/0/1/ 00 C4 1

87 6 543 21

Cycles 3

Flags C,Z

Other none
SBCM

Subtract the contents of the address in the P register and the

carry to the accumulator and store the results in the address
in the P register.

| (P)-A-C —(P) C,Z

Mnem. Appearance in Memory Op Code Byte

Op Code | SBCM 171/0 0/0/ 1,01 C5 1
8 76 543 21

Cycles 3
Flags C, Zz
Other none

91

2.5. 2 Byte Binary Addition or Subtraction

Add or subtract the contents of the address in the P register to/from re-

gisters A and B (accumulator and spare register) and store the results in
the address in the P register.

ADB

Add the contents of the address in the P register to register A
and B and store the results in the address in the P register.

| [P+1 ,P]+[BA] —[P+1,P] C,Z
Mnem. Appearance in Memory Op Code Byte
Op Code ADB 0/|0j0 1/0|1]0]0 14 1

876 543 21

Cycles 5

Flags C, Zz

Other P register changes
SBB

Subtract the contents of the address in the P register from re-
gister A and B and store the results in the address in the P re-

gister.
| [P+1,P]-[BA] —[P+1P] C,z
Mnem. Appearance in Memory Op Code Byte
Op Code SBB 00010101 15 1

876 543 21

Cycles 5
Flags C,Z
Other P register changes

92

2.6. 2 Block BCD Addition or Subtraction

Add or subtract d+1 bytes starting with the address in the P register
to/from the accumulator or the address in the Q register

ADN

Add the contents of the accumulator to the block of d+1 bytes

of memory starting with the address in the P register as the
right-most digit.

the contents of | are stored in d

| - d
REPEAT
(P)+A — (P) (BCD),P—-1,d -1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
Op Code ADN 0/0/0j0/1/1|/0/0 0C 1

87 6 543 21

Cycles 7 + 3d

Flags C, Zz
Other P register changes
SBN

subtract the contents of the accumulator from the block of d+1

bytes of memory starting with the address in the P register as
the right-most digit.

the contents of | are stored in d

| - d
REPEAT
(P)-A— (P) (BCD),P-1,d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
Op Code SBN 00001101 0D 1

8 76 543 21

Cycles 7 + 3d
Flags C,Z
Other P register changes

93

ADW

Add the contents of the block of d+1 bytes of memory starting
with the address in the Q register as its right-most (low order)
digit to the d+1 bytes of memory starting with the address in
the P register as the right-most digit.

the contents of | are stored in d

| - d
REPEAT
P)Y+Q—(P) (BCD),P-1, Q-1,d-1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
Op Code | ADW o/0/0j0/1/1|1/0 OE 1

8 76 543 21

Cycles 7 + 3d
Flags C, Zz
Other P & Q register change

SBW

subtract the contents of the block of d+1 bytes of memory
starting with the address in the Q register as its right-most
(low order) digit to the d+1 bytes of memory starting with the
address in the P register as the right-most digit.

the contents of | are stored in d

| - d
REPEAT
(P)-Q—(P) (BCD),P-1, Q-1,d-1
UNTIL d = FF
Mnem. Appearance in Memory Op Code Byte
Op Code | SBW o/0/0j01/1 /11 OF 1

8 76 543 21

Cycles 7 + 3d
Flags C, Zz
Other P & Q register change

94

2.7. Block Shift 4 bits

Shift 4 bits of d+1 bytes starting with the address in the P register 4
bits to the right or left

SRW

Shift d+1 bytes 4 bits (one BCD digit) to the right starting with
the address in the P register

the contents of | are stored in d

| - d
REPEAT
Shift P 4 bits to right, P+ 1, d -1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
Op Code | SRW 00/0/1/1]1]0/0 1C 1

8 76 543 21

Cycles 5+d

Flags none
Other P register changes
SLW

Shift d+1 bytes 4 bits (one BCD digit) to the left starting with
the address in the P register

the contents of | are stored in d

| - d
REPEAT
Shift P 4 bits to left, P—-1, d -1
UNTILd = FF
Mnem. Appearance in Memory Op Code Byte
Op Code SLW 0/0/{0[1/1/1/ 01 1E 1

876 543 21

Cycles 5+d
Flags none
Other P register changes

95

2.8. Logical OR

OR the contents of the accumulator or a memory location with an im-
mediate value, or the contents of an address with the accumulator.

ORIA n

OR the contents of the accumulator with the immediate

value n.

AVn—-A Z
Mnem. Appearance in Memory Op Code Byte
Op Code | ORIA 01100101 65 1
Operand n - p — 2
87 6 543 21
Cycles 4
Flags Z

Other None

ORIM n

OR the contents of the address in the P register with the im-
mediate value n.

P)Vn—> (P) Z

Mnem. Appearance in Memory Op Code Byte
Op Code | ORIM 01/10/0/0|0]|1 61 1
Operand n - n ——» 2

S) M N |
8 76 543 21

Cycles 4
Flags Z
Other None

96

ORID n

OR the contents of the address in the DP register with the im-
mediate value n.

(DP)V n — (DP) Z

Mnem. Appearance in Memory Op Code Byte
Op Code | ORID 171/01/0/1/0/1 D5 1
Operand n - n ——» 2

S) M N |
87 6 543 21

Cycles 6

Flags Z

Other R — 1 used for temporary storage
ORMA

OR the contents of the address in the P register with the con-
tents of the accumulator.

(P)VA—- (P) Z

Mnem. Appearance in Memory Op Code Byte
Op Code | ORMA 01/00/0[1]1]1 47 1
Operand n - n ——» 2

S) M N |
876 543 21

Cycles 3
Flags V4
Other None

97

2.9. Logical AND

AND the contents of the accumulator or a memory location with an im-
mediate value, or the contents of an address with the accumulator.

ANIA n

AND the contents of the accumulator with the immediate

value n.

AANn—A Z
Mnem. Appearance in Memory Op Code Byte
Op Code ANIA 0/1/1/0/0(1/01|0 64 1
Operand n -« p — 2
87 6 54 3 21
Cycles 4
Flags V4

Other None

AMIM n

AND the contents of the address in the P register with the im-
mediate value n.

P)YAn—>(P) Z

Mnem. Appearance in Memory Op Code Byte
Op Code | ANIM 01/10/0/0|0|0 60 1
Operand n -« r‘lﬁ 2
87 6 543 21
Cycles 4
Flags V4

Other None

98

ANID n

AND the contents of the address in the DP register with the
immediate value n.

(DP) A n — (DP) y4

Mnem. Appearance in Memory Op Code Byte
Op Code | ANID 171/0{1/0{1/ 00 D4 1
Operand n - n ——» 2

S) M N |
87 6 543 21

Cycles 6

Flags Z

Other R — 1 used for temporary storage
ANMA

AND the contents of the address in the P register with the
contents of the accumulator.

(P) ANA— (P) z

Mnem. Appearance in Memory Op Code Byte
Op Code | ANMA 01/00/0/1]1/0 46 1
Operand n - n ——» 2

S) M N |
876 543 21

Cycles 3
Flags V4
Other None

99

2.10. Bit Text Immediate

AND the contents of the accumulator or a memory position with the

value n, store the result in the Zero Flag.

TSIA n
AND the contents of the accumulator with the value n and

store the result in the Zero Flag.

AAn Z
Mnem. Appearance in Memory Op Code Byte
Op Code | TSIA 0/1/1/0/0/1/1/0 66 1
Operand n -« r‘lﬁ 2
876 543 21
Cycles 4
Flags V4

Other None

TSIM n
AND the contents of the address in the P register with the

value n and store the result in the Zero Flag.

(P) An z
Mnem. Appearance in Memory Op Code Byte
Op Code | TSIM 01/1/0/0/0[1/0 62 1
Operand n T L —— 2
87 6 543 21
Cycles 4
Flags Z

Other None

100

TSID n

AND the contents of the DP register address with the value n
and store the result in the Zero Flag.

(DP) A n Z
Mnem. Appearance in Memory Op Code Byte
Op Code | TSID 171/0{1/0[11]0 D6 1
Operand n D L —— 2
87 6 543 21
Cycles 6
Flags Z
Other R — 1 used for temporary storage

2.11. Compare Immediate

Compare the accumulator or a memory location with the immediate
value n.
Compare the contents of internal memory with the accumulator.

CPIA N

Compare the accumulator with the immediate value n.

A-n CZz
Mnem. Appearance in Memory Op Code Byte
Op Code | CPIA 01100111 67 1
Operand n - n ——» 2

87 6 543 21

Cycles 4

Flags A<n CcC=1 Z =0
A= C=0 Z =1
A>n C=0 Z =0

Other None

101

CPIM n

Compare the contents of the address in the P register with the

value n.
| (P)-n C,z
Mnem. Appearance in Memory Op Code Byte
Op Code | CPIM 0/1{1/0/ 0/ 011 63 1
Operand n «—n ——» 2
8 76 543 21
Cycles 4
Flags (P)<n C=1 Z =0
(P)=n C=0 Z =1
(P)>n C=0 Z =0

Other None

CPMA n

Compare the contents of the address in the P register with the
accumulator.

| (P)-A C,Zz
Mnem. Appearance in Memory Op Code Byte
Op Code | CPMA 11/0/0{0/1]11 C7 1

876 543 21

Cycles 3

Flags (P)<A C=1 Z =0
(P)=A C=0 Z =1
(P)>A C=0 Z =0

Other None

102

SWAP

Exchange the contents of the 4 right-most bits of accumulator
with the contents of the 4 left-most bits.

A1_4 & As_g CZ
Mnem. Appearance in Memory Op Code Byte
Op Code | SWAP 01/01/1/0/0/0 58 1

876 543 21

Cycles 2
Flags None
Other None

2.12. Shift Bits of a Byte
Shift the 8 bits of a byte 1 bit position to the right or left.

SR

Shift the 8 bits of a byte 1 bit position to the right. The original

LSB goes to the Carry Flag, original contents of the Carry Flag
goes to the byte's MSB.

A C
MSB LSB
A |
Mnem. Appearance in Memory Op Code Byte
Op Code SR 171/0{1/0/0 1|0 D2 1
87 6 543 21
Cycles 2
Flags C

Other None

103

SL

Shift the 8 bits of a byte 1 bit position to the left. The original

LSB goes to the Carry Flag, original contents of the Carry Flag
goes to the byte's MSB.

A C

MSB LSB

As - A | <-—

| A

Mnem. Appearance in Memory Op Code Byte
Op Code SL 0/1/0/1/1/0|1]0 5A 1
876 543 21

Cycles 2
Flags C

Other None

2.13. Set or Reset The Carry Flag

Set he Carry Flag to either 0 or 1

SC
store a 1 in the Carry Flag. Note that Zero Flag is set.
1->C
127
Mnem. Appearance in Memory Op Code Byte
Op Code SC 171/0{1/0/0 00 DO 1
87 6 543 21
Cycles 2

Flags C,Zissetto1
Other None

104

RC

store a 0 in the Carry Flag. Note that Zero Flag is set.

0-C
17
Mnem. Appearance in Memory Op Code Byte
Op Code RC 171/01/0/0/0|1 D1 1
8 76 543 21
Cycles 2
Flags Cissetto0
Zis setto 1

Other None

105

3. Jump Instructions

Jump n bytes from the address of the Op Code in the plus or minus
direction based on the stated conditions.

3.1. Jump Relative

JRcP n

Jump
direct

n bytes from the address of the Op Code in the P(lus)
ion based on the stated conditions.

¢ = condition (see below)

IF condition = true THENPC+n+1—- PC
IF condition = false THEN PC + 2 — PC
Mnem. Appearance in Memory Byte
Op Code | JRcP - see below —» 1
Operand n - n ———» 2

87 6 543 21

ifc=
Mnem. Appearance in Memory Op Code

Z=1 JRZP 00(11/1]0[0/0 38

Z=0 JRNZP 00(1/0/1]0[00 28

C =1 JRCP o/0j1/1/1/0[1/0 3A

C=0 JRNCP 00(1/01]0[1/0 2A
unconditional JRP 0/0/1/0/1/1]0|0 2C

87 6 543 21

Cycles 7 if condition is met

Flags
Other

4 if condition is not met
None

None

106

JRcM n

Jump n bytes from the address of the Op Code in the M(inus)
direction based on the stated conditions.

¢ = condition (see below)

IF condition = true THENPC+1-n —» PC
IF condition = false THEN PC + 2 — PC
Mnem. Appearance in Memory Byte
Op Code | JRcM - see below —» 1
Operand n - n ——» 2

) EO S|
87 6 543 21

ifc=
Mnem. Appearance in Memory Op Code

Z=1 JRZM 00111001 39

Z=0 JRNZM 00101001 29

C =1 JRCM 0O/0{1/1/1/0/1/1 3B

C=0 JRNCM 0O/0{1/0/1/0/1/1 2B
unconditional | JRM o0/0j101/1]0}|1 2D

8 76 543 21

Cycles 7 if condition is met
4 if condition is not met
Flags None

Other None

107

3.2. Jump Absolute

Jump to the absolute address nm based on the stated condition.

JPc

¢ = condition (see below)

IF condition = true THEN n — PCH m — PCL
IF condition = false THEN PC + 3 — PC
Mnem Appearence in Memory Byte
Op Code JPc »<— see below —» 1
Operand n > n——» 2
Operand m > < m ——» 3
8‘7‘6‘5‘4‘3‘2‘1
if c =
Mnem. Appearance in Memory Op Code
Z=1 JPZ o1{1/1/1/1/1/0 7E
Z=0 JPNZ o/0{1/1/1/1/0/0 7C
C =1 JPC o1{1/111 11 7F
C=0 JPNC oO/1{1/0/1/1,0/1 7D
unconditional JP 01101001 79
8 76 543 21
Cycles 6
Flags None
Other None

108

3.3. CASE1 CASE2 This is a conditional branching instruction
which compares the contents of register A with data following

CASE2 and jump to a subroutine.

CASE1 CASE2

The memory configuration is shown below.

CASE1 (Op Code)

¢ Number of branches d
n
} Return address
m
CASE2 (Op Code)

ro

no Subroutine jump address
mo } when A =ro

r1

N1 } Subroutine jump address
mi when A = r1

rd-1

Nd-1 Subroutine jump address
My-1 } when A = rg-1

Nd Subroutine jump address
Mq } when A# r1..rd-1
Subroutine return address

\J
Address significance

ro to rd-1 : Data compared with the contents of register A (1byte)

109

Mnem. Appearance in Memory Op Code Byte

Op Code | CASE1 o1/11/1/0[1/0 7A 1
CASE2 0/1/1/0/1/0/0/1 69 2
876 543 21

Cycles 8 (CASE1), 5 + 7d (CASE2)
Flags None

Other None
Total bytes 4 + 3d

110

4. Other Instructions

PUSH

Put the contents of the accumulator onto the stack.

R-1-R
A — (R)
Mnem. Appearance in Memory Op Code Byte
Op Code | PUSH 0/0{1/1/0/1/0/0 34 1
876 543 21

Cycles 3
Flags None
Other Register R is decremented

POP

Pop the contents of the top of the stack into the accumulator.

(R)—A
R+1 - (R)
Mnem. Appearance in Memory Op Code Byte
Op Code POP 0/1/0(1/1/0/1/1 5B 1
87 6 543 21

Cycles 2
Flags None
Other Register R is incremented

111

LOOP n

Decrement the top of the stack. If the Carry Flag equals 1, then
execute the next instruction. If the Carry Flag equals 0, then
make a relative jump from the address of the LOOP opcode to
the address (PC+1+n). Note: One stack space is used for cal-
culation.

(R)-1—-R
IFC=0 THEN PC+1-n— PC
IFC=1 THEN PC+2 — PC

Mnem. Appearance in Memory Op Code Byte
Op Code | LOOP o/0{1/0/1/1/1/1 2F 1
Operand n - n ——» 2

S) M N |
87 6 543 21

Cycles 10 ifC=0
Flags 7 ifC =1
C,Zz
Other 1 stack space is used for calculation

LEAVE

Zero to top of stack.
Store a zero to the top of the stack.

| 0—(R) |
Mnem. Appearance in Memory Op Code Byte
Op Code | LEAVE 171/0{1/1/0 010 D8 1
87 6 543 21
Cycles 2
Flags None

Other None

112

CAL In

Call subroutine. Store the address in the PC+2, the next com-
mand after the call on the stack. Jump to the absolute address
In, an address in the first 8k bytes of memory (00001FFF).

PC+2—->(R-1,R-2)
R-2—->R
000¢ — PCH
n— PCL
Mnem. Appearance in Memory Op Code Byte
Op Code | CAL ¢ 111/ 1/e«— ¢ —» EOQ+¢ 1
Operand n «—n —— 2
876 543 21
Cycles 7
Flags None

Other None

CALL nm

Call subroutine. Store the address in the PC+2, the next com-
mand after the call on the stack. Jump to the absolute address
n, anywhere in the 64k bytes.

PC+3—->(R-1,R-2)
R-2—->R
n — PCH
m — PCL
Mnem Appearence in Memory Op Code Byte
Op Code | CALL »0 1111000 78 1
Operand n > -n— 2
m > m ——» 3
| | | | | | |
8 76 54 3 21
Cycles 8
Flags None

Other None

113

RTN

Return from subroutine.
Pop the address on the stack into the PC.

(R) —» PCL

(R+1)— PCH

R+2—- R

Mnem. Appearance in Memory Op Code Byte
Op Code RTN 001 1/ 0/1]1]1 37 1
8 76 543 21

Cycles 4
Flags None

Other None

NOPW

No operation, 2 cycles.

Mnem. Appearance in Memory Op Code Byte
Op Code | NOPW 01001101 4D 1
87 6 543 21

Cycles 2
Flags None

Other None

114

NOPT

No operation, 3 cycles.

Mnem. Appearance in Memory Op Code Byte
Op Code | NOPT 171/0/0/1]1 /1|0 CE 1
87 6 54321

Cycles 3
Flags None

Other None

WAIT n

No operation, 6 + n cycles.

Mnem Appearence in Memory Op Code Byte

Op Code | WAIT »0/1/0[{0 1]1]1]0 4E 1

Operand | n gD . 2
8 76 54 3 21

Cycles 6+n
Flags None

Other None

115

(5F)

OouTC

Write the contents of the internal RAM address 5F to the con-
trol port. Bit 1 controls the LCD display. (0=DISPLAY OFF,
1=DISPLAY ON). Note: it is important to preserve the rest of
the byte when altering bit 1.

‘ (5F) — control port ‘

Mnem. Appearance in Memory Op Code Byte

Op Code | OUTC 111/0 1111, 1}1 DF 1

876 543 21

Cycles 2
Flags None

Other None

BZs | BZ2 | BZ1+ | OFF HLT | CL | DIS

1 DISPLAY ON
0 DISPLAY OFF
LT COUNTER RESET
L CLOCK STOP
L POWER OFF
T CONTROL BIT OF Xout AND Xin (see below)

BZs BZ: Bz Xout Xin
0 0 0 LOW Not Active
0 0 1 HIGH Not Active
0 1 0 2kHz Not Active
0 1 1 4kHz Not Active
1 0 0 LOW Active
1 0 1 HIGH Active
1 1 X Xin — Xout Active

116

OUTA
Each bit of (6C) appears to the IA port.

‘ (5C) — IA port

Mnem. Appearance in Memory Op Code Byte
Op Code | OUTA 01011101 5D 1
87 6 543 21

Cycles 3
Flags None

Other None

(5C)
8 7 6 5 4 3 2 1
\2 \2
IA8 A1
ouTB
Each bit of (6D) appears to the IB port.
‘ (5D) — IB port
Mnem. Appearance in Memory Op Code Byte
Op Code | OUTB 111/0 111,01 DD 1
8 76 543 21
Cycles 2
Flags None
Other None
(5C)
8 7 6 5 4 3 2 1
\2 \2
IB8 IB1

117

OUTF
Each bit of (5E) appears to the FO port.

| (5E) — FO port

Mnem. Appearance in Memory Op Code Byte
Op Code | OUTF 01011111 5F 1
87 6 543 21

Cycles 3
Flags None

Other None

(5E)
8 7 6 5 4 3 2 1
2 \2
FO5 FO1
INA
To make IA port input terminal, set the corresponding bit(s) of
RAM (5C) "0" and then execute OUTA command.
‘ IA port — A (Accumulator) ‘
Mnem. Appearance in Memory Op Code Byte
Op Code | INA 0/1/00/1/1/00| 4C 1

8 76 543 21

Cycles 2
Flags V4

Other None

118

INB

To make IB port input terminal, set the corresponding bit(s) of
RAM (5D) "0" and then execute OUTB command.

‘ IB port — A (Accumulator) ‘

Mnem. Appearance in Memory Op Code Byte
Op Code INB 1110 0/1/1/00 CcC 1
8 76 543 21
Cycles 2
Flags Z

Other None

TEST n
n SET the bit of the operand which is required to test.

| n—TEST
Mnem. Appearance in Memory Op Code Byte
Op Code | TEST 0/1/1]0{1]0]1]|1 6B 2
Operand n X K
n on
8 76 543 21
Cycles 4
Flags None

Other None

ex)

TEST

80 Judge the input level of Xin
IF Xin =1 Z=0
IF Xin=20 Z=1

TEST

08 Judge the input level of Kon
IF Kon =1 Z=0
IF Kon=20 Z=1

TEST 2 msec Counter test

02

TEST Approx. 0.5 sec Counter test

01

119

CuP

This instruction test the input status of XI. Register | contains
the number of tests to be perform. If X| goes high during a test,
execution of the instruction is terminated.

| —»d
REPEAT
P+1,d-1
UNTIL
d=FF ORXI =1
Mnem. Appearance in Memory Op Code Byte
Op Code CupP 01001111 4F 1

876 543 21

Cycles 1+ 4d
Flags V4

Other P register changes

120

CDN

This instruction test the input status of XI. Register | contains
the number of tests to be perform. If XI goes low during a test,
execution of the instruction is terminated.

| —>d
REPEAT
P+1,d-1
UNTIL
d=FFORXI=0
Mnem. Appearance in Memory Op Code Byte
Op Code CDN 01101111 6F 1

876 543 21

Cycles 1+ 4d
Flags V4

Other P register changes

121

APPENDIXES

Specifications

Since this unit employs CMOS parts, input voltage to the input terminal can-
not exceed the allowable range (SG-VC). Specifications for serial interface in-
put (RD, CS, and CD) and output terminals (SD, RS. RR. and ER) are shown

below.
Item Condition Specification
MIN. | MAX.
Input high level voltage Vi 1.3V
Input low level voltage Vi 1.0V
Output high level voltage Vo lo =-400uA 2.4V
Output low level voltage VoL lo=2mA 0.4v

Temperature range: 0 to 40°C
Power: Vc = 4. 5V

124

OP Codes in Alphabetic order

Mnemonic Function Bytes Cycles Hex. op. code
ADB [P+1,P]+[BA] — [P+ 1,P] 1 5 14
ADCM (P)+A+C —(P) 1 3 C4
ADIA N A+n—A 2 4 74
ADIM n (P)+n— (P) 2 4 70
ADM (P)+A— (P) 1 3 44
ADN (P)+A— (P) (BCD) 1 7+3d 0oC
ADW (P) + (Q) — (P) (BCD) 1 7+3d OE
ANIA AAn—A 2 4 64
ANID (DP) A n — (DP) 2 6 D4
ANIM n (P) An—(P) 2 4 60
ANMA (P) AA—(P) 1 3 46
on RO 2 1 e
CALLam | (FCx3I > (R-T.R2) 3 8 78
CPIAN A-n CZ 2 4 67
CPIM n (P)-n C,Z 2 4 63
CPMA (P)-AC,Z 1 3 c7
DECA A-1-A 1 4 43
DECB B-1—-B 1 4 C3
DECI -1 -1 1 4 41
DECJ J-1-J 1 4 C1
DECK K-1-K 1 4 49
DECL L-1—-L 1 4 C9
DECM M-—1—->M 1 4 4B
DECN N-1—N 1 4 CB
DECP P-1-P 1 2 51
DX X-1—-X,X—DP 1 6 05
DXL X-1—-X,X— DP, (DP) — A 1 7 25
DY Y-1-Y,Y—>DP 1 6 07
DYS Y-1-Y,Y—DP, A— (DP) 1 6 27
EXAB A-B 1 3 DA
EXAM A~ (P) 1 3 DB
EXB (P) < (Q) 1 6+3d 0B
EXBD (P) « (DP) 1 7 +6d 1B
EXW (P) < (Q) 1 6 + 3d 09
EXWD (P) « (DP) 1 7 +6d 19
FILD A— (DP),DP +1 — DP 1 4+3d 1F

125

Mnemonic Function Bytes Cycles Hex. op. code

FILM A— (P),P+1 P 1 5+d 1E

INA IA port — A 1 2 4C

INB IB port — A 1 2 cc

INCA A+1— A 1 4 42

INCB B+1— B 1 4 c2

INCI 1+1— | 1 4 40

INCJ J+1—J 1 4 Cco

INCK K+1—K 1 4 48

INCL L+1—L 1 4 c8

INCM M+1—M 1 4 4A

INCN N+1—N 1 4 CA

INCP P+1—P 1 2 50

Iy Y+1-Y, Y-DP 1 6 06
Y+1->Y,Y—-DP

IYS A—> (DP) 1 6 26
X+1-> X

IX . op 1 6 04
X+1—-> X, X—DP

IXL (DP) — A 1 7 24

JP nm n— PCh,m— PCL 3 6 79
IFC=1THEN n— PCh, m— PCL

JPC nm IF C=0THEN PC +3 — PC 3 © "
IFC=0THEN n— PCH, m— PCL

JPNCAM e c = 1 THEN PC+3 — PC 3 6 70
IFZ=0THEN n— PCh, m— PCL

JPNZnm e 7= 1 THEN PC +3 — PC 3 6 c
IFZ=1THEN n— PCh, m — PCL

JPz nm IFZ=0THEN PC+3 — PC 3 6 7E
IF C =1 THEN PC + 1—-n — PC

JREMn e c o THENPC +2 - PC 2 7ia 3B
IFC=1THENPC+1+n— PC

JRCP IF C=0THEN PC +2 — PC 2 74 3A

JRM n PC+1-n—PC 2 7 2D
IF C=0THEN PC +1-n — PC

JRNCMN e c = 1 THENPC +2 - PC 2 74 2B
IFC=0THENPC+1+n — PC

JRNCPN e c= 1 THENPC +2 - PC 2 74 2A
IFZ=0THENPC +1-n— PC

JRNZMn ez = 1 THEN PC + 2 - PC 2 7ia 29

JRNzPn | IFZ=0THENPC+1+n—PC) - 08

IFZ=1THENPC +2 — PC

126

Mnemonic Function Bytes Cycles Hex. op. code
JRP n PC+1+n—PC 2 7 2C
mann | EZZITENEGT S P 2 m | w
JRZPN O THEN PG +2 5 PC 2 38
LEAVE 0— (R) 1 2 D8
LDD (DP) — A 1 3 57
LDM (P)—A 1 2 59
LDP P—A 1 2 20
LDQ Q—-A 1 2 21
LDR R—-A 1 2 22
LIAn n—A 2 4 02
LIBn n—B 2 4 03
LIDL n n — DPL 2 5 11
LIDP nm n — DPH, m — DPL 3 8 10
Ll n n—l 2 4 00
LI n n—J 2 4 01
LIP n n—P 2 4 12
LIQn n—Q 2 4 13
(R)-1—-(R)
LOOP IFC=0THENPC+1-n—PC 2 10/7 2F
IFC=1THENPC +2 — PC

LP/¢ (—p 1 2 80+¢
MVB Q) — (P) 1 5+2d 0A
MVBD (DP) — (P) 1 5+4d 1A
MVDM (P) — (DP) 1 3 53
MVMD (DP) — (P) 1 3 55
MVW Q) — (P) 1 5+2d 08
MVWD (DP) — (P) 1 5+4d 18
NOPT NOP 1 3 CE
NOPW NOP 1 2 4D
ORIA N AVn—A 2 4 65
ORID n (DP) V n — (DP) 2 6 D5
ORIM n (P)Vn—(P) 2 4 61
ORMA (P)VA— (P) 1 3 47
OUTA (5C) — IA port 1 3 5D
ouTB (5D) — IB port 1 2 DD
OUTF (5E) — FO port 1 3 5F

127

Mnemonic Function Bytes Cycles Hex. op. code
OuTC (5F) — CONTROL 1 2 DF
POP (R)y-A R+1—>R 1 2 5B
PUSH (DO) R-1—-R A—(R) 1 3 34
RC 0-C 1> Z 1 2 D1
(R) — PCL
RTN (R+1)—PC 1 4 37
R+2—>R
SBB [P+1,P]-[BA]—[P+1,P] 1 5 15
SBCM (P)-A-C — (P) 1 3 C5
SBIAN A-n—-A 2 4 75
SBIM n (P)—n— (P) 2 4 71
SBM (P)-A—P) 1 3 45
SBN (P)—A— (P) (BCD) 1 7+3d 0D
SBW (P)-(Q) — (P) (BCD) 1 7+3d OF
SC 1-C,1-Z 1 2 DO
SL 1 bit shift left 1 2 5A
SLW 4 bit shift left 1 5+d 1D
SR 1 bit shift right 1 2 D2
SRW 4 bit shift right 1 5+d 1C
STD A — (DP) 1 2 52
STP A—P 1 2 30
STQ A—-Q 1 2 31
STR A—R 1 2 32
SWP A1-A4 — A5 - A8 1 2 58
TESTn n — TEST 2 4 6B
TSIAN AAn Z 2 4 66
TSIDn (DP) AN Z 2 6 D6
TSIM n (P)An Z 2 4 62
WAIT n NOP 2 6+n 4E
CUP Test to see if Xl is high 1 1+4d 4F
CDN Test to see if Xl is low 1 1+4d 6f
gﬁ:g; Conditional branching 4 + 3d 5 +87d ;’g

128

01N0 wuodr | NGO | 4100 | dno ugool| aud | mes | 4
1dON wu zdr U LIV wid | mav | 3
81no WU ONIP VINO | MJON UNEF | MIS | NES a
ani WU ZNdr NI uddr | m¥s | Nav | 9D
Wvx3 | NO3a ulS3L | dod | WO3a |uWOMr [UWONWr| agx3 | ax3 a
avx3a | NONI L 35V0 1S | WONI | UdOdr |udONMM| QSAN | AW | W
103a wudr | z3SVO | WA1 | O3 |UWZMM UWZNMM| aMX3 | MX3 | 6
IAvaT | ONI WU TIv0 dVMS | MONI | UdZdr [UdZNYr| OMAN | MAN | 8
ualdd | VD UVIdO | Qa1 | VWMO | NI | SAQ AQ L
ul ol uaisL | visL UVISL | ava¥ | VANY SAl Al 9
uao | NOSS d UVIgS | UVIIO | OWAW | W8S | viva = xa | 88s | xd g
UaINY | Woav uviay | UVINV |Wav3¥ | wav | Hsnd | X1 | 8av | X y
LEm | 803a UWIdO | WOAW | vO3a uonn | uan | €
¥S | 8ONI UNISL | QLS | VONI | ¥ls | ¥a1 | udn | uvl | ¢
od | roaa UNIgS | UNIMO | d03a | 1030 | ois | oal | ulan | urn)
os | roni UNIOY | UWINY | dONI | IONI | dIS | da@1 |wudar| uirn 0
3 a 6) 8 L 9 g v £ z ! 0 ot

apo)H aulyosep

aNZNI93g ~ LNdNI [H0S¥NO | 310sN00 | WIN | N1V o) & / 4
$N3dO | INIMd | STO | avOT Id SOV ~ v N < 3
IX3L | 3SNVd | IMOd | IAVS |$SADINI| NSV { [N = B jSfe) a

_t olsvd | viva | 11vO | 3SOT0 |$1HOIY| SIWa _ \ L > , o]

LU |13s3yd| avad | WA | N3dO | $1431 | ©3a }] A : + 2|
8 13Sd | dOLS | ONISN ~ $AIN | NOS z Z r . v
[INIOd | 1X3N | dv310 ~ $d1S | sav A A _ 6 (6
v 3ANIT | AN3 | 440YL | 39¥3N| $8HO | INI X X H 8) 8
¢ | INRMdOD| NIY | NOYLl |@VOT1D | M33d | NVL M M) L _ L
A (¥osunoo| 137 | 0109 3IAVSO | N3I1 | SOD A A 4 9 2 9
v NIVHO | ¥0d4 | 1lIVM | LSIT1 | VA NIS n N 3 g % S
3dolsad | 4l d33g | 1SIT | OSV | dOS } 1 a 14 $ 14
N¥N13¥| NO | @vdD | SSvd | ION | dx3 s S 0 € # €
INIMdT| NIHL | NvIavd | INOD | ¥O 907 1 S| g 4 " 4
av3yyv | d31S [33¥93a| MAN | ANV NT b 0 v X [I
ansSoo| OL |woanvd | NNY | aNy ~ d d © 0 30VvdS TINN 0
4 3 a) g v 6 L S v € 4 0 St

S

aolisvgd jo uoljejuasaiday jeuiajuj

Memory Map (I)

6COOH ~ 6CFFH

Most significant

Least significant 0 2 4 6 8 A
0
2
4 z| x|v|T|R[P|N]|L
6| BasiC
program
8| area
A
c y(w|u|s|a|o|m]|K
E

6D0O0H ~ 6DFFH

Most significant

Least significant 0 2 4 6 8 A

0

2

4

5 Print buffer for display

8

A Buffer for SI10

(o}

E

S10: Serial Interface

131

6FO0H ~ 6FFFH

High nibble
Low nibble 0 2 4 6 8 A C E

®» B M O

System memory Reserved area

0O » o

m

6EOOH ~ 6EFFH

High nibble
Low nibble 0 2 4 6 8 A o E

M

iyl

FOR-NEXT stack String buffer Input buffer

0O P ® O A

m

132

7000H ~ 70BFH

High nibble
Low nibble 0 2 4 6 8 A
Ta (21)
y GOSUB
2 2 stack
3
=]
4 &
E
2 >
6 Display buffer < 5]
:
8
£
- | &
pl w
A \% g | &
(3-30) (4-30) E
C
N N 5
{1:30) (2-30) z
c
Bl oen b) (@) <
v v
7200H ~ 72BFH
High nibble
Low nibble 0 2 4 8 A
0[(1-31) (2-31)
/
2 Manual USING
display display
4 buffer buffer
Display buffer
6
8
58
A 7 N7 £3 /1
(3-60) (4-60) 3¢ /
(=]
& \ \ £
(1-60) (2-60) o8
E| V (3:30) } / (4:30) c >
% V

133

7400H ~ 74BFH

High nibble
Low nibble 0 2 4 6 8 A
0[{1-61) (2-61)
1 1 A A
2 * .
Print buffer| Function
stack
4 ’
Display buffer
6
8
e
A y y g
(3-90) (4-90) £
(1-90) (2-90) “
. 4-61 >
gl | @61 |, |, @en | &
2 y
7600H ~ 76BFH
High nibble
Low nibble 0 2 4 8 A
Of¢1-9m) (2-91)
2
4
Display buffer
6 Data Stack
8
A 4
{3-120) {4-120)
c Vv W
(1-120) (2-120)
E (3-91) (4-91)
l L

134

7800H ~ 78BFH

High nibble
Low nibble 0 2 4 6 8 A
0l(1-121) (2:121)
1 4

2
4 System memory
6 Display buffer
8 J/
A v

(3-150) (4-150)
C WV (SYM1) (SYM2)

(1-150) (2-150)
E (3-121) |, (4-121) |,
b b

* Ato Z (6C30H to 6CFFH) are numerical variables, but they use the same area as charac-
ter variables A$ to Z$.

* Part of the SIO buffer (6DOOH to 6DFFH) is used as a print buffer for display.

* Refer to memory map (II) for information on system memory.

» The answer buffer is used as temporary storage for computation results.

* Answer memory stores the last answer.

135

Notes on the display buffer

i) Numbers in parentheses, such as (1:31) in the display buffer diagram, indicate the
display position on the screen.

Vertical position in units of 8 dots * Horizontal dot position

y(=1to4) X (=1to 150)
X
Y 1 3 . > 149150
1 8 dots ot e I

AN E

Liquid crystal display screen

The shaded portion is (1-2). This becomes address 7001H in
the display buffer. The bit correspondence between each dot
\and the display buffer is shown below.

Dot on the display screen

[w[~[o]o]]w]s]-]

716l5l4]|3|2|1]|0| Bits in the display buffer

Most significant Least significant

ii) (SYM1) at address 783CH in the display buffer indicates the symbolic contents of
the left side of the display screen.

Bit 7 6 5 4 3 2 1 0
[¢)]
()] 0 pu)
783CH = v c > T
— @) pd M 3

(SYM2) at address 787CH is not displayed, but it indicates the angle mode.
Bit 7 6 5 4 3 2 1

o

787CH

avdo
NVIAYHO
334930

136

Memory Map (ll)

(1) System Memory detail

MS
LS

6FXXH
GRAPHIC
CURSOR
POINTER X,
GRAPHIC
TTgl);T_ CURSOR
POINTER Xy
Top DATA CURSOR
ToPH POINTER L POINTER YL
oL DATA CURSOR
END L POINTER H POINTER Vi
TEXT
END H
MERGE BLINK
TEXT TOP L CHARACTER
MERGE
TEXT TOP H
VARIABLE
POINTER L
VARIABLE INPUT BUF-
POINTER H FER CURS-
OR POINTER
USING
FIF
INPUT USING
BUFFER "
POINTER
FOR USING
POINTER m
EXCLUSIVE | GOSUB USING P'(?)i\lfcl;)ﬁs
TEXTTOPL | POINTER & A
EXCLUSIVE | DATA STACK P%iYIG?'hJS
e POINTER POINTER X
FUNCTION PREVIOUS
STACK ORIGIN
POINTER POINTER YL
STRING PREVIOUS
BUFFER ORIGIN
POINTER POINTER Y

137

70BXH

AUTO POWER
OFF
COUNTER L

AUTO POWER
OFF
COUNTER M

AUTO POWER
OFF
COUNTERH

WAIT
COUNTER L

WAIT
COUNTER H

138

749XH

PREVIOUS
OoLD
ADDRESS L

PREVIOUS
OLD
ADDRESS H

BREAK
ADDRESS L

BREAK
ADDRESS H

ERROR
ADDRESS L

ERROR
ADDRESS H

MS
LS

78XXH

8 B
DISPLAY
POINTER Y
DISPLAY
POINTER X EOT CODE
BAUD RATE
SIO
CONDITION
F/F
CONSOLE
VALUE
CURSOR
POINTER X
CURSOR
POINTER Y
BLINK
CURSOR L
BLINK
CURSORH

139

(2) Detail of System Memory in CPU

10H-3FH
MS
ey 1 2 3
0
2
XREG ZREG
4 ERL
6
8 CURRENT
TOPL
CURRENT
TOP H
A SEARCH
ADDRESS L
SEARCH
ADDRESS H
YREG WREG
SEARCH
C LINE L
SEARCH
LINE H
E CURRENT
LINE L
CURRENT
LINE H

140

Address
6F01H
6F02H
6F03H
6F04H
6F05H
6F06H
6F1CH
6F1DH
6F2AH
6F2DH
6F2EH
78B1H
78B2H
78B3H
78B4H
(10H - 17H)
(18H - 1FH)
(20H - 27H)
(28H - 2FH)
6F40H
6F41H
6F42H
6F43H
788BH
788CH
6F5CH
6F5DH
6F5EH
6F5FH
6F38H
7880H
7881H
70B4H
70B3H
6F36H
788CH

Name
TEXT TOP L
TEXT TOP H
TEXTEND L
TEXTENDH
MERGE TEXT TOP L
MERGE TEXT TOP H
EXECUTIVE TEXT TOP L
EXECUTIVE TEXT TOP H
INPUT BUFFER POINTER
DATA STACK POINTER
FUNCTION STACK POINTER
EOT CODE
BAUD RATE
SIO CONDITION F/F
CONSOLE VALUE
XREG
YREG
ZREG
WREG
GRAPHIC CURSOR POINTER XL
GRAPHIC CURSOR POINTER XH
GRPAHIC CURSOR POINTER YL
GRAPHIC CURSOR POINTER YH
CURSOR POINTER X
CURSOR POINTER Y
PREVIOUS ORIGIN POINTER XL
PREVIOUS ORIGIN POINTER XH
PREVIOUS ORIGIN POINTER YL
PREVIOUS ORIGIN POINTER YH
INPUT BUFFER CURSOR POINTER
DISPLAY POINTER Y
DISPLAY POINTER X
WAIT COUNTER H
WAIT COUNTER L
BLINK CHARACTER
BLINK CURSOR H

141

Contents
Beginning of BASIC program

End of BASIC program

Beginning of the program block last
merged

Beginning of the program currently be-
ing executed.

Input buffer pointer

Data stack pointer

Function stack pointer

EOT code (SIO)

Baud rate (SIO)

Interface condition F/F (SIO)

Console value (SI10)

Operation register

Graphic cursor pointer
XLH: horizontal

YLH: vertical

(- 32768 to 32767)

Cursor pointer
(X:0t023,Y:0to 3)

End point coordinates of the LINE
instruction previously executed.
(- 32768 to 32767)

Cursor pointer in the input buffer.

Pointer indicating display position
(X:0t023,Y:0to 3)

Wait counters

Character code of blinking character
Position of blinking cursor (address in

788DH BLINK CURSOR L display buffer)
6F2BH FOR POINTER Stack pointer of FOR-NEXT
6F2CH GOSUB POINTER GOSUB pointer
6F2FH STRING BUFFER POINTER String buffer pointer
6F39H USING F/F USING format (whether decimal points
or commas are used)
6F3AH USING M Integer part of USING
6F3CH USING & USING for character string
6F3BH USING m USING decimal point
6F08H VARIABLE POINTER H . .
Variable pointers
6FO07H VARIABLE POINTER L
(34H) ERL Error number when an error occurred
(3FH) CURRENT LINE H _
Current line number
(BEH) CURRENT LINE L
(38H) CURRENT TOP H Beginning of the program containing the
(39H) CURRENT TOP L current line
7499H PREVIOUS OLD ADDRESS H .)
Address of the previous line
7498H PREVIOUS OLD ADDRESS L
(3BH) SEARCH ADDRESS H) _
Address of the line found in a search
(3AH) SEARCH ADDRESS L
(3DH) SEARCH UNE H _
Line number found after search
(3CH) SEARCH UNE L
749BH BREAK ADDRESS H
Break address
749AH BREAK ADDRESS L
749DH ERROR ADDRESS H
Error addresses
749CH ERROR ADDRESS L
6F23H DATA POINTER H _
Data text pointers
6F22H DATA POINTER L
70B2H AUTO POWER OFF COUNTER H
70B1H AUTO POWER OFF COUNTER M Auto power off counters
70BOH AUTO POWER OFF COUNTER L

Addresses enclosed in parentheses are within the CPU.

142

System Subroutines

The following subroutines can be used when a program is written in machine language.
The entry address of a subroutine may be different for different ROM versions.
The ROM version can be determined by checking the contents of address FFFOH.

Version 0 | Contents of FFFOH is CEH (= 206)
Version 1 | Contents of FFFOH is O03H

The entry addresses for Version 1 are used in this manual. The entry addresses for Version
0 are indicated by brackets. When Version 0 is not mentioned, and the address is not en-
closed in brackets, the same entry number can be used for both versions.

(1) Operation subroutines

(1) Entry preparation

Numbers must be stored in decimal format in operation registers X (10H to 17H) and Y
(I8H to 1FH) the case of a single variable function, use operation register X only.

Operation register format

123 00 20 12 30 00 00 00 00 | »1.23x102

0.0123 | 99 80 12 30 00 00 00 00 | - 1.23x10-2

-123 00 28 12 30 00 00 00 00 | »-1.23x102

0/0/1/0/1/0/0]|O0

L Negative flag

143

(2) Entry addresses

Operation Version 0 | Version 1
o Addition Y+ X=X 8962H 8AB8H
§ £ Subtraction Y-X X 8979H 8ACFH
§ % | Multiplication Y*X->X 8983H 8ADYH
o Es Division Y/ X=X 898DH 8AE3H
£ | Exponentiation YAX > X 8996H 8AECH
Square root SQR X = X 89B3H 8B0O%H
Logarithm LNX->X 899DH 8AF3H
LOG X = X 89A5H 8AFBH
Exponent EXP X > X 89ACH 8B02H
Trigonometric function SIN X = X 89B8H 8B10H
o COS X - X 89C1H 8B17H
E @ TAN X = X 89C8H 8B1EH
& © |Inverse trigonometric function ASN X = X 89CFH 8B25H
. ACSX—>X | 89D6H 8B2CH
s ATNX—>X | 89DDH | 8B33H
2 DMS conversion DEG X - X 89EBH 8B41H
DMS X =» X 89F2H 8B48H
Absolute value ABS X > X 8E9FH 8FF4H
Integer INT X = X 8E7BH 8FDOH
Sign SGN X = X 8A00H 8B56H
Random number RND X » X 89F9H 8B4FH

144

(2) Comparison operations

< Numeric comparison>

(1) Entry preparation

Numbers are stored in decimal format in operation registers X and Y.

(2 Entry address

Operation | Version 0 | Version 1
Y <> X 8BOFH 8C65H
Y <X 8A85H 8BDBH
Y >X 8AB5H 8COBH
Y=X 8AFBH 8C51H
Y <=X 8A1FH 8B75H
Y >=X 8A2CH 8B82H

@ Condition satisfied

When the condition is satisfied

The value 1 is stored in operation register X.

XREG

00 | 00 10 A 00 | OO | OO | 00 | 00
When the condition is not satisfied
The value 0 is stored in operation register X.

06O 00 | OO | OO | OO | OO | OO | OO

XREG

145

-0

< Character string comparison>

(1) Entry preparation

The following values are stored in operation registers X and Y.

XReg address | YReg address
DOH 14H 1CH
Starting address of character string

15H 1DH
(least significant digits) °
Startlng ad_d.ress of gharacter string 16H 1EH
(most significant digits)
Length of character string 17H 1FH

The string buffer (6E60H to 6EAFH) can be used to store addresses for the character string.

Store 60H in the string buffer pointer (6F2FH).

(2 Entry address

Operation Version 0 Version 1
y<>X 8BOAH 8C60H
y<X 8A34H 8B8AH
Y > X 8A36H 8B8CH
Y=X 8ABDH 8C13H
Y <=X 8A18H 8B6EH
Y>= X 8A1AH 8B70H

@ Condition satisfied

The value 1 is stored in operation register X.
XREG 00 | 00 10 00 | OO | OO 00 | OO0 | —1

Condition not satisfied
The value 0 is stored in operation register X.

XREG 00 00 00 00 00 00 00 00 -0

146

(3) Character string operation functions

1) STRS

* Entry condition
1) The decimal number in internal format to be converted is stored in operation register X.
i1) 60H is stored in the string buffer pointer (6F2FH).

* Entry address
8CFCH [8BAGH]

* Exit status
1) The converted character string information is stored, in internal character string
format, in operation register X in the CPU.
i1) The actual character string is stored in the string buffer.

2) CHRS

* Entry condition
Same as described in (1). The valid range is 0<number<255.

* Entry address
8C94H [8B3EH]

* Exit status
i) CARRY =0
Same as described in (1) STRS.
ii) CARRY =1
The number to be converted does not satisfy the following expression:
O<number<255

3) VAL

* Entry condition
Store character string information for the character string to be converted (which exists in
the string buffer) in operation register X using internal character format.

* Entry address
8D58H [8CO2H]

147

* Exit status
i) CARRY =0
The converted decimal number is stored in internal format in operation register X.
ii) CARRY =1
The number cannot be converted to a decimal number in internal format.

4) ASC

* Entry condition
Same as described in 3) VAL.

* Entry address
8C74H [881EH]

* Exit status
The converted decimal number is stored in internal format in operation register X.

(4) Key scan

* The number of the currently pressed key is stored in ACC.

* Entry address
0436H
Carry ACC
0 No key
1 00-3FH
(40H if two or more keys are pressed)

* The contents of registers B, K, L, M, and N are unpredictable.
* Strobe signals (KO through KOs and [A; through 1A¢) are all low upon return.

Note: A key number is indicated using a 1-byte binary number (OH to 40H). Values in the key
code table correspond to key numbers. Refer to the key matrix and key code tables.

148

(5) Search function

1) Conversion of a decimal number in internal format to binary representation (2 bytes)

* Entry condition
The number in internal format to be converted is stored in operation register X in the
CPU.

* Entry address
The entry address depends on the number to be converted (XReg).

(XReg) Entry address
- 32768 < (XReg) < 32767 162FH
0 < (XR.g) <65535 163AH
* Exit status
i) CARRY =0
The converted value is stored in 19H (most significant byte) and 18H (least significant
byte) in the CPU.
i1) CARRY =1

Error. The value of register X does not fall within the range shown above.

Note: If the entry address is 162FH, the number is converted to a signed binary number.
Numbers from - 32768 to 32767 are converted to binary numbers from 8000H to
7FFFH.

2) Conversion of a binary number (2 bytes) to a decimal number. in internal format

* Entry condition
The 2-byte binary number to be converted is stored in 19H (most significant byte) and
18H (least significant byte) in the CPU.

* Entry address

1) The stored binary number is converted directly.
11BOH
11) The stored binary number is considered to be a signed binary number and is converted

as such.
11B7H

* Exit status
The converted decimal number in internal format is stored in operation register X in the CPU.

149

3) Program line number search

* Entry condition
Store the line number to be searched for (in 2-byte binary format) is stored in 19H (most
significant byte) and 18H (least significant byte) in the CPU.

* Entry address
BSF4H [B6E1H]

* Exit status
1) CARRY =0
The specified line was found. The following data is stored in 3AH through 3DH in the CPU.
3AH — Address of the line number (least significant)
3BH — Address of the line number (most significant)
3CH — Line number (most significant)
3DH — Line number (least significant)

i1) CARRY =1
The specified line number could not be found. 3CH and 3DH in the CPU indicate the
following.
When both 3CH and 3DH are 0:

The entire program was searched, but the specified line could not be found.

When either 3CH or 3DH is not 0:
A line number greater than the specified line number was found.

Note: In using this subroutine, line numbers can be specified in internal format. In this
case, the entry condition and entry address are as follows (the exit status is the
same).

* Entry condition
1) The line number to be searched for is stored in operation register X in the CPU.
11) The contents of 36H in the CPU and XXXXXXIX are ORed.

* Entry address
B8EBH [B6D8H]

4) Variable address search (simple variable)

* Entry condition
1) The variable name to be searched for is stored in 0AH (first byte of the variable name)
and OBH (second byte of the variable name).

150

i1) Zero is stored in 33H in the CPU.

* Entry address
1AEDH

* Exit status

1) (Starting address of the variable contents)-1 is stored in 06H and 07H (YL and YH) in
the CPU.

11) The length of the specified variable is stored in 02H (register A) in the CPU.

Note: This subroutine does not have error detection capability. Therefore, the specified
variable must be defined.

5) Variable address search II (array variable)

* Entry condition

1) The name of the variable to be searched for is stored in 0AH (first byte of the variable
name) and OBH (second byte of the variable name) in the CPU.

i1) The subscript of the array to be searched for is stored in 0OCH and ODH in the CPU in
binary format.

1-dimensional array 2-dimensional array

0CH First subscript Second subscript
ODH 0 First subscript

1i1) Zero 1is stored in 33H in the CPU.

* Entry address
17F5H

* Exit status
1) CARRY =0
Normal termination.
* (Starting address of variable contents)-1 is stored in 06H and 07H (YL and YH) in the
CPU.
* The unit length of the specified array variable is stored in 02H (register A) in the CPU.

ii) CARRY =1
An error was detected. The following errors may be encountered:
* The specified array variable is not defined.
* The specified subscript does not fall within the subscript range declared at array definition.

151

(6) Display

1) One-line and full-screen display

Write the code of the character to be displayed in the address corresponding to the appro-
priate line of the print buffer. Satisfy the entry condition, and call this subroutine. The con-
tents will then be displayed on the liquid crystal screen.

Print butter address

First line of display 6D00H ~ 6D17H
Second line of display 6D18H ~ 6D2FH
Third line of display 6D30H ~ 6D47H
Fourth line of display 6D48H ~ 6D5FH

24 characters

* Entry condition
KR (register K < 0)
D> bit of 788FH < 1 (788FH value ORed with xxxxx1xx)
ACC < 0to4

* 0 to 3 indicates the single line to be displayed. O for the first line, 1 for the second, and
SO on.
* 4 indicates that the full screen is to be displayed.

* Entry address
Version 1 D534H [D2B6H]

2) Scroll up

When this subroutine is called, the display image is scrolled up. The contents of the print
buffer are also scrolled up, and the space code is stored in the fourth level of the print buf-
fer.

* Entry
ACC < 4

* Entry address
Version 1 E23CH [DEADH]

152

3) Single character display

This subroutine displays the character stored in ACC. The display position is determined
by DPY and DPX.
The contents of the print buffer do not change.

DPX 0-23
1 |Firstlevel
DRY 2 |Second level
0-3 3 | Third level Display
4 | Fourth level

DPX and DPY are used to determine the position the character is to displayed. The DPY
address is 7880H, and the DPX address is 7881H.

* Entry condition
Do of 788FH < 1 (788FH value ORed with xxxxxxx1)
Set DPY (0 to 3) and DPX (0 to 23)
ACC ¢ Character code

* Entry address
Version 1 E983H [E549H]

Note: DPY: Display Pointer Y
DPX: Display Pointer X

4) Set the LCD RAM address corresponding to the position indicated using DPY and
DPX in YLu

The value stored in Yru is (display starting address for LCD RAM)-1. That is, when IYS is
performed by this subroutine, the contents of ACC are stored in the first address of the
LCD position indicated by DPY and DPX.

* Entry
DPY (0 to 3)
DPX (0 to 23)

* Entry address
1CEFH

153

5) Display off
Display is terminated.

* Entry
None.

* Entry address
04ADH

6) Display on
Display is activated. Values in LOD RAM must be prepared for display.

* Entry
None.

* Entry address
04B1H

7) Print buffer clear
The print buffer (96 bytes) is cleared.

* Entry
None.

* Entry address
1EOCH

Note: These subroutines do not have entry check capabilities. The user is responsible for
the validity of entry values.

154

(7) Serial interface (SIO)

1) Open serial interface circuit

* Entry condition
None.

* Entry address
FC7BH [FAG7H]

* Exit status
Only the ER signal is high. All other signals remain low.

2) Close serial interface circuit

* Entry condition
None.

* Entry address
FCO97H [FA83H]

* Exit status
All signals on the serial port are low.

3) CS signal monitor

* Entry condition
None.

* Entry address
1E4BH

» Exit status
1) CARRY =0 CS signal is high.
i1) CARRY =1 The BREAK key was pressed.

Note: Control is not returned from this subroutine until one of the two conditions above is
satisfied.

155

4) CD signal monitor

* Entry condition
None.

* Entry address
1E60H

* Exit status
1) CARRY =0 CS signal is high.
i1) CARRY =1 The BREAK key was pressed.

Note: Control is not returned from this subroutine until one of the two conditions above is
satisfied.

5) Get interface condition

* Entry condition
None.

* Entry address
1E43H

* Exit status
The interface condition stored in external RAM is obtained in the CPU.
EOT code (78B1H) to ODH in the CPU
Baud rate (78 B2H) to OEH in the CPU
Condition (78B3H) to OFH in the CPU

This subroutine must be executed before any of the system subroutines (6), (7), and (8) is
used.

However, since the contents of 0DH through OFH in the CPU do not change, they do not
have to be set by this subroutine if these subroutines are used in succession.

6) Output 1 byte

* Entry condition
Subroutine (5) must have been executed beforehand. Output data must also be stored in
register B in the CPU.

156

* Entry address
F316H [EF2DH]

* Exit status
None.

7) Input 1 byte

* Entry condition
Subroutine (5) must have been executed beforehand.

* Entry address
F22AH [EE27H]

* Exit status
1) Input data is stored in register B in the CPU.
i1) CARRY is changed.
CARRY = 0 Data input ended.
CARRY =1 Contents of 35H in the CPU indicate the following
XX1XXXXX The BREAK key was pressed.
XXO0XXXXX A parity frame error occurred.
If CARRY =1, the RR signal of the serial port goes low.

Note: If the input byte matches the termination code or the end of text code, the RR signal
in the serial port goes low. (However, if the end code is CR + LF, this subroutine (7)
is used repeatedly, and the 2 bytes are checked for a match.)

8) Output the termination code

* Entry condition
Subroutine (5) must have been executed beforehand.

* Entry address
F1FAH [EDF7H]

* Exit status
1) CARRY =0 The termination code was output.
i1) CARRY = 1 The BREAK key was pressed.

Note: Subroutine (3) is called from subroutine (8). Therefore, control is not returned from
this subroutine until the condition for subroutine (3) is satisfied.

157

9) Conversion of internal format (number) to ASCII sequence

* Entry condition
The number in internal format to be converted is stored in operation register X in the
CPU.

* Entry address
F1B8H [EDB5H]

* Exit status
The number converted to ASCII sequence is stored from the beginning of the SIO buffer
(6DO0H). The ENTER code is stored after it. The number always converted to exponen-
tial format.

10) Output SIO buffer contents

* Entry condition
The contents to be output are input to the SIO buffer (6DO0H to 6DFFH), and the
ENTER code (0DH) is input to the contents.

* Entry address
F217H [EE14H]

* Exit status
1) CARRY =0 AlI contents and the termination code were output.
i1) CARRY = 1 The BREAK key was pressed.

Note: Subroutine (10) uses subroutine (3). Therefore, control is not returned from sub-
routine (10) until the condition from subroutine (3) is satisfied.

158

(8) Printer
1) Printing characters

(1) Entry preparation
* Connect the CE-126P to the main unit.
* Reset the printer.

* Entry address
A467H [A2BAH]

* Store the 24 digit code to be printed in registers X, Y, and Z.

(2 Print execution

* Entry address
8054H

Note: Since 24 digits are printed per line, the terminal head cannot be stopped while print-
ing a line.

2) Paper feed

(1) Entry preparation
* Connect the CE-126 to the main unit.
* Reset the printer.

* Entry address
A467H [A2BAH]

* Store 24 digits of spaces (20H) in registers X, Y, and Z.

* Entry address
8054H

159

(9) Cassette

1) Remote on

* Entry address
8048H

2) Remote off

* Entry address
804BH

3) Header output
* Entry preparation
* Store OH in internal RAM (31H).

* Store the file name (a maximum of 7 bytes) in operation register Z.

(Example) File name ABC12

ZReg F5 41 42 43 31 32 00 00

A B C 1 2

Filename

If the file name is not specified, 00 is used.

ZReg F5 00 00 00 00 00 00 00

* Entry address
9CF5H [9B5CH]

160

4) Header input

* Entry preparation
Store the file name in operation register Z.

(Example) File name ABC12

ZReg F5 41 42 43 31 32 00 00
A B C 1 2

Filename

If the file name is not specified, 00 is used.

ZReg F5 00 00 00 00 00 00 00

* Entry address
9D1DH [9B84H]

If a file name is specified, the program keeps searching for the file until it is found.
If the file is found, and asterisk is displayed at the bottom right corner of the display
screen.

5) Save one character

* Entry preparation
Store data in ACC.

* Entry address
CFA5H [CD8DH]

161

Data Recording Formats

PC-1350 BASIC stores BASIC programs and data on cassette tape in various formats. This
appendix section shows the tape formats supported by PC-1350 BASIC.

(1) BASIC and Reserved Program Tape Formats
The tape formats for the BASIC and reserved programs are shown below.

1. Without a password

Note: 3" is not subject to sum checking.

2. With a password

162

(2) BASIC Data Tape Format

The tape format for BASIC-created data is shown below.

58/ 711119 1 91 3| 10 [11" 1
9191 9 1310 11" |1, 9" 1 9"
1 9" 113
Legends:

I: Check sum code

2: BASIC program (120 bytes) or reserved program (80 bytes)

3: End of file code (FOH)

3', 3": End of file code (FFH)

4. Password

5: Filler (all is recorded for 8 seconds)

6: ID code identifying a BASIC or reserved program without a password (70H)
7. ID code identifying a BASIC or reserved program with a password (71H)
8: ID code identifying memory data (74H)

9: Memory data block (8 bytes) represented by A through Z or A(n).

9': Array variable data (8 bytes)

9": Symbol variable data (8 bytes)

10: Filler (all is recorded for 2 seconds)

11: Label for a static variable (5 bytes)

11': Label for an array variable (5 bytes)

11": Label for a simple variable (5 bytes)

(3) Machine-language Program Tape Format

512/ 7|1113 |1, 2|1 2 |1 2,113 |3"|1

12: 1D code identifying a machine-language program (76H)
13: Starting address and length of machine-language data

163

Recording Procedures

The flowcharts given below show how PC-1350 programs and data are recorded on cas-
sette tape. By following these procedures, you could record your PC-1350-compatible pro-
grams and data using your machine-language programs.

(1) Recording BASIC or Reserved Programs

|

Write 1s for approx.
8 seconds

Write 70H (BASIC &
reserved program ID)

!

Initialize check sum
code to OOH

|

Write file name

l

Write check sum
code

|
Y

Initialize check sum
code to O0OH

Write 1 byte

120 bytes
written?

Write check sum
code All written?

N Y

i—:
Write FFH
{end-of-file)

Write FFH
(end-of-file)

}

Write check
sum code

!

END

BASIC and Reserved Program Recording Flowchart

164

2) Recording Memory Data

Memory
data

Write is for approx.
8 seconds

'

Write 24H (memory
data ID)

Initialize check sum code
to OOH

4

Write file name

A

Write check sum code

Static memory?

1

r

Write static variable label

Write array variable label

5

y

Write check sum code

Write check sum code

—

B

Initialize check sum code
to OOH

y

Write 1 memory byte

i

Write check sum code

End of

)

Initialize check sum code

Write a step

8 steps written?

Write check sum code

Increment memory
pointer

3

memory area?

Write FOH (end-of-file)

Write check sum code

END

Memory Data Recording Flowchart

165

(3) Check Sum

The check sum code is initialized at the following timing:

1. Before the file name is written.
2. Before 120 steps of BASIC or reserved program code is written.
3. Before any memory data is written.

The check sum is computed for each file name, each step of BASIC program or reserved
program code, and each byte of memory data. The computation procedures are illustrated
in the figures below.

-=-=-- Check sum code

Check sum code lower 4 bits
Check sum code higher 4 bits

-=----1 BASIC or reserved program step
BASIC or reserved program step lower 4 bits

BASIC or reserved program step higher 4 bits

T B T T T T T T .
s;:s.‘lslls,!‘s.;sH]sL:shlsl:s,.lsL:sulsL:s.‘ls.:s.—.l ——————— File name or memory data
1 1 i L A A A i

e
4 bits |
4 bits

[S——
8 bits=1 byte

Check sum computation

Y
I 0 — Carry

Y
+ 0:@ + Carry —» + Carry Binary computation

Y

+ E@ + Carry —» + Carry Binary computation
Y
END where:

Sy _{SH: For 1 BASIC or reserved program step
p* =

S.: For file name or 1 memory data byte

<{SL: For 1 BASIC or reserved program step
S *=

Su: For file name or 1 memory data byte

166

(4) File Name Format

A file name consists of up to seven characters (or steps) preceded by a I-byte ID code F5H.
File names shorter than seven characters are extended with codes O0H to form 7-character
file names. For example, file names 'PROGRAM' and 'DATA' are recorded on cassette tape
in the following formats:

'PROGRAM' Code M A R G O R P | FoH

D4 1425 74| F4/25/05|5F

'DATA' Code 00H | O0OH | OOH | A T A D | Fbu

00 0000|1445/ 14 /44 |5F
\

If no file name is specified, the default file name consisting of code F5H followed by
seven zero (00H) codes is created.

167

(5) Memory Data Format (Static Variables)

All static memory variables are eight bytes long. They are recorded on cassette tape in the
following formats:

1. String Variable

String variables are recorded in the same format as file names. For example, 'BOOK' is re-
corded as follows:

'BOOK' Code 00H | O0H | OOH | K O O B | F5H

00 00/ 00/B4 F4 F4, 24 5F

2. Numeric Variable

A PC-1350 BASIC numeric variable is divided into four fields as shown in the figure below.

—— _;'_ ~ J\T‘. L
Xc Xn e é(s .
Correction Mantissa Mantissa X —Ponent sign

term sign Exponent

Example:

T = 3141592654

00/ 45/ 62/95/14/13/00/00

-123x1010=-1.23x1012

00,00/ 00|{00|03/21]82|10

0.0789=7.89x10-2

00 00 0000|0987 08|99
\ \ \ \ \ \ \ \

The sign is stored in Xs. A 0 in Xs identifies a positive number and an 8 in Xs identifies a
negative number. X is 2 digits long and stores the exponent portion of the number and Xs
stores its sign. Numbers are stored in numeric variables in scientific notation. If the abso-
lute value of a number is smaller than 1, Xs and X are offset by a factor of 1000.

168

(6) Recording a BASIC Program Statement

Each line number of a BASIC statement takes up 2 steps of program memory. For ex-
ample, line numbers 1, 12, and 123 are stored as shown below.

Line No. 1 00 01
Line No. 12 00 0oC
Line No. 123 00 78

These memory steps are followed by the number of bytes representing the statement up to
an ENTER code. For example, the BASIC program code

10: INPUTA,B
20: C =/ (A*A+B*B)
30: PRINTC

40: END

is stored in the BASIC program area as shown below.

PR o R INPUT A B ENTER.—20 — c = v

OO |OA|O5|DF |41 |2C |42|0D |00 |14 |0D |43 |3D|FC

L Number of bytes Number of bytes from C to ENTER codes
from INPUT to
ENTER codes

{ A = A + B %

28 |41 |2A |41 |2B |42 | 2A

B } ENTER— 30 — PRINT C ENTER— 40 — END ENTER

42 |29|0D|00|1E |03 |DE |43 |0D|00|28|02|D8|0D
L Number of bytes L Number of bytes from END to ENTER codes
from PRINT to
ENTER codes

169

(7) Recording a Reserved Program

For example, the reserved program memory contains the following data when the Z key is
assigned to RUN and the A key to SIN A:

SHIFT Z

SHIFT A

\
F A
\

8 1
\

Reserved codes such as SHIFT Z and SHIFT A occupy one byte of memory. The table be-
low lists the PC-1350 reserved codes.

8 F
0
1 SHIFT A SHIFT SPC
2 SHIFT B
3 SHIFT C SHIFT S
4 SHIFTD SHIFT =
5
6 SHIFT F SHIFT V
7 SHIFT G
8 SHIFTH SHIFT X
9
A SHIFT J SHIFT Z
B SHIFT K
C SHIFT L
D SHIFTM
E SHIFT N
F

170

(8) Recording a File Name and Memory Data

File names and memory data (static memory) are recorded in the following sequences:

File Name: 'PROGRAM’ M A R G O R P | Fbu

D4/ 14/ 25|74 |F4|25|05|5F

String variable: 'BOOK' O0H | O0H | OOH K @) (@] B F5H

00|00|00 B4 F4 F4 24 5F

Numeric variable: 3.141592654 | 00 45 62 95 14 13 00 00

00/ 45/ 62 9514130000

171

(9) Recording a Data Byte

A BASIC or reserved program byte, a check sum code, a BASIC or reserved program ID
code (70H or 71H), a memory data ID code (74H), and a end-of-file code (FOH or FFH)
are recorded in the following format on cassette tape:

70H or 71H

T T

S: S?ESBESE.[SJ. S3 | S2

Sn Su
Higher order 4 bits
Lower order 4 bits

File name and memory data bytes are recorded in the following format:

Recording direction E SL 1SH | S ESH Su ESH S. ;SH SLiSH| St ESH Su . Sk | S ESH
L s 1 L i
]
s: S7iSe | Ss:Ss|SaiS2iSi!So
Su St

Each byte is recorded in the following format:

> 2 ms [€ % 2 ms |e —JApprox. 2 ms|<— —3Approx. 4 msf&
| ; '
—] 7 — = = =
B : ! ! B 5 B S
8 | | S5 ! S!S |8 E So | St | S2 | S3 3 s
= :] | o 2 17} 17}
| 1 byte Next byte

The interval between a start bit and the following data bit is approximately 2 milliseconds.

172

(10) Recording Waveform

The waveform of a recording signal is shown below. A start bit or a 0 data bit is represen-
ted by four 2-kHz pulses per the 2-ms data interval and a 1 data bit is represented by eight
4-kHz pulses per the 2-ms data interval. The figure below shows the waveform of the re-
cording signal for the 1-byte data whose bit state is (01010110).

Stop bit —! Ir- Sa ! 55——|—7ss -l Sy ! Stop bit
Start bit
o <l oA ‘0’
MSB

e I
Start bit

Stop bit —! » Soﬂl-—St!—-l-—Sz lr- Sz —,L Stop bit
10} J'1I' l1l' JOI'

}

LSB
(11) Recording Variable Labels

1. Static variable label

Recording direction <— |E F| 0 0 /0 00 0|0 O

2. Array variable label

TOTAL LENGTH
TOTAL LENGTH
DIM 1
DIM 2
LENGTH

Recording direction =— |L H L H L H L H|L H

3. Simple variable label

The format of a simple variable label is identical to that of an array variable label except
that DIM#1 and DIM#2 in the above figure are reversed.

173

(12) Recording Array Variable Data

One byte of array variable data is recorded in the lower-nibble-first format, which is the
same as the format of static memory data. The format of a block (8 to 80 bytes long) of ar-
ray variable data, however, differs from that of memory data. See the figures below.

Example:

BOOK BOOK

Recording direction = 24 F4 F4 B4, 24 F4 F4 B4

Tt = 3141592654

Recording direction <— |00 /00 13 /14 95624500

(13) Recording a Password

A password is recorded in the same format as a file name. For example, the password
'PASS' is recorded as shown below.

'PASS' <— | 00H | OOH | OOH | S S A P | F5H

Recording direction =— |00 000035 /3514|035 5F

174

Key Code Table

ON/BRK

/

X

5

ENTER

SHIFT

DEF
SML

H

DEL
INS

MODE

SPC
CLS

9

175

CPU Internal Block Diagram and Pin Signals

CPU (SC61860A13) 8-bit C-MOS CPU

TEST ACL ON GND Vg Vpc Vois Va VM Va

L e e R R L b O-- i’??ﬁi_?? wa25
i C ST :
_,E_Ruc‘)-—- cG ' FT TR A A EA 07 g e i Power T 1 ; :
= H / f1a2 354;5;5:7;6:9510:1li\z:1!r|| ;15 Supply 3 1 '
—LRQO— 0sc . e t OFF s{Control |—e
: System| Voo

Microcassette input X | cll:'ckl
: #1 #2
Microcassette output X

I
>

: BZ (3 |e————— :
; 00 07 :
l] Cl)st
oot l o 3 :
A0 - DP J PCLl— : :
1=bavee) ‘e I ; i :
: 8 5| 8 RTE) :
: S| ROM (8K bytes) :
: ==3 Backl H
READ Ho~
BO PCH b—e . e = Ho~ 16
1~6 7 L 4 il :
L PiE|sFRs0) of
PC | t :
Register input gate =TT R L.
Ay —=1 PRq | PR |RS0[RS) :
-1 .
oy 7| 7 7 e I'; 1=
: /O port
Ors DATA.BIS ki : Key strobe

#aL R/W FOy FO; FO; FOu« FOs 1B1~8
| (CE)CENCE) 1/0 port

Address latch FO1..... .. External ROM CE IB1 — SIOER
FO2. . DOUT (external interface) B2 — SIORS
FO3..... BUSY (external interface) IB3 — SIORR)
FO4.oooorsereseesens SD of SIO (S10 terminal) B4 —siofp [SO terminal
FO5....coecceviiviiieecnnenne. 32K byte program ROM CE IB5 — SI0 CS
IB6 — SI0 CD
IB7 — ACK
B8 — DIN } External interface

176

LSI Explanation

Terminal CPU signals (SC61860A13)

Pin
number
1

2

Signal
name

AO01
R/W
DAL

TES
a1
@0

RES
Xin
ON

Xout
Dis
HA
IA8
IA7
IA6
IA5
A4
IA3
A2
IA1
IB8
IB7
IB6
IB5
IB4
IB3
B2
IB1
VM
VA

GND
H 1
H2
H3

H4
H5
H6

Output
Output
Output

Input
Input
Output
Input
Input
Input
Output
Output
Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input
Input
Input
Input
Input
Output
Output
Output
Input
Input
Input
Output
Output
Output
Output
Output
Output

Input/Output Explanation Stand-by = power off

Address bus, high du ring stand-by.
Write clock, normally high.

Low order bit address latch signal. The clock is used to latch the low order 8 bits in
the 16-bit address signal on the data bus line, when a large-capacity ROM is used.
Normally high.

Input terminal for test purposes. Normally low.

Input terminal for oscillation circuit.

Output terminal from oscillation circuit.

Reset input terminal. Reset at high. Normally low.

Input (MT in) for microcassette signal from CE-124 option.

ON (BREAK) key input terminal, normally low.

Output (MT out1) for microcassette signal to CE-124 option and buzzer.

LCD driver control signal.

LCD driver clock signal, low during stand-by. 2KHz pulse generated during display.
Key input/strobe signal, low during stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low during stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low du ring stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low du ring stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low during stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low during stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low during stand-by. Pulse is generated when key is pressed.
Key input/strobe signal, low du ring stand-by. Pulse is generated when key is pressed.
ACK signal that enables the CPU to read data through the 1/0 port (PCU).

Serial data input signal from Din (data in) PCU (bit by bit serial handshake).
Detection of remote transmission request from CD of SIO.

Detection of remote acknowledgement from CS of SIO.

Received data of RD of SIO.

Transmission of received OK from main unit for RR of SIO.

Transmission of main unit transmission request for RS of SIO.

Becomes high by execution of SIO ER OPEN instruction.

LCD power supply

LCD power supply

Power supply

LCD backplate signal, high during stand-by and 4-level pulse du ring display.

LCD backplate signal, high during stand-by and 4-level pulse during display.

LCD backplate signal, high during stand-by and 4-level pulse during display.

LCD backplate signal, high during stand-by and 4-level pulse du ring display.

LCD backplate signal, high during stand-by and 4-level pulse during display.

LCD backplate signal, high during stand-by and 4-level pulse during display ..

177

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

H7
H8
H9
H10
H11
H12
H13
H14
H15
H16
VB
VDIS
Vce
Voc
VGG
08
07
06
05
04
03
02
01
F05
F04
F03
F02
FO1
B08
BO7
B06
B05
B04
B03
B02
BO1
AO8
AQ7
A06
AO5
A04
AO3
A02

Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Input
Input
Input
Output
Input
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Input/Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output
Output

LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse du ring display.
LCD backplate signal, high during stand-by and 4-level pulse du ring display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD backplate signal, high during stand-by and 4-level pulse during display.
LCD power supply. High at stand-by. Vb at clock stop.

LCD power supply. High at stand-by and low when clock stops.

LCD power supply, always low.

LCD power supply. High at stand-by and low when clock stops.

Power supply, always low.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Data bus, normally high.

Chip enable for 32K ROM.

SD transmission data for SIO. Low at stand-by (buffering by gate array).
Busy interface output port.

Data output port Dout (data out) to peripheral.

Chip enable output for application ROM (in RAM card connector).

Enable signal of RAM, DISP-LSI, etc.

(A14) address bus line, high at stand-by.

(A13) address bus line, high at stand-by.

(A12) address bus line, high at stand-by.

(A11) address bus line, high at stand-by.

(A10) address bus line, high at stand-by.

(A9) address bus line, high at stand-by. _

(A8) address bus line, high at stand-by.

(A7) address bus line, high at stand-by.

(A6) address bus line, high at stand-by.

(A5
(A4
(A3) address bus line, high at stand-by.

address bus line, high at stand-by.

)
)
)
)
) address bus line, high at stand-by.
)

(A2) address bus line, high at stand-by.
)

(A1) address bus line, high at stand-by.

178

Gate Array (SC60220)

This LSI decodes CS (chip select) of various LSI's (e.g., RAM and DISP), and performs buffering
of key strobe generation circuit and SIO output signals.

's NOB
[.
: L
Al4
| 2 o OPCE p RAM card CE
#A:g > gimp RAM1 CE
L O p RAM2 CE
o godiess:), DET_, pisp1 CE
= A10 decoder DEZ ~
| 2 - —p DISP2 CE
L A9 bea >
> D $ DISP3 CE
b EE"' » DISP4 CE
b 5 » DISP5 CE
W 1 7EQ0 ~ 7FFFH
B D6 KO7 > 3
> D5 KO6 >
From CPU 1 > ROS
rom D3 KO4
| o D3 Data latch Kga P ¢ Key strobe
3 B
> D:} K02 5
p2 KO1 o,
#
IN1 ouT1
FO4p ,'} » SD
IN2 ouT2
B1p- D » ER
IN3 N ouT3 to S10 connector
B2 p- > p RS
IN4 ouT4
B3 —|V‘\ » RR
Buffer
FOS5p- h
= ROM
~ G G_ate‘t P Not used (inverted FO5 output)
circul
ING
Unit cell Output buffer Vee Input buffer
Vee
| t r—ﬂ
L. Output Input Output
Three state l_‘
0 -
—

179

The function of the address decode is shown below.

Output Address
B0s | A14 | A13 | A12 | AN A10 A9 As Address
0 0 1 0 X X X X 2000H
RAM card CE | |
0 1 0 1 X X X X 5FFFH
RAM 1 CE 0 1 1 0 0 X X X 6000H~67FFH
RAM 2 CE 0 1 1 0 0 X X X 6800H~6FFFH
DISP1 CE 0 1 1 1 0 0 0 X 7000H~71FFH
DISP2 CE 0 1 1 1 0 0 1 X 7200H~73FFH
DISP3 CE 0 1 1 1 0 1 0 X 7400H~75FFH
DISP4 CE 0 1 1 1 0 1 1 X 7600H~77FFH
DISP5 CE 0 1 1 1 1 0 0 X 7800H~79FFH
KEY port CE 0 1 1 1 1 1 1 X 7EOOH~7FFFH

X: Either value

Key strobe output writes to the address space from 7EO0H to 7FFFH.

180

Explanation of Display LSI (SC43537)

GND Wgg DIS HA

SAL i '. \ ':T'ET BE?ESESE :3! 31 BE;!;T:SEJESEQEI . :851
e rdetgemtomd b d o o
ctijiiilyiiSeti g
{Latch clock) S2 | ’
RAM AR
64 byte | 64 byte | 64 byte | >/}
(80~BF) | (40~7F) | (00~3F) | |
M M =3 :
sl
E |
& :
(RAM for display) | S| |
Oi-b (S62) S62 Sg1
(S63) S63 Sg2
CEQ |
Read/Write B H/1 |
RWQO |
|
________________ = |
80 pin
LCD operates at 1/16 duty
® Timing diagram
Display off Display on Power off

DIs

o]
vl | I s

(SH26:TR5 \a\
ESR.H:TR22 i \RESET ON

State preserved when off

GND
o\ i 1 -_— ov
Vpis/5
Vit —a - 1.4V
3/5Vois Vois/b
Ven —= - -2.8V
VaL —= A -— 4.2V
Vois
T 3."5VDIS
Vi—= + -— _5.6V
Vois
5
Vois —y j - 7.0V

Vg

{Note) voltage level when Vpie=7.0V

181

* Counter and segment waveform

HA U UL Uy

DIS |

RES

h1 (TR1) =-emmeemmcneas LIy Uy Lrer—

h2 (TR2) ==-eemmeecenenea-

h3 (TR3) = ==--=-===-=----
h4 (TR4) -wm-rmmmmenmmneeees

R e

H1 HZ H3 H4 H5 H6 H7 H8 H9H10H11H12H13H14 H1 H2 H3 H4 H5
.: ' + + + + + + + + i t # + E t + + t 1
Segment output waveform i :
GND =VaH —= ::- -- ji i
Y] Backplate {(H1) waveform S S—
P 1 1
Ve —= i i L
i Segment waveform |
VaL — ,
VML -. ___ Il
Vois = Vel == .
All digits off ON ON ON ON OFF OFF OFFOFF OFF OFF ON ON ON ON ON ON ON ON OFF

-+ T

T

h5=1 h5=0
All digits off VAL VBH
on VBL VAH
off VAL VBH

182

CE-201 M Circuit Diagram (flat LSI)

TC74HC188F (TC40H138FN)
§ 1.2Mx3 %%
> AUy ol ow)
— JEE gn Wo%mu)
0.14F DAN202 _@_T—Ac_ Voo (NU)
i} qGza o= ()
12M 3 % GND' —@—J —52;@ wpl
] — 61 Tpl
1 V66| 8lanp TEpo—
15598 16lyce oL
cN-1 pSND > DAN 202 __®
Giis wNeC Al3
- R/W
CN-3 ans o @
(.’IN P T VA CR2025 v
S U ~
CN-5 pAL | y
CN-6 pfE]
CN-7 pAS TAF
CN-8 pB4
=5 ‘A TC5517AFL x4
-8
CN-10 p-AE 18 A)
CN-11 p AT =
cN-12p A8 CE
cN-13 pAl AD 8 $D0
cN-14 pAll] AL 7 10D1
CN-15 pAll A2 6 11D2
(G ERT Y — A3 5 13D3
v phts | A4 4 1404
CN-18 NC A5 3| AEDEL] I || [Py S_—
CN-19 NC A6 2 16D6
CN-20 NC AT 1 17D7
CcN-21 NC A823
CN-22 NC A922
cn-23 pgl A10 19 I 1
CN-24 P"ﬂ-ﬂ 2linp vop [24 - -
CH-E5 by OF R/W
D8 E
CN-26 pg 28
Q 9] (] (o] [0
oN-27 pa b qu 'Tzw
s .1”5 el ML PR [Y e (R SO RN I{ 01 A R |
EN~28 D6 VGG " B 1 h i b i
cn-z9 pgtE .
NI R DT GND
CH=11 L “yanice
CN-32 NC
CN-33 o N .
cN-34 pOF
n-35 p VG
> L
SiaM

183

t Diagram (flat LSI)

Ircul

CE-202M C

184

vy

7
s 7
[AND
47170
1 4 " 1 99A
1t ot Tl nl P e T P v | ol STl
= izl o0z
0 % o 0 0 0o [oe) N e)
m/¥ 30 w/d 30
—ldaa QO — — — —aaa ano
82 ﬂ] vZ zl
wm 6101V
e == — — gy
Ne— — — — — — —] | —
10 61 S v LTzl T LV
laq] T 1 — [1 [] [gas] Z v
/m“m,! .m|mﬂ — A Mt | — N— — Ilw ks
N S — D I L4] N El e §v
(GE] o W vav! VRV
| S— —_ — S | — b p—] D——
NN IL_&y - I N I || Edel] |5 &Y
20 ¢l 2z Zall 9 av
1a el 5 1Y Taol 7 v
S A S pS— —_ S— f— S—— -
0a 1L o ov) 0as g 0v
Z ay o}
G711V o] i
10z- JER 8l
9¥98vddN n o PxTdVLISEDL
gy
a1
M '
vlsh,

O9A
§520242
g1V
Ny g0gNvd

—+
86551
74 ARGy
5 924 g 929A a
i 1905 =
.llo: A ETm I®lb75 %M:ﬁ
(W) OEs Y890 1}
(ON) =0{ 24 5 @ 20ZNVQ 47170
Szvml_o; g £ + m_ﬂ/
L z awv_ |
() 5704 M T s
ExKZ1 2

(NASETHOFOL) 488TDHPLOL

CE-202 M Circuit Diagram (P-COS)

F (TC40H138FN)

g —
e Ec , :; 5 =

)

T —

(IO —

T ——

(O ——H

LI ——

OO =1 ||

Lt U\I—

fadaad —
- LLLL_1¥QH ________ i
[CCCPCr bwm“mmmhﬁ

ég 107440138
A1l _lis
1 L, 3blS

LU U =
il

=

IR f:

S—

185

CE-516L Circuit Diagram

Frame GND FG
O

Q i
15-pin connector terminals (to PC-1350)
Pin Signal Direction Main signal name
No.
1 FG Frame ground
2 TXD Transmission data <« (SD)
3 RXD Receive data - (RD)
4 RTS Request to send <« (RS)
5 CTS Clear to send - (CS)
6 DSR Data set ready - (DR)
7 SG Signal ground (SG)
8 CD Signal detector - (CD)
9 (NC)
10 Vcce (External gate power) (<)
11 RR Receive ready <«
12 (NC)
13 Ve (for 1350 drive) (—)
14 DTR Data terminal ready - (ER)
15 (NC)

186

it Diagram

Ircul

CE-130T C

q
X3 40f J103gS

MS iamod

& = =

_440_NO

Y

T e o Pe

BRISLNS dY B (SPSH .Taozova d000HOS 2L
red Pl

Q@O ™
I?[o!@ 94

oL Dos

:WOQ

o o—8) ©

mvo»‘

o O

—o——0—-—{5) S0

1707
ad
ERR Va4 3 § : I@
¢ .ugw méo_
: moﬂﬁﬂT m\hQAT_ ” 7)Y
|
; £l
; _ o o
1 1 >
Lo &M*Sata Wz.oe
98 Wt moam soA_? Ly &
o Wx.oe
Qe i @
pX7
G2- 94
7% 2-SY
11
n>O._.w.>O,ml_+ Yo0i @
N 17
) o ©
. A0l =
Y yir 01 (44
9czH))
LFA0B) @ 3
Aot - = 2x %2
L6y I P
.])) 0 o
Sigin HITHINFD 9s71752 MNMH s
v.H.q.Q/
(g51-H0s3)

187

CE-130T

RS-232C level converter
CE-I30T is designed to meet EIA and JIS standards.

1. Specifications

1) Input/output signals are identified as mark state if less than -3V, and as space state if

more than +3V.
2) Load impedance is less than 7kQ for 3 to 25V of input, less than 3kQ for input less than

25V DC resistance.
3) Output signals are -5V to -15V for the mark state, and +5V to +15V for space state.
4) The effective load capacity at the terminal must be less than 2500PF including cable ca-

pacity.

2. Connector signal

DB-25 (W) is provided as a connector for the RS-232C.

CS RS
RE* DR RD
SG SD
ER
00711 1 { (
7 6 4 3 2
000000

* Connector signal (DB-25 (W))

CE-I30T uses pin 11 (RR signal) as Receive Ready. In the EIA standards (JIS), pin 11 (RR
signal) is not predetermined. Check the specifications of the device to be connected.

Note: For connection cables, different connection methods may be used depending on the

signal from the connected device. If a peripheral device does not have an RS-232C

connector, connection is impossible.

188

Levels of input/output terminals for a 25-pin connector (DB-25 (W)) are shown below.

Input signal: high +3 to +15V
low -3to -15V
Output signal: high +5 to +10V
low -5to -10V

The values were obtained using an output signal load of from 3 to 7K Q and a cable length

of approximately 1 meter. Therefore, the above conditions may not be satisfied if the load
1s outside this range or if a longer cable is used.

Pin arrangement CE-130-T

Pin Signal name Symbol Direction Function
number (from the main Unit)

2 Send data SD Output Data signal send from CE-130T

3 Receive data RD Input Data signal sent to CE-130T

4 Transmission RS Output High when CE-130T sends data.

request Low when transmission is com-
pleted.

5 Transmission pos- CS Input CE-130T sends data when this

sible signal is high. When this signal
goes low, C E-1 30T terminates
the transmission.

6 Data set ready DR Input High when the peripheral can
send or receive data. Low when
the peripheral cannot send or re-
ceive data.

7 Signal ground SG Standard voltage between
input/output devices are
matched.

8 Carrier detection CD Input CE-130T receives data when
this signal is high. When the sig-
nal goes low, CE-130T termin-
ates reception.

11 Receive ready RR Output High when CE-130T can receive
data. Low when CE-130T can-
not receive data.

20 Data terminal ready ER Output High when CE-130T's serial /O

circuit is open.

Refer to the CE-I30T Operation Manual for more details.

189

CIRCUIT DIAGRAM (1. PC-1350 CPU Circuit)

Sooocooooo0o
ol
M s dh e b o - L
S 1
[4 M-‘ AAYAYY
=h A To|o[xxo|x|uln A9~ - A%-190A
oy i o - o el b= o) R
~|2151G|E|1Z|12|Z|RIFF
E4 R Sl Rl S N
7 a2
I
| I
[Y
w
alolalolale
2212|2122
TITIPITIRT
= |a oo I
| t—f
52
| B ¥
| nig
| B 1nog
e-11 | - 15ng
H (AS- - Av-)99A it
| 918d s vy el
¥5-¥1 (YE-¥1 —
ey ot = 1O 1
aNg '
¥y=%1 (VE-¥) |
Ao aVIE=TIN | I ED
NO¥ \\
=95 e
|
1-2N3
Lan el
“ag [E]
E1-2N) 3
T 53
nEED ax
8-ZNI -
- 2Ha ang ITH
s (Hg- g€ 0€
] EE — NI
Z-200 230 B
F1-2ND v = €30 K] g6 1
] 2 £ i
¥-2N) ¥30 SNI
SH €2 52
L-Zh) o e —— -3 |
[T EEva z| o N
o v S T ot M e
(YE-E) LE-EN) g - ey = By ovles T
= g
: EED 9u 91 0% 6Y
IYE-E] EE-EN) ————— (0%~ 11 [VAt 70 o
LIND sy 81 iy oLy
IYE-E] IE-EN) f—— (99~ 11 e v R e
IYE-E) 61-END g G, v AN] (P 2ivfel St
= NI | e ot o
Ve b1 hEdens s 04 £y 92| oy 0220935 cnl® zIv
i ~ENIp Vi
I¥E-El SE-END 1353 = Lino v i 1Y
= S ok S O i
ELS 9€] iy
IVE-E] PE-ENI - 21no ta—
LvI SE 23l 01 9a
YE-E) 2-END £1n0 a——
vE 5 sa
IYE-E] BI-END 7100 sq
iod 3 (LR
(YE-E) ZE-EN) @ o U
(YE-E) 06-EN) g 3340 £a
E-E) B2 ENI 1] zury aqf - 280
1 s 1a
IYE-E) 62-END
TIT 21 (yd EJ
IYE-E) I-END @ 334 224
a9 Lt sE — (A0) GND
¥S-€)
AL e e [
Yiv - 0¥
¥S-€) SNE S53400Y
12 - 02-ENI g

104
E81

181
¥04
504
808
Loy

naJn

ELv

0981928

131

1f

S Y Y T —

La -

(BAd L¥OW3H OL)END

sng viva

v2-21

530
ve-21

¥30
vz-21

€30
ve-21

230
ve-21

130
vi-2)

A/Y
vi-2)

S1gA
(vi-2)

8a
vi-21

[
¥i-21

294
wi-21
wi-21
wi-21
wi-21
vg-21
YE-21
(YE-2)
¥y-21
wy-21
tyy-21
tvy-21
yy-21
yy=2)
wy-21

LK
vy-2)

9H
(Hy-2)

SH
wy-21

¥H
tyy-2)

EH
(-2

20
— (¥5-2)

IH
vz-2)

La
¥2-2)

9
we-2)

¥a
(¥E-2)

EQ
(¥E-2)

2a
ve=-2)
o) ve-2)

[

190

CIRCUIT DIAGRAM (2. PC-1350 Display Unit)

ﬁ o) (VE-1)
I we-11
wa 298
wi-n
S10A
ye-n
BA
ve-n
YA
YE- 1)
YH
YE- 1)
510
ve-1
V4
wi-1
LY]
wi-i
s34
wi-11
v3a
wi-u
€30
wi-1
£ wi-1
ﬁ ang 130
_ A | LS|es|6S|0g |19 vy |5y (9rlLy |8y
958 Y VS 1R3
A 3L AANKIT Y /2
— 1 A 09 A 0 0 4 ¥
00ES ¢ oLzs | 0725 ¢oizs | ¢ eis 17 A 2 &7
A A A [b4 A8 3] 0
V6625 | 6925 6625 6025 [
I L — A I L— —A
V 6z | ¥ 8925 | BE25 9025 [
. uit L A] L 4 w0
¥ Lszs | vV 1szs | Le2s v Lozs | £
b 1 - P — I 0] ea—
v 962 | 9325 9E2s v a0es | €5
R - L A A tb g
v sees | v sazs | 5625 | Ve 55
I : L4 [=8 I s A
r ve2s J ¥92S P YeZS r025 p 10 ss
r"Eszs [(e w [. P ES o
¥ 2628 a9-21 [2328 o [w [0 .:z o5l :“
1628 0s ¥ 1928 LEZS roees & EY
0625 1218 v 082S 168 Y 7 0€2S 195 Y o02s LES Y 2 29 s
¥ 6azs Nmau 6T 265 [seas ERNEEE B D
T mm;/_ ¥ ases ces N | sezs eosN esis £es i
L82S ¥218 Y P oLS2S 165 P oLaz2s *9S N " L&6IS YES N . g9 S ve-11
V a8z s2isN [sszs EAREED ER &8s ses N b IS S
V sezs 9215 N eses ses N sz 955N 1 s6is 968 N
V vazs ZisN [vses esN ¢ rzas s reis ces N o CE
V' E£825 g2ls N [€sas BES €22% me.A " E6LS 8ES 6 69 85
V zees 6215 2szs ses N zzes 695N [2sis 565 P
V828 0Els N 1528 toisy ez s rieis s I [
- ogzs 1IEIS N [0828 10IS Y ¢ o228 ILs F 061S 195 0915 12 P 24 2L LIS OLH S
¥ eLzs 2SN {7 evzs HIER RS s (esis EECIN I RTINS O CEKIE i
¥ eLes cEls NV eves coisy peizs TN peeis GO I EEETI N T 4 LI
V¥ LLzs 1845101 yels N {Lv2s (LN L ITICR " Lizs (€481Q1 LS N V is1s (248100 T LSIS 81 e 1dsial dic SL %15 LH el
1.~ ol =i}
¥ oczs | LESEYIS [seis™ [oves | LESEras HRREE LESESIS ERREE Leseras B 9515 1] LESEPIS B TR Tl
v sLes 91 SEIS N [5925 991 901N ¢ sizs 531 EEEREIE ¥l 995 5515 9] o €1 o BT SN s
¥L2S LELS 4 P~ ve2s LoI1S Y ¥ mizs LLS ¥BIS LS Y ¥S1s St ces ats 8L Lis rH t9y-11
ELes BEIS Eves BOIS El12S 8LS " EBIS 8¥S N F ESIS ¥ 265 s1s &L BIS t EH ws-13
Eals T \ e e
ez seisN 2128 s0Is Y 21z s “eeis 0N [TN P8 ECITTS W
roiLes 0% 1S 1y2s oLIs 1ies 08s rig1s 0ss 1S18 21 1 0z2s IH
0 6 8 L 9 S ¥ £ 2 |
E 2 2 2 2 2 2 e e 2
5 $55S5S58 5§
T | iiot] 8] 8] L] 9] s] #[€] 2
4 B B3 B 3 EA Y 3 PEIEIEAEA EAEY EAEAE [_
HAHRAARRHAAS F ol e e e e e soles|es|isos|ss [rsesfes [is ez |ez|czfpzfsz|vzfe2lzz iz
ot Akl (B bt el (o i e o] ® | oo @ = clslslslsls|s/s)s)s c|s)s)sfs)s)s)s)s]s
AN Pl
tvy-2) Jelorfu]arferfru]sifsifooelese _ _______ _ 2ediegocdeod _ _ 202 1r2jovelece] _ _ _ _ _ _ _ _ _ _m_f_msw,mom ||||||||| gt ifostfscy] _ _ ___ __ [esifise ef|c|o|s|e|ela]t
9IH - H|H|H|H|HIH[H|H]|S|S S|S|58|S s|S|S]S mm sS|s 7 s S|S5]|S|S $|S HI|H|H|H|H|H|H|H
% SdS1d % 7d4sS1d V#I €d4S14 ¥ L ﬁ ﬁ 24S14 ; u T 1d81d \i
wy-2) stfviferfza ou| 6 losulevs] _ __ ___ ___ fz2iarfefery] __ _ _ ____ _ 1 04 L] 1] RO)| {1 | .- f - [N -~ I { - ([[1 R e s 2l v|ofrfe]lelr]s]sle]e
9IH - EH H|H|H|H HIH[S]|S s|s|s|s S|s|s|S S|S|S|S S|s|s|S S|S|S|H|H|H|H|H|[H|H|H
3L11L-41 (06-2: I_

191

CIRCUIT DIAGRAM (3. PC-1350 Memory Circuit)

gor (Ve-7)
¥10 I (V2-1)
l/_ Ny
ZMS gcd
SE-YN) o
ETT) _ (A9~ - A%-193A
m:u..—l , i
ang , A1 GND)H
) (e}
o 4 SE-ENJIHS-1)
S5A gy 4 SEENIUS
I ¥S 99A TP TEENI
I ES 20 o @ LETENI THE- 1)
€ 2 10 - -ENDHS-1)
Zuvd a [CE]
[15 00 i Tas ¥ EETENI HS-)
B 05 ov 4 W— g FE-ENIHE-1)
53 441 T 2E-ENJ [HS
oy 9 6y ¥ N 1EENT (45
YE-TND L gy 2v GLIgHH o 05-ENJ (HS-
£E .zu.“ulc nN] b e ™ 631 340 o Bz-END S
IND AN —{ N INf— NN T
ZE-YND [9y « 62-ENJ (HS-
104 an—]IN f— nn WYy
LE-¥ND 01 5¢ 2-ENDTHS-1)
FEILT] AN — 3N IN|—nn [V
0E-¥NI prl———— 1 (D) o 61-END (H5- 1)
La N — IN IN|— NN 504
62-¥NI pr—— 2L £y — BL-ENJ(H5-1)
90 N — IN MN|—nn 104
82-rNIpl—— T El r4d | | < L1-ENJ(H9-
50 N — IN IN|— | iy
LZ- NI ¥l DN D | f 91-END(HI-
[N — N INf— N ELY
92- NI prif———| 50 [— SI-ENJ 91
2PN o b x 6E i €q El M EELY Ll ENT(H9-1)
“NIp————— ' 3
20 AN — 3N IN|— nn — 1y Y 2
¥2- NI prg————— Ll BE +q vl o 20 «f E1-END(H9-1)
1a K — IN IN|— N oLy
£2-YNI ppl———— Bl LE sa St ot 1q o 21-ENJ(HI-1)
0g NK— 3N IN[— 1N 6Y
22-*N) ————IN [9E sq El & 0a o | 1-ENJH9-1]
WNYE N — IN wow INF—NN 8y
_N‘.zu"n: 3 02 3 SE La Lt = 8 o :__ﬂ OL-END(H9- 1)
02-¥N3J AL’E_. 3 oo 12]> 86NA vE v WYY 8= L X S.ﬂ &-END (H9- 11
61-¥N2 Am:I Ly 22 95261925 EE (X3 (153 61 4 9 ¥ mq.n 8-ENI (H9-1)
eI — &Y £2 I 994 U v 5 Ev (A~ - A¥-1794 Sy LrEnaie-n
LY G —— 8y vz §131 [EL [1z 441 7] € STENIGe-L
91-9N) o ElY 52 o€ Ly 5 22| 9L I'g oy o S-ENIHI-1I
: 21y | ez el [z 024 gz o L
SI-¥N) viY 92 62 zLv 8Y 2v 4 *-ENIIHZ-1)
1y 224 N NN —1234 1]
it e [T 82z [XE] re ! LY oy ETENJIHE-1
El-rN)——— P L2-END (HI- 1)
¥ aw 12y La
- ———— mﬁH 20 — P4 92-END -1
ay El
LE-YN) ——— — P SZ-END(H-1)
PYEY P R ' #0d 59 g v2-END MO~ 11
= = i
v B va
6-tNI— 1 —p-f £2-END (H3-11
¥ EFITES (A1 GND €4
8- TND P eI me-
LN —— »q 12- E
= — P 1 2TENTHe- 1
9-rNd P 02-END (HI- 11
Al 0a
S-¥NJ
1
N ——
oy
E-¥ND
AsY
2-¥ND
Ak

192

CIRCUIT DIAGRAM (1. PC-1350 Key/LCD Matrix)

8VI
= zzz33x3 g @i enmin s | W w4 NOH
sl an= e Sge¥eq: GpRTEAT 533553332
¥FXXX XX XX XX X X X XXX
I O B e | e [| R G S] U 6 (M A | « (HE-1]
P T ol Lol M ano
T T T Y T T N WO e] R] el M A 0 9 5 Sl I PN [o Tk
e O ok R T ERR A S | AN —a [HE= 1]
BERERE [F e intstedien e] i o o 7 T FTTERET= (R TR"] T e vl L. e o0
T T T T R SH A 3 B .l +4-F+-4-F1- iy T £ S| TLT@
|40 8 Al o TR I e o] O L | [L E E e R
oo LT T Sy c ﬁ%@ o e
| I | R TR e | i R e R B ER R T e) P e | I 1 | I I | |
| | e L -+ 4-F+ T R T R N Lt I O R EA% |
I R etk S NN P gty SO, W D peel) Lol FORN BA%y N Y |||.|.I||I.|I.||..-_.llll.lli.lnnl_ | | I | | I ' ra:b“xmu__
| | | | I | | | oD B
||||||||||||||||| =TT .ilnl[|||||.||__j|||.l|||||.L | | | | I NO 440
+4-F4+4-F+ S R N) S _ i T T _lrlgrixm-:
M [i K,) i i O o e e () e e e T T
= 1 B Sl el) SR B E..II.rIITIIIILW_ IIIIIIIIIII - ___ _ _ __._:]Em...
% i i i i |||1|1n||“_llllt ||||| L“m||||||||||ll|||u “ “ HE- 1)
+ -+ =+ +4—-Ft+4-F+—-———== I avi
o i e o TR F - s SR = |
I I ° = > (HE- 1)
o S (5] S (o A PN B = E IS SN] IR (31 PP = I SvI
5 e 1 o 21 0 75) 1 O O O [A J
- L4THS ° o e HE- 11
|m—— e m el e =t A=} - 117
| Peam—— OOE
P 980 5 W B S L ;|]
B | s $44
| OOOE|- -
_ j o “ [————— 10 OO) 268 et e o L Zv1
1158 e Dol e | pijse— J_ e#.e#.e#.@
Loy - | FA=ETATET 5 s
BT IE N L O G 5 e T L) 0707070
g ke g TH=Ft+--FT A=kt Ft-———— |
g g 0 ag g 85 1 Lol b dol b b el by
238111 I s [] = 0:8:0:0:C.C e
EEREEREG dehbekh e ———— B a1 i B
I +-F+-4-F+ e o el i T I SR
SRR R — | 07010707070
T T S A L T IVER BER P ade g
EERE T B k . 0:0:0:0.0;0
s b g g e ¥ i e el Er R =) e atpreesr =
I Iy _ I O I O |]] o) i | B i |
EENREG T i tERERE 0,0:0.0:0,0
| | | | | | I | | Lb——————4 =iy ! | | i |
_ | I e _ I
[d dpba ===t Dby 0
(HE- 11
EREREIE o B
XXXXXXXX wovvune wugpvepog XXX XXXXX
= = = = = = = @ e e ol O Y e = A T B S]
o v -~ w N e e S O @ -

4013J3INNOD Q21 XTH1VW L3M

	INTRODUCTION
	TERMS AND CONCEPTS
	The Binary and Hexadecimal Number System
	Binary Arithmetic
	Logical and Bit Shift Operations
	Binary Coded Decimal
	Variable and Program Structure

	SYSTEM CONFIGURATION
	System Memory Map
	The CPU
	The Instruction Execution Cycle
	BASIC Program Areas

	MACHINE-LANGUAGE PROGRAMMING
	Using the PEEK Function
	Using the POKE Statement
	Running a Machine-language Program
	The CSAVE M Statement
	The CLOAD M Statement
	Sample Program 1: Simple Program
	Sample Program 2: Converting Binary Numbers to Hexadecimal Numbers

	PC-1350 I/O
	LCD Display
	The Keyboard
	The Serial Interface
	Other I/O Interfaces

	THE PC-1350 INSTRUCTIONS LIST
	1. Move Data Instructions
	1.1. Load Immediate
	LIr n	
	LIr n
	LIDP nm
	LIDL n
	LP l

	1.2. Load/Store a register into/from the accumulator
	LDr
	STr	

	1.3. Move data between memory and the accumulator
	LDM
	LDD
	STD

	1.4. Move data from one memory address to another
	MVMD
	MVDM

	1.5. Exchange data between two registers
	EXAM
	EXAB

	1.6. Block move of data in memory
	MVW
	MVB
	MVWD
	MVBD

	1.7. Block exchange of data in memory
	EXW
	EXB
	EXWD
	EXBD

	1.8. Increment or decrement a register
	INCP
	DECP
	INCr
	DECr

	1.9. Increment or decrement an external memory address register
	Ir
	Dr

	1.10. Increment or decrement register X
	IXL
	DXL

	1.11. Increment or decrement register Y
	IYS
	DYS

	1.12. Fill a block of memory with a single value
	FILM
	FILD

	2. Arithmetic, Logical and Shift Instructions
	2.1. Add/Subtract Immediate, Accumulator
	ADIA n
	SBIA n

	2.2. Add/Subtract Immediate, Memory
	ADIM n
	SBIM n

	2.3. Byte Binary Addition or Subtraction
	ADM
	SBM

	2.4. Byte Binary Addition or Subtraction with carry
	ADCM
	SBCM

	2.5. 2 Byte Binary Addition or Subtraction
	ADB
	SBB

	2.6. 2 Block BCD Addition or Subtraction
	ADN
	SBN
	ADW
	SBW

	2.7. Block Shift 4 bits
	SRW
	SLW

	2.8. Logical OR
	ORIA n
	ORIM n
	ORID n
	ORMA

	2.9. Logical AND
	ANIA n
	AMIM n
	ANID n
	ANMA

	2.10. Bit Text Immediate
	TSIA n
	TSIM n
	TSID n

	2.11. Compare Immediate
	CPIA n
	CPIM n
	CPMA n
	SWAP

	2.12. Shift Bits of a Byte
	SR
	SL

	2.13. Set or Reset The Carry Flag
	SC
	RC

	3. Jump Instructions
	3.1. Jump Relative
	JRcP n
	JRcM n

	3.2. Jump Absolute
	JPc

	3.3. CASE1 CASE2 This is a conditional branching instruction
	CASE1 CASE2

	4. Other Instructions
	PUSH
	POP
	LOOP n
	LEAVE
	CAL ln
	CALL nm
	RTN
	NOPW
	NOPT
	WAIT n
	OUTC
	OUTA
	OUTB
	OUTF
	INA
	INB
	TEST n
	CUP
	CDN

	APPENDIXES
	Specifications
	Machine Code
	Internal Representation of BASIC
	Memory Map
	System Subroutines
	Data Recording Formats
	Recording Procedures
	Key Code Table
	CPU Internal Block Diagram and Pin Signals
	LSI Explanation
	Gate Array (SC60220)
	Explanation of Display LSI (SC43537)
	CE-201 M Circuit Diagram (flat LSI)
	CE-516L Circuit Diagram
	CE-130T Circuit Diagram
	CE-130T
	CIRCUIT DIAGRAM (1. PC-1350 CPU Circuit)

