Qaq
e

AR

Q
»

\

&0

\

Q) €\ €\ ¢

SP00B 0

 {

-, -~
\

PR
4

AY

|

R R R R R R T TR

4y

a
|]

\2 (4 G QTR R
AV QT Y

[

€\

<

VRN

Panasonic

00000000 c}m‘
sssssises f'xends
00000000 T
00000:000

00000°000)
00000°000 gﬁwﬂ
00000°:000

00000000
00000°000
000002000
00000000
00000000
00000°000
00000°000
0B NOc000

&)
(7)) LU
< - .
m § 5 S
= 3 O 5
WL S w n
O o = 0 s
N £:= - Z <
O Eo Wy (/p]
£ I = 0 0
C oI = W Z
O 2= a & T
= 25 S z

-t

PO OO a S s e N DT T T TD DD O

l,

OOV VOVVUINELLLOEGOELVVOOOVOOIOOET

L 2
e
c ° TABLE OF CONTENTS
¢
3
: -3 CHAPTER 1: STATEMENTS AND COMMANDS
h TR R 1-1
> o | ASSIGNMENT 1-2
ATTACH ..o 1-3
e BYE .. 1-3
- CALL 1-4
e - CLEAR 1-4
- CONT 1-4
¢ ° DATA ... 15
e 3] About String Values 1-5
DEF 1-6
e DIM ... 1.7
, END ... 1-7
e FOR ... 1-8
4 L) Terminology 1-8
e Note On Endingaloop 1-8
@ K Notes On NEXT 1-8
) P No-Nos 1-9
e GET ... 1-10
~ GOSUB 1-11
e '’ GOTOcoooiiiiii 1-11
’
- IE 1-12
e INPUT . 1-12
e - LET o 1-13
-8 LIST 1-14
@ Interacting With LIST 1-14
) Note On Deferred Execution 1-14
e 3 NEWl 1-15
’ NEXT .o 1-15
¢ - FON ..o 1-16
e ° POKE ... 1-16
-3 PRINT ... 1-17
e How Values Are Positioned 1-17
e -4 PRINT With No Values 1-17
Miscellaneous Notes 1-18
e READ 1-18
REM ... 1-19
e RESTORE 1-20
e) RETURN 1-20
‘ STOP .. 1-20
< t D TROFF 1-21
- TRON ... 1-21
e
A -
Copyright © 1981 by Friends Amis, inc. All rights reserved. | 7 i ~
HHC™ is a Trademark of Friends Amis, Inc. 02 o)
o > |

(

| 2 ;
[~
¥ SERIAL INTERFACE ADAPTOR -
CHAPTER 2: INTRINSIC FUNCTIONS ¢ S tilizing the Serial ntertaco | | 7
ARITHMETIC FUNGTIONS ..., 21 g 3 Note About Protocols 78
---------------------------- 2-2 THEMODEM 710
FUNCTIONS THAT MAY BE USED ONLY AS ? itializi 7-11
PRINT VALUES..... 2-4 °< 3 (MIalZng e MOAGM -+
TRITC;OII__IOMFTRIC FUNCTIONS 2-4 [~ N CHAPTER 8: PEEKS AND POKES
erunctions ..., 2-4 ‘ -
Constants and Variables 2-5 C INPUT AND OUTPUT 8-1
Separability ... 2-6 [~ ? The System Device Table (SDT) 8-1
e 2 The ATTACH Statement 8-2
. . THEHELP AND I/OKEYS 8-2
CHAPTER 3: OPERATORS . @ THE KEYBOARD BUFFER 8-3
NUMERIC OPERATORS 3-1 [< _ Structure Of the Keyboard Buffer 8-3
STRING OPERATORS 3-2 . A The Pushkey Buffer 8-4
: a Buffer Locations 85
. - PEEKsand POKES 8-5
CHAPTER 4: RESERVED WORDS o FUNCTIONKEYS 8-6
e _ “Typing” a Function Key 8-6
CHAPTER 5: LINE NUMBERS, NUMBERS, e L EFX_EES;SDP/%I:AEEED KEY .. g;
AND STRINGS e ° Format Of the Date and Time 88
LINES 5-1 .3 ROTATION MODE 8-9
NUMERIC VALUES 5-1 e VARIABLES AND ARRAYS 8-10
INTEGER VALUES 51 2 Locations of Variables and Arrays 8-10
RULES FOR DISPLAYING NUMERIC VALUES (PRINT e ° iables 8-11
AND STRS) 51 N Formats of Variables
-------------------------------------- - . Formatsof Arrays 812
EI\&J[%I\EliL'):OR READING NUMERIC VALUES (INPUT 6o e s Format Of a Nuxweric Value ... 8-13
-- - - Other Useful Addresses 813
e - Finding a Variable’'s Value 8-14
CHAPTER 6: BASIC PROGRAM EDITOR : 3
QUICK REFERENCE - CHAPTER 9: ASCIl CHARACTERS
ADDING, DELETING, REPLACING, OR COPYING e 9 CONTROL CHARACTERS 9-1
ALINE ..o 6-1 4 DISPLAYABLE CHARACTERS 9-3
CURSORMOTION 6-1 e - ADDITIONAL CHARACTERS 9-5
:;\IESLEEF_%F'II'E CC);I:lAAIEAA%'I%EEF;SS 6-2 e =
.......................... 6-2 . .
SHORTCUTS 6-2 e CHAPTER 10: ERRORS
. ERROR MESSAGE FORMAT 10-1
@ 4 ERRORCODESocoiiiiiiiiii., 10-1
CHAPTER 7: PERIPHERAL DEVICES L
CONTROL CHARACTERS 7-1 e
ASCII Control Characters 7-1)
ESCAPE CONTROL SEQUENCES 7-2 4 J i
Opcodes 7-2 [A 3
THEKEYBOARD 7-5 J
THELCDo0 e 7.5 e °
THE TV ADAPTOR 7-6 .' -9
THEMICRO PRINTER 7-6 2 J
)
@ |
® ; 9 i
U} J _3
I <o G

4

& e

QQQQQQQ}@OO@Q@0@0@@0@00@600000000“

Ll

JdJUUCHL LS 2PBBLLBLLLLBS BPBLLLBLLLBLLLOGOGUGEGG GG

PREFACE

This book is a reference guide to use when programming with
Microsoft Basic on your HHC™ . It provides detailed informa-
tion that you can refer to as you write programs.

The companion volume to this manual is the Microsoft Basic
Tutorial, which teaches you how to program in Microsoft
Basic.

If you are familiar with the HHC, but not with Basic, you
can skim over the sections of the book that are marked with
{H}.

If you are familiar with both Basic and the HHC, and only
need to know how Microsoft Basic on the HHC differs from
other Basics, you can skim over most of the book: pay atten-
tion to the sections that are marked with {B}.
This book presents examples of the characters exactly as
they appear on the HHC display. We have used the p symbol
to indicate when a one-line display is continued on the foliow-
ing line in the example.

vi

USSR SEEES SUNEPY SRPE Sy Gy

LC’“QQQQ@@Q@@NQ@@@OQOOOOQQQGOOQOOOOQ

4

o

Kk

e

\g.

W G s

l&i‘ (’\l’ ’\l' < o \\.‘._

W G a

o ‘v ‘e

P

@ @ b ki

3
V<

CHAPTER 1: STATEMENTS AND

COMMANDS

Below is a complete description of every statement and
command that Microsoft Basic accepts. In describing the
syntax of the statements and commands, we will use the

following notation:

® Upper case letters should be used as shown.

® | ower case letters are “placeholders” for something you
must fill in when you write the statement.

® [x] means “x is optional.”

e [xlylz] means “you may choose one of x ory or z, or you

may omit this expression.”

e ‘{xlylz}’ means “you must choose one of x or y or z.”

n represents a numeric value (constant, variable,
expression, etc)."

nv represents a numeric variable or array element.

nc represents a numeric constant.

S represents a string value.

SV indicates a string variable.

sC represents a string constant.

X represents a value of either numeric or string
type.

v represents a variable of either numeric or string
type.

In represents a line number.

Where we need more than one element of the same type,
we will add numbers to the names: e.g., n1, n2, n3, . ..
4

?

See PRINT. ‘7’ is an abbreviation for PRINT.

Examples:

- I

Fe |

111 - Integer and numeric values are interchangeable, except where

noted otherwise.

1-1

{B}

"Order=3 LEM (0OSf7-3

LETRE (5

COHZLIITRE (S0

ASSIGNMENT

Format: [LET] nv
or [LET] sv

I

S

The value of the expression nor sis assigned to the variable
nvor sv§.

The reserved word LET is allowed for compatibility with
some other versions of Basic, which require it. An assign-
merét statement has the same effect whether or not LET is
used.

Examples:

LET s=5

N
<) <)

<3

W 9 <8 “

'
('S

F BB IIOCOONOCOOGOO O A

[N

[

ANS

4

P

G

[Y v

& 4 d el e e e

R

CONAOPIIAIBIFCOIINNS

i

|

ATTACH

Format: ATTACH n1 TO #n2

Attaches a device with device code n1 to LUN (logical unit
number) n2.

Valid values of n1 for each peripheral are given in Chapter 7.

Valid values for n2 are 0 through15.0is the system input unit,
normally attached to the keyboard. 1 is the system output
unit, normally attached to the LCD. 2 through 15 have no
“normal” attachments; you must attach devices explicitly
before you can use them.

Examples:
AT THECH &2 TO #2
ATTACH W TO #2455

ATTACH DTOH> TO #3

BYE
Format: BYE

BYE returns you from the Basic interpreter, which allows you
to edit and run a program, to the Basic menu, which allows
you to chose a program to edit and run, and to use the I/0
a{\d HELP keys.

A"Iways use BYE to return from the Basic interpreter to the

Basic menu. If you use the CLEAR key, the HHC’s memory

area will appear to be full, and you will be unable to run or

edit any Basic program.

If you accidentally use CLEAR to leave the Basic interpreter,

use the following procedure to restore the file system:

1. Return to the primary menu.

2. Select the file system.

3. Delete the file named B from intrinsic RAM (select B from
the file system’s menu and delete its name).

4. Leave the file system and select Basic from the primary
menu.

5. Select the file you were editing when you pressed
CLEAR.

6. Save the file with BYE.

{B} CALL

Format: CALL n

CALL calls a subroutine written in 6502 machine language
(not written in Basic).

nis the address of the subroutine’s entry point in the HHC's
memory. n must be in the range 0 to 65535.

If you are familiar with 6502 machine language, Basic’s use
of memory and the HHC'’s internal operations, you can
perform functions that are not otherwise available in Micro-
soft Basic by POKEing machine language subroutines into
the HHC’s memory and CALLing them.

Caution! Using an invalid value for n can have catastrophic
effects on your program and any other programs or data in
the HHC'’s storage.

{B} CLEAR

Format: CLEAR

The CLEAR statement does the following things:

® Sets all numeric variables to zero and all string variables
to null.

® Erases the index, step and limit of any active FOR/NEXT
loop, and the return pointer of any active GOSUB.

® RESTORESs the program’s DATA statements, if any.

Note that the CLEAR statement has no connection with the
HHC’s CLEAR key.

CONT (immediate mode only)

Format: CONT

Use CONT to restart a program after you have interrupted it

by pressing the C1 key, or after it has executed a STOP or
END.

You may display and change the values of variables while
the program is interrupted. Except for the changes you
make, the program will be in the same state when you
CONTinue it as it was in when it stopped.

You may not CONTinue a program after an error has
occurred; after you have edited the program; or before you
have begun RUNing the program.

1-4

l

\

COO0O0OON

COCANOCTIIIAINISCOTINTTLIINEIOOOO

| Y S N S S

CadoovessIBAIVBVLOLLLLBEIIIBBIBIOLUVLLLOLUGGO O G

DATA
Format: DATA v1 [, v2, v3,vn]

where each v is a numeric value or string value.

Contains data which a READ statement can read. See
READ for details of use.

A DATA statement may be inserted anywhere in your pro-
gram; flow of control goes around it.

DATA is legal in immediate mode, but it has no purpose
there.

About String Values

If a string value contains a comma, it must be enclosed in
guotation marks:

DETe Lo bk
FURFLE oD

HIDBLUEY "RLACE e
.

A string value containing lower case letters must also be in
quotes, or Basic will shift the letters to upper case when it
stores the DATA statement.

A string value with leading or trailing blanks need not be in
quotes. READ does not trim the blanks when it reads the
value.

A quotation mark that appears after the first character in a
string value is treated as a character in the value like any
other.

Examples:

DeTey S018. 2080188

ey 2

1-5

DEF (deferred mode only)
Format: DEF FN mm(pr) =ex

DEF defines a function named mm. mm may be any name
that would be valid as the name of a numeric variable. (But
the name of a function is distinct from the name of a numeric
variable or array; you can use the same name for both, and
Basic will always know the difference by context.)

pr is the function’s formal parameter. It may be any name
that would be valid as the name of a numeric variable. (But
the names of a numeric variable and a formal parameter are
distinct.)

ex is the body of the function definition. If it contains
references to pr, they refer to pr as a formal parameter, not
as a variable (if there is also a variable named pr).

When you refer to the function later in your program, Basic
does the following:
1. Calculates the value of the function reference’s argument.

2. Substitutes that value for the pr wherever pr appears in
ex.

3. Evaluates ex.

4. Returns the value of ex as the value of the function
reference.

Examples of definitions:

HEF FH o flsi=wz

RN INE T RE I

FH O gl EH
Exampies of use:

FEIMT FH AoEy:

FRIMT 3 FH

[Rt

HEFH YR

1-6

L

COFFIOPIIIINSONISS

TV IBIBIAGOOOOOC O O O

N

| .

WA U UL BBPBPB VOGO LBBOBOLOLOLLLLOLGGE O @

DIM

Format: DIM xa(n1 [, n2,. . .nx])
or DIM xa$(n1[, n2,. . .nx])

Defines an array with x dimensions. The array has nft
elements along its first dimension, n2 elements along its
second dimension, and so forth.

Array elements are numbered from O; thus, the array’s
elements are numbered 0 to n7-1 along the array’s first
dimension, and so forth.

You can define more than one array in one DIM statement.
Separate the array definitions with commas.

If you refer to an array without first defining it with DIM, Basic
automatically defines it as an array with one dimension and
10 elements.

Examples:
T Holan
DI HhECs. 20
HIF YSOMs Mg CHD
END
Format: END

END terminates execution of your program. Unlike STOP it
does not display a “Break in nnnn” message.

Examples:

EMTI

Fod=g THEM EMI

et

1-7

FOR
Format: FOR nv=n1 TO n2 [STEP n3]

FOR begins a FOR/NEXT loop.

Basic executes the statements between 'FOR nv=.. ’ and
‘NEXT x’with nv=n1, then with nv=n1+ n3, then with
nv=n1+2-n3etc. Basic stops looping after the last pass for
which nv<=n2.

If n3is absent, Basic assumes n3=1.

If n3<0, Basic stops the loop after the last pass for which
nv>=n2

Terminology

nv is called the index of the loop.

n1is called the initial value of the loop.

n2is called the limit of the loop.

n3is called the step or increment of the loop.

Note On Ending a Loop

You may leave a FOR/NEXT loop by doing a GOTO if you
wish. If you do, the final value of the index will be the value it
had the last time through the loop. If you allow a FOR/NEXT
loop to end naturally, the final value of the index will the the
value it had the last time through the loop, plus the step.

Note that a FOR/NEXT loop always executes at least once,
even when the initial value is past the limit.

Notes On NEXT

You may end two or more loops at the same point by putting
both of their subscripts in the same NEXT, innermost sub-
script first, like this:

begins outer loop

begins inner loop

ends both loops

COANNTOTTIRANISCTIINREABIIAARIEONOOOCGO O O A

|

Y

4

v

;J-iouc‘»uwooooaoooobmomouoooooddﬂddd'

If you want to write a NEXT that terminates only the
innermost loop (or if there is only one open locp it could
apply to), you may omit the index completely:

begins loop

ends loop

No-Nos

if two or more FOR/NEXT loops are nested and they allend at
the same point, you must end every loop in a NEXT state-
ment:

begins outer loop

begins inner loop

does not end both loops

f\void doing the following things when you write FOR/NEXT
0ops:

L Changing.the limit or step after the start of the loop. (The
change will not affect the execution of the loop.)

® Entering a loop by executing a GOSUB, GOTO, or IF ...
t THEN instead of executing FOR. (You'll get an NF error
. when you execute the NEXT)
You may always leave a FOR/NEXT loop with a GOSUB,
then RETURN into it. You may also leave a FOR/NEXT
loop with a GOTO, then return to it with a GOTO, but that
IS not good practice; it is difficult to follow and is liable to
give rise to programming errors.

° _Changing the value of the index inside the loop. (It works
in this Basic, but may not work in others, and it is
generally a bad practice.)

o Usin? an integer variable for the index (you'll get an SN
error).

1-9

Examples:

GET OHE

LET #E.OHE

GET #HOH CHE

......

GOSuUB

Format: GOSUB In
B} GET

Calls a subroutine; transfers control to the first statement on
line number In. Executing a RETURN will return control to

Format: GET [#n,]sv the next statement after the GOSUB.

or GET [#n;]sv

Example:
The two forms of GET shown above are completely equiva- - COSUE a1
lent. Ll 1y
Inputs one character from LUN (logical unit number) n and
assigns it to string sv.
If the LUN is omitted, Basic assumes #0 (normally the
keyboard).
If the LUN is #0, Basic does not echo the character on the - GOTO

LCD, as it would for INPUT.

The ENTER key counts as an input character like any other.
So do all of the other “non-character” keys except ON, OFF
CLEAR, which have their usual functions, and SHIFT and
2nd SFT, which apply to the next key pressed as usual.

Note: there are two restrictions on your use of the keyboard
when you are using GET. First, GET does not “read”
function key definitions correctly. It misses a keystroke for
every program line that is executed between one GET and
the next. Second, GET does not read keyboard characters
correctly if you “type ahead” of the program:; again, it misses
a keystroke for every program line that is executed between
one GET and the next while keystrokes are waiting to be
read.

Format: GOTO In
Transfers control to the first statement on line number /n.

Example:

QOQOOOOOOQQQOG}&@QQOGOOQOOOOON

P @8O &
6000(5u\-o\b‘oo00000\)000000"000606000&‘

|

expression, you will get an SN error.

v1, v2, v3,... are the variables to be read. Each of them may
be numeric, integer, or string.

INPUT reads values into the variables in the order that the {B}
variables appear in the statement. A value may be terminated

by a comma or end-of-line; except that if a value read into a
string variable begins with a quotation mark, it is terminated
only by a second quotation mark or end-of-line.

If INPUT receives too few values on the keyboard, it prompts
the user for additional values with ‘27", If it receives too few
values from a peripheral, it simply reads another record. If
input receives too many values from the (last) input line or
record that it reads, it discards the extras. Note that this is
different from the behavior of READ, which saves the extras
for the next READ.

IF

Format: IF logical-expression GOTO in
or IF logical-expression THEN stmt[:stmt. . .stmt]

Evaluates logical-expression. logical-expression is
usually an expression involving a logical operator like ‘<’ or
>=", but it may be any expression that evaluates to a
numeric value.

It logical-expression has a non-zero value, IF does a
GOTO to In, or executes each stmt from THEN to the end of
this line.

If logical-expression has a zero value, IF does nothing.

Examples: Examples:

\

INPUT (deferred mode only)

Format: INPUT [#n,][“prompt™:lv1,v2,v3,. . .
LET

Reads a line of input from the keyboard or from a peripheral.
nis the LUN to read from. If nis omitted, Basic assumes LUN
#0 (the keyboard).

“prompt” is a prompting message. If it is present, INPUT
prompts the user with this message, suffixed with a ‘?’. |
“prompt” is absent, INPUT prompts the user ‘?.

“pr_ompt” must be a string constant. if you use a string
variable, INPUT will try to read into the variable. If you use an

See Assignment. LET is equivalent to an assignment state-
ment.

QQQOOOOOOOOOQ000000@00“0000000@

L)

1-12

CLOLULBBIBIIBIBIBULLULLBIBBIBIBVVLOULLOUOLLLL G L.

L

e, R4
1
1
] NEW
B LIST ¢
@ Format: NEW
Format: LIST 3 3
or LIST #n c e NEW does the following things:
or LIST In c 2 ® Sets all numeric variables to zero and all string variables to
or LIST #n,In null.
[~ 9 ® Erases the index, step jcmd limit of any'active FOR/NEXT
LIST begins listing the program you are editing at line In. If In s loop, and the return pointer of any active GOSUB.
is not given, LIST begins listing the program at its first line. |~ ® Deletes all the lines from the program.
n is the LUN the list should go to. If n is not given, Basic [2 Since NEW deletes all the lines from your program, and {B}
assumes LUN #1 (normally the LCD). s affects the program stored in the memory area as soon as itis
¢ - entered, you should use the statement very cautiously.
. s
Interacting With LIST e -
When you enter LIST and press RETURN, LIST displays the e .
first line you have requested. (If you are listing on a device ‘
other than the LCD, you may have to press # to see the first e ’ NEXT (deferred mode only)
line.) L
If the line is too long to fit on the LCD, LIST displays its Q e Format: NEXT
beginning, and then rotates it until the end becomes visible. e - or NEXT nv
To stop the rotation before the end becomes visible, press [
any key. & , or NEXT nvx, . . . ,nv2,nvt
To see the second line, press . To see the third line, press » @ g
again, and ?2% on. When you press - after seeing the last line, e A Ends : FOdR/NEf)t(J I|O°p'b . ded. If nvis omitted. NEXT
LIST ends. -7 nvis the index of the loop being ended. ,
Ti d LIST i ENTER i d of -] ends the innermost loop now open. if several nv s are used
o en at any point, press instead of - e on one NEXT, the one closing the innermost loop must be
To edit a line, LIST the line and use the editing keys (see e = first.
Chapter 6) as necessary. When you are done editing the line, . ; it f FOR
press ENTER. LIST stores the changed line in your program c K For more information, see the description o :
and ends. You must use LIST again to see and edit more of s
your program. e
If you begin editing a line and then decide not to change it e L
after all, press the - key. Basic will list the next line without [
storing the changed line in your program. e
_ e *
Note On Deferred Execution e °
You can use LIST in a program, but when you are done o
executing LIST your program will end. In other words, LIST e
behaves as though an END statement were built into it. P> .
(2 :
- Unlike the HHC'S file system editor, the Basic editor only lets you ¢
move down in a file. You cannot use the & key to move up. ¢ © 9
1-14 6\ - a e
Y i |

ON

Format: ON n GOTO In1,In2,. . .Inx
or ON n GOSUB In1,In2,. . .Inx

Evaluates n and truncates the result to the next lower integer
if necessary. If n<<1 or n>x, ON does nothing (i.e., the next
sequential statement is executed). If n=1, ON does a GOTO
or GOSUB to 1n1. If n=2, ON does a GOTO or GOSUB to
1n2, and so forth.

Examples:

POKE
Format: POKE nt,n2

Stores n2in the HHC’s memory at the memory address n1.

n1must be in the range 0 to 65535. n2 must be in the range 0
to 255.

Caution! Since POKE stores data directly into the HHC's
memory, there is no checking to prevent you from POKEing
data into the wrong place. If you use POKE with improper
valuss for n7 or n2, the results will be unpredictable, and can
be catastrophic. See the chapter on PEEK and POKE in the
Microsoft Basic Tutorial Guide for more information.

For a discussion of useful PEEK and POKE addresses, see
Chapter 8.

CROAQOIPIIACOIIISAIIANNNANANANONOOO O

\

f

C OGBS BB GO BB BBBDBDB®EGOG OV O OO U

PRINT

PRINT [#n]x1 {px2 {5 oxy [}

Format:
? [#n]

‘“?”is an abbreviation for PRINT. If you enter *?’ in a statement,
Basic will display ‘PRINT’ when you LIST the statement.

PRINT writes information to the LUN (logical unit number)
specified by n. If nis absent, Basic assumes LUN #1 (nor-
mally the LCD).

How Values Are Positioned

Each x is a numeric or string expression. PRINT writes the
values of the expressions in the order they appear in the
statement.

PRINT divides the output line into zones, each 16 characters
long. The first x is displayed at the beginning of the first zone.

If the first and second x’s are separated by a semicolon,
Basic puts no spaces between them. (But recall that a space
is displayed at the end of a numeric value, as part of the
value.) If the first and second x's are separated by a com-
ma, Basic skips to the beginning of the next zone before
displaying the second value.

If the last xis followed by a semicolon, Basic does not end the
line; the next PRINT statement will add data to the end of the
same line. If the last xis followed by a comma, Basic does not
end the line, but skips to the start of the next zone. If the last x
is followed by neither a semicolon nor a comma, Basic ends
the line, so that the next PRINT statement will begin writing
data at the start of the next line.

Basic has two special functions, SPC and TAB, which may be
used only as PRINT statement expressions. SPC (N) inserts
N spaces in the output line. TAB (N) advances the cursor to
column N, if the cursor is already at or past column N, TAB
does nothing.

PRINT With No Values
A PRINT statement may have no x’s, like this:

or

{B}

{B}
{B}

Such a PRINT statement writes a blank line, or ends the

current line of output if the previous PRINT statement ended
with a semicolon or a comma.

<

<

<

1~

7

<

Miscellaneous Notes]
The character that separates the LUN from the first x may be C

either a comma or a semicolon. The two are equivalent in this

context. Since they come before the first x, they have no c
effect on the output. ¢

Examples: | 2

e

e

3 S e

e

é.

¢

®
C -

e

e

|~

e

READ e

e

Format: READ v1 [[v2, v3,. . ., vn] e
READ reads data from one or more DATA statements. e
Data items are read from DATA statements left-to-right and e
from the beginning of the program to the end. One item is read -

for each of the variables v1, v2, v3, . . . G
If a READ runs out of data in one DATA statement, it begins [-
reading the next. If a READ has data left over when it is done p

reading into its variables, it leaves the data for the next READ ¢
to get. e :
.

-« al

Y

FC SO Y Gy ey S S

[[)
> > >

\»

{

4 €@ O G G & F & B ®» & & O O O o '\v\e

Examples:

REM

Format: REM followed by a remark of any sort.

REM begins a remark line. A remark line may be used to
include any sort of useful information in a program, such as
the name of the author, purposes of the variables, or notes
about how the program works.

Basic inserts a space between REM and the beginning of the
remark. Thus, if you enter this,

Basic will store this:

4

and if you enter this,

Basic will store this:

(with two blanks after the REM).

Note that REM turns an entire lineinto a re'mark. The remark
is not terminated by a colon, as conventional Basic state-
menis are.

Examples:

RESTORE
Format: RESTORE

“Rewinds” the program’s DATA statements so that next
READ statement will read the first data item on the first DATA
statement.

RETURN
Format: RETURN

Returns control from a subroutine to the statement after the
most recent GOSUB not yet RETURNed from.

STOP
Format: STOP

Interrupts execution of the program and displays the mes-
sage

1-20

k

CRAAOCIPPIIANONCIIVI IO TPIPPNANOON

CTONTO OO0 A

\

e e S

VOGGLLSIIIIOUUOUOEGEIBISISTSTRTIOOOOOOOLOL O

on the LCD. (nnnn s the line number of the line the STOP is
on.)

After STOPing a program, you can continue it with the CONT
statement. See CONT for more information.

TROFF (B}
Format: TROFF

Turns off the program execution trace that is turned on by
TRON.

TRON {B}
Format: TRON

Turns on Basic’s execution trace facility. When the trace
facility is on, Basic displays the line number of each statement
that it executes in deferred mode. The trace display looks like
this:

where each nnis the line number of one line in the program.

Once the trace facility is turned on, it remains on until it is
turned off by TROFF, or until you return to the Basic menu with
BYE.

1-21

OQQ(‘OOOOOOOOOQGQOQ

\

®
Y OUOI BB IR BOIPOSI BB IIPIPOIOOOULOOUVOU O

L«QOQQOOO@QQOQOO

L
E

CHAPTER 2: INTRINSIC FUNCTIONS

ARITHMETIC FUNCTIONS

nv = ABS (n)
Returns the absoiute value of n.

nv = EXP (n)

Returns the constant E (2.71828183) raised to the power
n. The maximum value of n that will not produce an over-
flow error is 88.02969.

nv = FRE (n) {B}

Returns the number of free bytes of memory available for
storing and running programs. This is the size of the cur-
rent memory area, minus the amount of space already
occupied by programs and data. n is ignored.

nv = INT (n)

Returns the largest integer nv such that n< = nv. INT(1.1)
is 1; INT(1) is 1; INT(.9) is O; INT(-.1) is -1.

nv = LOG (n)

Returns the the natural (base E) log of n. To obtain the
base Y log of X, use the formula LOG(X)/LOG(Y).

Example: the base 10 (common) log of 7 is LOG(7)/
LOG(10).

nv = PEEK (n)

Returns the value stored at memory address n. n must be
in the range 0 to 65535. nv is in the range 0 to 255.

nv = POS (n)
Returns the length of the current output line.

If you execute POS immediately after ending a line of
output or PRINTIing a carriage return, POS returns the
value 0. PRINTing a printable character (code #32 or
greater) adds 1 to the value POS will return. PRINTIing a
control character has no effect on the value.

The value of POS is affected by output on the LCD and on
every peripheral. For example, if you execute the following
code:

2-1

sv = CHR$(n)

Returns the character that is represented by the number n
in ASCII notation. For example, CHR$(71) is ‘G";
CHR$(33) is ‘I

If n<0 or n> =256, CHRS$ gives an ‘FC error'.

the value returned by POS will be 7, even though the
lengths of the current output lines on the LCD and LUN #2
are 3 and 4, respectively. Thus, you must avoid doing
output on one LUN while building up a line of output on
another if you want POS to have meaning.

sv = LEFTS(s,n)

Returns a string value consisting of the first n characters of
s.

If nis not an integer, LEFT$ truncates it.

If nis zero, LEFTS$ returns the null string.

If n>LEN(s), LEFT$ returns s.

If n<0 or n> =256, LEFTS$ gives an ‘FC error’.

nv = RND (n)
Returns a “random” number in the range 0< = RND(n)<1.
The first time you call RND, use a negative n. This makes
RND use n as a “seed” to begin generating a random
number sequence. The same seed always produces the

same sequence. RND returns the first number in the sequ-
ence.

On subsequent calls to RND, use a positive n. This makes

nv = LEN (s)
Returns the length, in characters, of the string s.

sv = MID$(s,n1,n2)

ND return the next random number in the sequence.

Using a zero value for n makes RND return the same
random number it returned the preceding time it was cal-
led. This is sometimes more convenient than saving the
last value in a variable.

nv = SGN (n)

Returns the sign of n: 1 if n>0, 0 if n=0, -1 if n<0.

nv = SQR (n)

Returns the square root of n. Equivalent to n-°. Causes an
“FC error” (“illegal quantity error”) if n<o0.

SQR(N) produces the same result as N-5, but executes
more quickly.

O‘GG‘(‘GQOOQGOOOQGQG‘(\“(\OO“QN

Returns a substring of s beginning at the nT'th character,
n2 characters long.

If n1is 1, the substring begins at the first position in s; if nis
2, the substring begins at the second position in s; and so
forth.

If n1 is not an integer value, MID$ truncates it. If
n1>=_LEN(s), MID$ returns the null string. If n7<0 or or
n1>=256, MID$ gives an ‘FC error’.

If n2=0, MID$ returns the null string. If n2is greater than
number of characters remaining in the string from charac-
ter n1 to the end, MID$ returns the entire part of the string
from character n? to the end. If n2<0 or n2> =256, MID$
gives gives an ‘FC error’.

sv = RIGHTS$(s,n)

Returns a string value consisting of the last ncharacters of
S.

RIGHT$ treats unusual values of n the same way that

STRING FUNCTIONS LEFT$ does.

nv = ASC (s) sv = STR$(n)

Returns the number that represents the character s (the
first character of s, if s is more than one character long) in
ASCII notation. For example, ASC("“G") returns 71;
ASC(“!") returns 33.

If s is the null string, ASC gives an FC error.

2-2

[
{
F

bOOGQOO«'OQ‘

"‘

%@00(&«50\&&0&00000\b’\bmowwooooooooooo'

Returns the value of n, converted to a string. For example,
STR$(71) is ‘71",

STR$ uses the same conversion rules that the PRINT
statement uses when it displays a numeric value.

2-3

nv = VAL (s)

Returns the value of s, converted to a number. For exam-
ple, VAL('71") is 71.

VAL uses the same conversion rules that the INPUT state-
ment uses when it reads a numeric value. If the string value
cannot be interpreted as a number, VAL ignores everything
from the first invalid character to the end of the string. Thus
VAL("5X”) returns the value 5: VAL("FGHRTY") returns
the value 0.

Note that VAL, like INPUT, considers a lower case ‘e’ to be
an invalid character in a number expressed in scientific
notation. For example, ‘2.5E3’ is valid: ‘2.5e3’ is invalid,
and will return the value 2.5.

FUNCTIONS THAT MAY BE USED ONLY AS
PRINT VALUES

SPC (n)
Prints n spaces.
If n<0 or n> =256, SPC gives an ‘FC error.

TAB (n)

Inserts enough spaces before the following value to make
the value begin in column n. If the displayed line is already
filled up to or beyond column n, TAB does nothing.

If <0 or n> =256, TAB gives an ‘FC error'.

TRIGONOMETRIC FUNCTIONS

Microsoft Basic on the HHC does not have built-in trigo-
nometric functions. You can use the following subroutines to
calculate trigonometric functions if you need them.

These subroutines are based on procedures described in
Software Manual for the Elementary Functions, by Cody
and Waite "

The Functions

The trigonometric functions implemented by these sub-
routines are: SIN, COS, TAN, COTAN, ATAN (arctangent) and
ATANZ2 (another version of arctangent).

i1 Software Manual for the Elementary Functions , Cody, William J.,
Jr., and Waite, William. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1980.

2-4

ﬁ

TSI IRANNANICFTNANANOOO QOO

oww«swwmwwww(vooumwwo»uooooooooooo<

COARONOTPIININAIONG

SIN, COS, TAN and COTAN expect an angle, inradians, in the
variable TX. They return the result in TR.

The functions reduce large angies to the smallest possible
range before evaluating a function. Very large angles cause
the functions to lose precision, since such farge numbers
cannot be represented as precisely as small ones. See Cody
and Waite for details.

ATAN expects a scalar input value in TX. It returns its result, in
radians, in TR.

ATAN2 expects two inputs in TU and TV. It returns its result, in
radians, in TR. ATAN2 calculates the angle between the posi-
tive u-axis and the directed line segment to the point (TU,TV).

If TUis zero and TV is non-zero, ATAN2 is defined to be *pi/l2.

Constants and Variables

The subprograms use variables beginning with the letter K to
refer to constant values. This speeds up execution signifi-
cantly, since interpreting numeric constants is Microsoft
Basic’s slowest operation by a large margin.

All “non-constant variables” in the subprograms begin with
the letter T.

Most of the “constant variables” are preceded by remarks
that list the corresponding values in the Cody and Waite
algorithms. Note that Cody and Waite sometimes use the
same names, such as C1, C2, C3, .., for different constants
in different pairs of functions. The subprograms store these
constants in distinct variables.

The table below shows how the names of “non-constant
variables” correspond to the names used in Cody and Waite’s
flowcharts.

SIN and COS

variable use
TF f
TN XN
TR g. R(g) & result
TS SGN
TT --
X X
TY Y

2-5

L

TAN and COTAN

variable use
TF f
TN XN
TR result
TS XNUM
1T g & XDEN
TX X

ATAN and ATAN2

variable use
TF f; exponent of TV
TN N; exponent of TU:; internal-format

exponent of most numeric variable
most recently referred to

TR result
TU U
TV Y
TX X

TY g & R(g)

Separability

The subprograms are divided into three groups: SIN/COS,
TAN/COTAN, and ATAN/ATAN2. Each group is independent of
the others, and may be used alone.

The initialization section is sub-divided by the subprograms
that the constants serve. If you include only one or two of the
subprograms in a given program, you may include only the
constants used by those subprograms. But note that some
constants serve more than one pair of functions; these con-
stants are listed separately from the others.

1100 FC$ = “ FC ERROR”

1200 REM »-FOR ALL FUNCTIONS*++
1210 REM EPS

1220 KF = 2E - 16

1230 REM +SIN/COS & ATAN/ATANZ «+«
1240 REM P12

1310 KA = 1.57679633

1320 REM =+SIN/CQOS*++

1330 KB = INT (3.14159265 + 2 A~ 16)
1340 REM 1/PI

1350 KC = .318309886

1360 REM C1

2-6

i

+

CROAAQOIIINIAIOCIIISTPIRTRINNNAGCNAAONO O O O

WD OO BSOS PPOIDPBBBOOBEGOOLOOOV G

1370
1380
1390
1400
1410
1420
1430
1440
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
£1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
10000

KD = 201/ 64
REM C2
KE = .967653590E - 3
REM R1,R2,R3,R4,R5.
DIM KK(5)
KK(0) = - .166666666:KK(1) = .833333072E - 2
KK(2) = - .198408328E - 3:KK(3) = .275239711E - 5
KK(4) = - .238683464E - 7
REM ***TAN/COTAN -«
REM YMAX
KG = INT (2 ~ 16 + 3.14159265 / 2)
REM 2/P|
KH = 636619772
REM C1
Ki = 201 /128
REM C2
KJ = .000483826795
REM EPSI
KL = .85E38
REM =+ ATAN/ATAN2 »+x
REM 2-SQR(3)
KM = .267949192
REM SQR(3)
KN = 1.7320508
KP = 3.14159265
REM A0,A1,A2,A3
DIM KQ(4)
KQ(0) = 0:KQ(1) = .523598776
KQ(2) = 1.57079632:KQ(3) = 1.04719755
REM P1
KR = - .720026849
REM PO
KS = - 1.4400834
REM Q1
KT = 4.75222585
REM QO
KU = 4.3202504
REM ***TAN***
REM P1
KV = - .111361440
REM P2
KW = .00107515474
REM QO
KX =1.
REM Q1
KY = - .444694772
REM Q2
KZ = .0159733921
STOP
REM »x«TR = SIN(TX)xxx

2-7

10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120

10130
10140
10150
11000
11010
11020
11030
11040
11050
11060
11070
11080
11100
11110

11120
11130
11140
11150
11160
11170
11180
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120
12130
12140

TY = ABS (TX):TS = SGN (TX): GOTO 10050
REM =+sTR = COS(TX)s*
TY = ABS (TX) + KATS = 1: GOTO 10050
REM COMMON TO SIN & COS
IF TY > = KB THEN PRINT “SIN/COS”:FC$: STOP
TN = INT (TY « KC + .5)
TT = 5«TN:IFTT > INT(TT) THEN TS = - TS
IFABS (TX) < > TYTHENTN = TN - 5
TF = (ABS (TX) - TN » KD) - TN « KE
IF ABS (TF) < KF THEN TR = TF: GOTO 10130
TR = TF+~TF
TR = ((((KK(4) « TR + KK(3)) » TR + KK(2)) «pr
TR + KK(1)) « TR + KK(0)) » TR
TR = TF + TF« TR
IFTS <0 THEN TR = - TR
RETURN
REM «++TR = TAN(TX) e
GOSUB 11100
IF TN = INT (TN) THEN TR = TS/ TT: RETURN
TR = - TT/TS: RETURN
REM «+«TR = COTAN(TX) s+
IF ABS (TX) > KL THEN PRINT “COTAN":FC$: STOP
GOSUB 11100
IF TN = INT (TN) THEN TR = TT/ TS: RETURN
TR = - TS/ TT: RETURN
REM COMMON TO TAN & COTAN.
IF ABS (TX) > KG THEN PRINT “TAN/COTAN":p
FC$: STOP
TN = INT (TX « KH + .5)
TF = (TX- TN« Kl) - TN « KJ
IFABS (TF) <KF THEN TS = TETT = 1: GOTO 11180
TT = TF+ TF
TS = (KW +*TT + KV) «TT~TF + TF
TT = (KZ+TT + KY) « TT + KX
TN = 5« TN: RETURN
REM ««TR = ATAN(TX)***
TF = ABS (TX): GOSUB 12200
IFTX <0 THEN TR = - TR
RETURN
REM ««+TR = ATAN2(TU, TV)ssx
IF TU < > 0 GOTO 12080
IF TV = 0 THEN PRINT “ATAN2":FC$: STOP
TR = KA: GOTO 12130
TN = TV: GOSUB 12310:TF = TN
TN = TU: GOSUB 12310
IF TF - TN > 126 THEN TR = KA: GOTO 12120
TF = ABS (TV/ TU)
IF TF = 0 THEN TR = 0: GOTO 12140
GOSUB 12200
IFTU <0 THEN TR = KP - TR

I

|

2-8

L)

CRAAQGOITIANIIOTIIIIRINNNAOCNOAOONO O O G

VOB BIBSIESIBOVGOEIIBIIIAIIIBVOOCOOOOUOU O

12150
12160
12200
12210
12220
12230

12240
12250
12260
12270
12280
12290
12300

12310
12320

IFTV<O0THEN TR = - TR
RETURN
REM COMMON TO ATAN & ATAN2. IN=TF OUT=TR.
T™N =0
IFTF > 1 THENTF = 1/ TFTN = 2
IF TF > KM THEN TF ((TF « KN) - 1)/ (KN + TF):TN =
TN + 1
IF ABS (TF) < KF THEN TR = TF. GOTO 12280
TY = TF« TF
TY = ((TY KR + KS) « TY) / (TY + KT) « TY + KuU)
TR =TF + TF+TY
IFTN > 1 THEN TR = - TR
TR = KQ(TN) + TR: RETURN
REM TN=EXP. OF MOST RECENTLY REFERENCED P
VARIABLE
TN = PEEK (PEEK (133) + 256 « PEEK (134))
RETURN

\
U UdUddudddd

TP BOINNINNONIONONOOCOONONOOOO®

COARBOININFNNSONNOES

ANCVRTRFY

TR TR

PV ULLISIISS

»

A

> > » »

'

CHAPTER 3: OPERATORS

NUMERIC OPERATORS

Operators are listed in descending order of priority, i.e., the
operators with the smallest “priority” numbers have the
highest priority.

Numeric Operators

oper- pri-
ator ority function example of use result
0 0 overrides other A=5+(4+3) A=35
priority rules
1 negation A=-8A~2 A=64
~ 2 exponentiation A=2~ 3 A=38
* 3 multiplication A=2-6 A=12
/ 3 division A=8/2 A= 4
+ 4 addition A=8+1 A= 9
- 4 subtraction A=8-1 A=7
= 5 s equalto IF 5=0 GOTO 90 no action
<> 5 is not equal to FL=5<>0 FL=-1
< 5 is less than
<= 5 s less than or equal to
> 5 is greater than
>= 5 isgreater than or equal to
NOT 6 logical "not™" IF NOT 6=5GOTO 90 goto 90
A=NOTA A=0
AND 7 logical “and"!"! IF 1 AND 0 GOTO 90 no action
A=1AND 1 A=1
OR 8 logical “or"" IF 1 OR 0 GOTO 90 goes 0 90

A=00RO

1. Logical operators act on integer values rather than numeric
values. Integer values must be in the range -32768 to +32767. A
value out of this range causes an FC error.

3-1

STRING OPERATORS

String Operators

oper- pri-

ator ority'® Function example of use result

—_
=
o

overrides other
priority rulesf?

+
REN

concatenation AS='8+1 A% =81
is equal to

is not equal to

is less than

is less than or equal-to
is greater than

is greater than or equal to

IF XX'="X' GOTO 90 no action
FL=XX'<>X" FL=-1

A

A
by AV

oo,

v

Where Basic must disregard the order of precedence to

avoid a TM error (type mismatch), it does so automatically.
Here is an example of such a situation;

;Ti 3

The normal order of precedence would evaluate A + X$ first.
That would produce a type mismatch, however, so Basic
evaluates ‘X$=Y$' first, yielding a 0 or -1, which may be
added to A.

2. There are no situations in Microsoft Basic where parentheses
may be used to alter the order of precedence in a string expression;
however, parentheses are valid in such expressions.

QQQQQGQQOQOGQOQ0@000@@"000000003«
VOB IBILLOLUUVUGISIIIBIBBUUUOOOLROLO O

3-2

E

CHAPTER 4: RESERVED WORDS

ABS IF REM
AND INPUT RESTORE
ASC INT RETURN
ATTACH LEFT$ RIGHT$
BYE LEN RND
CALL LET RUN
CHRS$ LIST SGN
CLEAR LOG SQR
CONT MID$ SPC
DATA NEW STEP
DEF NEXT STOP
DIM NOT STR$
END ON TAB
EXP OR THEN
EN PEEK TO
FOR POKE TROFF
FRE POS TRON
GET PRINT VAL
GOSUB ?
GOTO READ

41

e nnaORORPIROOCOIERIIRIIOIRIIOIOIANORAARG

B GG OB B BB ®E®eE®eO0 00000 O

TR TS

»

» W

N

& W W

CHAPTER 5: LINE NUMBERS,
NUMBERS, AND STRINGS

LINES

Maximum length: 80 characters (after Basic has edited a
line into storable form)

Minumum value: 0

Maximum value: 63999

Values allowed: any integer value from minimum to max-
imum.

NUMERIC VALUES

Maximum/minimum value: approximately =1.70141+10%
Tiniest nonzero value: approximately =2.93874*10 ~*°
Maximum precision: approximately 9 decimal digits

INTEGER VALUES

The limits on integer values apply only to the values of
integer variables. A numeric variable may have an “integer
value” (a value that contains no decimal part) in the range
+999,999,999.

Maximum value: 32767
Minimum value: -32768

RULES FOR DISPLAYING NUMERIC VALUES
(PRINT AND STRS)

1. If a number is negative, the first character displayed is *-'.
Otherwise the first character displayed is “space.”

The number follows. It contains only as many digits as are
needed to represent it completely. There are no leading
zeroes before the decimal point (if any), and no trailing
zeroes after the decimal point (if any).

The number is not divided by commas into groups of
three characters, although such commas are used in
some parts of this book to make large numbers more
readable.

5-1

2. If the number is an integer (with no decimal part) in the
range =999,999,999, it is displayed as an integer, with no
decimal point.

Examples: -32 0 325000

3. If the absolute value of the number is in the range .01 <=
n < 1,000,000,000 the number is displayed as a real
value (with a decimal point).

Examples: N -1
9111.11111

3.141592
-9111.11111

4. If the number doesn’t fit into category (2) or (3) above, itis
displayed in scientific notation.

The mantissa is expressed as a number in the range
1<=n<10. If it can be expressed as an integer in that
range, it is displayed as an integer. Otherwise it is
displayed as a real number.

Examples: 3E+14 3.14E+14

‘E'is followed by a sign, ‘+’ or -, and a two-digit
exponent.

Examples: 3.14E+14 3E-03

RULES FOR READING NUMERIC VALUES
(INPUT AND VAL)

The rules for reading numeric values are essentially the
same as the rules for displaying them, except that the ruies
that choose between alternate forms of a number do not
apply. For example, any number, regardless of value, may
be input in scientific notation, or as a decimal value, or (value
permitting) as a integer.

1. If a number is negative, the sign must be *-’. Otherwise the
sign may be ‘+’ or may be absent. Leading blanks are not
allowed.

2. After the sign, if any, is an integer constant or numeric
constant.

Basic considers the number to stop at the first character
that is not part of a valid value. For exampile, if the value
being read is ‘50,000’, Basic reads '50'. If the number is
‘B50’ (with a leading blank), Basic reads ‘0’, since leading

5-2

PQQGQQGG@@@QG@QQOOOQQ@(’NGGGQOOQGGQ\

(LT N

W e e eSS BG

S BTPITIIIGOUOVUOOCUVOO

blanks are not aliowed.

If the number is in floating point notation, it ends here. If the
number is in scientific notation, the following parts must be
present.

3. The next character is ‘'E’ (it must be in upper case).

4. Next is the exponent’s sign. If the exponent is negative, its
sign is ‘-’. Otherwise its sign may be '+’, or may be
absent.

5. Next is the exponent, which must be an integer.

6. The entire number must be within the valid range of a
numeric variable.

For example, all of the following numbers are valid and
equivalent:

3.14E+14 3.14E14 3.14E + 0000014
314E+12 314000ES +0.314E+15
5-3

]
i
.

e e

CROTPPTIARIOITIIPITIIARTININONNOOONO

<+ UV OGOBOOLIBBIUVUUGEGEBIITIUIOLUULOOOOO 0O OO ©

CHAPTER 6: BASIC PROGRAM
EDITOR QUICK REFERENCE

ADDING, DELETING, REPLACING, OR
COPYING A LINE

Change To Be Made Procedure

Add a line

Delete a line

Replace a line

Copy a line

Type a line with a line number before it.
Basic inserts the line in the program in
line number order.

(1) Type a line number alone; press
ENTER

or

(2) LIST aline and delete everything
except the line number, then press ENTER
to make Basic accept the edited line.

Type a new line with the same line number
as the line you want to replace.

or

LIST a line and type over everything
except the line number.

LIST a line and change its line number to
the line number you want the copy to
have. Press ENTER to make Basic accept
the edited line.

CURSOR MOTION

Editing Operation Keystrokes
. Move cursor left 4
Move cursor right »
Move cursor left to end of line LOCK ¢
Move cursor right to end of line LOCK »
6-1

INSERT CHARACTERS

Editing Operation
Insert a character, x

Insert multiple characters

Insert a space; move cursor right
Insert a space; don't move cursor

Insert multiple spaces;
move cursor right

Insert multiple spaces;
don’t move cursor

Insert spaces continuously;
move cursor right

Insert spaces continuously:
don’'t move cursor

Keystrokes
INSERT x

LOCK INSERT xxxxx...
Press INSERT again when done.

INSERT »
INSERT 4

LOCK INSERT . . .
Press INSERT again when done.

LOCK INSERT 4¢44. . .
Press INSERT again when done.

LOCK INSERT LOCK »
Press INSERT again when done.

LOCK INSERT LOCK 4
Press INSERT again when done.

DELETE CHARACTERS

Editing Operation

Delete character under cursor;
don’t move cursor

Delete character under cursor;
move cursor left

Delete characters from cursor
right; don’t move cursor

Delete characters from cursor
left; move cursor left

Delete characters from cursor
to end of line

Delete characters from cursor
to start of line

SHORTCUTS

Editing Operation

Review a line longer than LCD

Keystrokes

DELETE »
DELETE ¢

LOCK DELETE ##». . .
Press DELETE again when done.

LOCK DELETE ¢4¢. . .
Press DELETE again when done.

LOCK DELETE LOCK »
Press DELETE again when done.

LOCK DELETE LOCK ¢
Press DELETE again when done.

Keystrokes

ROTATE
Press ROTATE again when done.

Go directly from any INSERT mode Skip pressing INSERT.
to any DELETE mode
Go directly from any DELETE mode

Skip pressing DELETE.
to any INSERT mode

Press INSERT, LOCK INSERT, etc.

Interrupt a ‘LOCK' operation

Press any key.
before its natural end

6-2

Press DELETE, LOCK DELETE, etc.

Q@QQOQ@@QQQQQOQOQQQOQQQOGQQOOQGGQ

]

5 5 33 B H B3I I OOV OVOUVUVUV O

3 & B

\

B W

&

VIR VIRLT JNRV SV Y S\

CHAPTER 7: PERIPHERAL
DEVICES

CONTROL CHARACTERS

Control characters are “characters™ which do not generate
output on an output device, but cause the device to perform
controt functions, such as cursor movement.

There are three categories of control characters for you to be
concerned with:

1.

ASCII standard control characters which are recognized
by the HHC. These characters are listed in the following
table with numeric values below 32.

. ASCII standard control characters which are not recog-

nized by the HHC. These are all the characters repre-
sented by numeric codes below 32 that are not listed in
the following table.

. HHC control characters that are not standard ASCIi

control characters. These are characters listed in the
following table with numeric values above 32.

If you write a control character to a device that does not use
it, the device will either ignore the character or display its
HHC graphic representation. See the descriptions of indi-
vidual devices for details.

ASCII Control Characters

numeric
value name

ASCil
std typical meaning

7 bell yes Sounds audible alarm.
8 backspace yes Move cursor left one position; erase
character cursor is moved to.
10 line feed yes Move cursor down one line.
12 form feed yes Move cursor to start of first line on next
page.
13 carriage rtn yes Move cursor to start of next line. (Note

that “carriage return” does an automatic
line feed on HHC peripherals. This
differs from its action on some other

devices.)

27 escape yes Marks beginning of an escape control
sequence.

128 cursorup no Moves cursor up one line.

129 cursor left no Moves cursor left one character; does not

erase character cursor is moved to.

7-1

numeric
value name

ASCI
std typical meaning

130 cursor right no Moves cursor right one character; does not

replace character under cursor with a
blank.

131 cursor down no Moves cursor down one line (equivalent to

line feed).

ESCAPE CONTROL SEQUENCES

Escape control sequences provide an extended set of
control characters on the HHC. Each sequence is 3 bytes
long:

byte meaning
0 escape (ASCII value 27) begins an escape
control sequence.
1 operation code (opcode).
2 data; meaning depends on the opcode. Unless

noted otherwise below, the data byteis ignored.

The HHC has a standard set of escape control sequences
which apply to all peripherals. Not all peripherals respond to
all escape control sequences, however. If a peripheral does
not respond to a particular escape control sequence, it
ignores that sequence; that is, the sequence is a “no-
operation” command for that peripheral.

In some other HHC manuals the opcodes are referred to by
five-character symbols. These symbols are included in the
following table.

Opcodes

Name: LCD Unescape
Opcode: 64
Symbol: ESCUN

Onthe LCD, the data byte is displayed (asin ESCDA). On all
other devices, it is ignored.

Name: Insert Right
Opcode: 65
Symbol: ESCIR

The data byte is displayed at the cursor. The character pre-
viously under the cursor, and all following characters on the
line, are pushed to the right.

7-2

PQQ'QG“GQ‘Q‘Q‘QQO‘G‘Q‘G‘Q‘@G L 2 O B N B4 S\ D\ AT S\ B S S\ B

d QOGP BB BULUIVGCOU BTV GOOVOVOOUY U OO

Name: Delete Right
Opcode: 66
Symbol: ESCDR

The character under the cursor is deleted; following charac-
ters on the line are moved left. The data byte is used as a fill
character at the end of the line.

Name: Set Inverse Mode
Opcode: 67
Symbol: ESCSI

Subsequent output is displayed in inverse-image (the colors
of the character and background are reversed).

Name: Set Uninverse Mode
Opcode: 68
Symbol: ESCUI

Subsequent output is displayed normally (not inverse-
image). Reverses the effect of ESCSI.

Name: Set Flash Mode
Opcode: 69
Symbol: ESCSF

Subsequent output will be displayed in flashing characters.

Note: the advent of flashing may be delayed (i.e., characters
written immediately after “set flash mode” may not flash)
under some circumstances. You can force flashing to begin
"»‘by doing an I/O operation on any device other than the LCD.

Name: Set Unflash Mode
Opcode: 70
Symbol: ESCUN

All subsequent output is displayed in non-flashing charac-
ters, until the mode is changed by ESCSF Reverses the
effect of ESCSF

Note: the end of flashing may be delayed, like the advent of
flashing (see above).

Name: Display Character Absolute
Opcode: 71
Symbol: ESCDC

The data character is displayed, even if it is a control
character that would normally be executed. For example, if
the next data character is 13 (carriage return) and itis sent to
the micro printer, it is written as an inverse-imageM.

Name: Flush {/O Buffer
Opcode: 72
Symbol: ESCFL

Characters in the device’s I/0 buffer are written (if they are
being output) or discarded (if they are being input), emptying
the buffer.

This operation is generally applied only to output devices
that write a line of data at a time. Writing a line would
normally be triggered by a CR character.

Name: Set Control Character Mode
Opcode: 73
Symbol: ESCCC

If the data byte is non-zero, subsequent non-executable con-
trol characters sent to the device will be displayed; if zero,
subsequent non-executable control characters sent to the
device will not be displayed.

Name: Home Cursor
Opcode: 74
Symbol: ESCHM

Returns the cursor to the upper left corner of the display.

Name: Set Word Break
Opcode: 75
Symbol: ESCWB

The data byte defines the word break character. When the
device encounters this character in output data, it considers
the character to mark the break between two words.

When an output line becomes longer than the device’s
maximum line length, the device word-wraps automatically;

7-4

%

g@Gwﬂm@@a‘o\o‘o\wwao‘mm"o*a‘«y\of‘«‘o‘n‘c‘n\on‘n\na‘a
@0 U 6o dbLYLYLEBUYUYE BEEBEIILIIEEIOVLOOVIIOGOUVY O

d)

that is, it ends the line and moves the last word of the line
down to the next line, so that the word will not straddle a line
break.

The initial value of the word break character is 32 (space) for
each device.

If you set a device’s word break character to 255, word
wrapping is disabled for that device.

Note that the LCD has no word-wrap capability.

THE KEYBOARD

The keyboard is normally attached to LUN #0. Unlike
peripherals, it has no device code. Thus it cannot be
attached to another LUN with the ATTACH statement. You
can attach it to a device with a POKE into the SDT. This
POKE and warnings about its use are described in Chapter 8.

Technical Information
ATTACH device code: none; see note above.
Control codes: not applicable to input-only devices.

Escape control sequences: not applicable to input-only
devices.

THE LCD

The LCD is normally attached to LUN #1. Like the keyboard,
it has no device code. Thus it cannot be attached to another
LUN with the ATTACH statement. You can attach it to a
device with a POKE into the SDT. This POKE is described in
Chapter 8.

Technical Information
ATTACH device code: none. See note above.

Control codes:

Code Meaning Function on device
7 Bell Makes the HHC beep.
8 Backspace Backspaces the cursor, erasing the character the

cursor was previously at.''

Code Meaning Function on device

12 Form feed A no-operation on the LCD.

13 Carriage rtn Clears display and moves cursor to left

edge of LCD.

27 Escape Begins an escape control sequence.

129 Cursor left Non-destructive backspace.m

130 Cursor right Non-destructive space.

Escape control sequences: the LCD supports all of the
standard escape control sequences except ESCFL, ESCCC,
and ESCWB. Note that the data byte of ESCUN is displayed
onthe LCD (as in ESCDC); it is ignored on all other devices.

THE TV ADAPTOR

The TV adaptor may be coupled to a standard black-and-
white or color television receiver or video monitor. It provides
a two-dimensional display that is more useful for many
purposes than the one-line display on the HHC’s LCD.

The TV Adaptor display shows 16 lines, each 32 characters
long. It can also generate several kinds of dot-matrix graphic
displays. On a color television set, it can display letters,
graphics, and background in various colors.

Technical Information
ATTACH device code: 67 (output)
Control codes and escape control sequences:

The TV Adaptor has many control codes and escape control
sequences, and a description of them would be much too
long to include in this manual. Information on programming
for the TV Adaptor may be found in another publication.

THE MICRO PRINTER

The micro printer prints 15-column lines on a roll of paper
1.4" wide. It has a “thermal” printing mechanism that makes
marks on specially coated paper by heating tiny areas in the
print head.

The micro printer uses a buffer in the HHC's RAM that can
hold up to two lines of data. The printer accumulates two
lines at a time, and prints them in a single operation.

“" - if the cursor is in the leftmost character position, the backspace
will shift all existing characters to the right and insert a biank spacein
the first character position.

7-6

3
i

POOAAONNIIININANITOIINATINNAAACOAEANAC

4 00V B W BOLLOLBLVLBLLBLUBVIVUYGGLEGBLBLULUBLUOULOUUL O OGO JdJdd.

Technical Information
ATTACH device code: 68
Control codes:

Code Meaning Function on device

7 Bell No-operation.

“Erases” the last character sent to the
printer, if it has not already been

printed. Several backspaces in a row will
erase several characters.

8 Backspace

10 Line feed No-operation. The micro printer
automatically advances the paper when it
does a carriage return. A separate line

feed operation is not supported.

Ends the current line of output, prints the
contents of the printer's buffer, and
advances the paper 4 lines.

12 Form feed

Ends and prints the current line of output.
If the buffer contains two lines of output, it
prints both.

13 Carriage rtn

27 Escape Begins an escape control sequence.

81 Cursor left Non-destructive backspace.

82 Cursor right Non-destructive space.

Escape control sequences: ESCCC, ESCDC, ESCDR,
ESCFL, ESCHM, ESCIR, ESCUN, and ESCWB.

SERIAL INTERFACE ADAPTOR

The serial interface adaptor enables the HHC to do /O on a
great variety of devices designed to communicate through
an RS232C interface. This interface, established by the
Institute of Electrical and Electronic Engineers (IEEE), is
widely used for low- and medium-speed peripheral devices.

Initializing the Serial Interface

Befcre you use the serial interface for the first time, you may
need to use the interface program’s configuration option to
make the interface compatible with the device you want it to
control. The configuration program sets properties such as
the type of error checking the serial interface is to do.

To configure the serial interface, plug the interface into the
HHC and turn it on with the /0O menu; select the “Serial 1/0”
program from the primary menu, and then select the “Confi-
gure” option from the program’s menu.

7-7

The configuration program creates an “invisible” file which
contains initialization data!? Whenever you use the serial
interface, the HHC automatically reads this file and initializes
the serial interface from the information contained in it. Thus,
you need not run the interface’s configuration program again
unless the initialization file is somehow deleted.

The initialization file can contain a separate set of data for
the bus socket on the HHC (slot #0 in the I/O key menu) and
for each socket in the I/O adaptor (slots #1 through #6 in the
menu). Thus, you can set up the initialization file so that you
can change the interface’s configuration just by plugging it
into a different slot.

If you have some computer experience, you will probably
find the configuration program to be self-explanatory. If you
do not, see the manual that accompanies the serial inter-
face’s program capsule for instructions.

It is possible to initialize the serial interface from a Basic
program, but the process requires some understanding of
the HHC’s machine language, and is beyond the scope of
this manual.

Note About Protocols

The serial interface’s configuration program can make the
serial interface operate with or without a transmission
protocol. This is a set of rules that a computer and a
peripheral (or two computers) can use to make sure that
neither one sends characters when the other is unable to
receive them.

Whether or not you initialize the serial interface for a
transmission protocol must depend on whether the interface
is connected to a device that uses one. Unless the serial
interface and the device connected to it are using the same
protocol, they cannot communicate properly.

The serial interface supports two alternate software pro-
tocols: XON/XOFF protocol and ETX/ACK protocol. If neith-
er is used, the Data Terminal Ready (DTR) line in the data
fransmission cable controls communication.

XON/XOFF protocol is commonly used in communications
between the HHC and another computer. Many kinds of
printers and other peripheral devices use it as well.

Suppose you are using XON/XOFF protocol to communicate
between the serial interface adaptor and a printer. Here is
how the protocol works.

@ an invisible file is one that does not appear in the file system
editor's menu or in Basic's menu.

7-8

C}QG&nwm‘maﬁw‘*Q)Q‘Q’QQ‘@GQQOQQ*Q'Q‘QQQGQ‘@Q(,w_c
VAT T VT R R T U T U IET I T T Nt S O O St O A A A N TR AR AR AR AL

As the printer receives characters from the serial interface, it
stores them in a buffer until it can print them. If the serial
interface sends characters to the printer faster than the
printer can print them, the printer’s buffer eventually fills up.
When the buffer is almost full, the printer sends the interface
an XOFF command (“transmission off,” ASCII code #19).
This makes the interface stop transmitting. When the prin-
ter's buffer becomes less full, the printer sends an XON
command (“transmission on,” ASCII code #17). This makes
the interface resume transmitting.

XON/XOFF protocol works for input to the HHC, as well as
output from it. Suppose you were using the serial interface to
communicate with another computer, which could both send
and receive characters. If the other computer sends charac-
ters faster than the HHC can process them, eventually the
serial interface’s buffer fills up. Then the serial interface
sends an XOFF command to make the other computer stop
transmitting. Later the serial interface sends an XON com-
mand to make the other computer resume transmitting.

XON/XOFF protocol has two effects on you as a user of the
serial interface:

1. You do not have to worry that the device attached to the
interface might lose data because the HHC continued
transmitting when the device’s buffer was full. The serial
interface handles the XON/XOFF protocol automatically,
and prevents any such mishap from occurring.

2. You cannot transmit or receive the ASCIlI codes #17
(XON) and #19 (XOFF) as data characters (except as
part of an escape control sequence). If you try, the device
connected to the serial interface will interpret the charac-
ters as XON and XOFF commands. That will make it start
or stop transmitting data at inappropriate times.

%TX/ACK protocol is commonly used by peripheral devices
such as printers. Its purpose is the same as the purpose of
XON/XOFF protocol: to make sure that the serial interface
does not send information when the attached device is
unable to receive it.

In ETX/ACK protocol, the serial interface transmits a string
of characters, called a message, that is known to be short
enough for the device to process without losing characters.
The interface ends the message with an ETX character
(“end transmission,” ASCIl code #3). When the device has
processed the message and is ready for another one, it
sends an ACK character (“acknowledge,” ASCII code #6).
This signals the serial interface that it may send another
message.

Unlike XON/XOFF, ETX/ACK protocol works only for trans-
missions in one direction: from the Serial Interface Adaptor

7-9

F

to a device. Thus it is unsuitable for devices that engage in
two-way communication, such as modems and keyboard
printers.

The effects of ETX/ACK protocol on you as a user are the
same as the effects of XON/XOFF protocol, except that the
ASCII character you cannot transmit as data (except as part
of an escape control sequence) is #3 (ETX) instead of #17
(XON) and #19 (XOFF). (You can transmit ACK as a data
character, since it has a special meaning only when re-
ceived by the Serial Interface.)

Technical Information
ATTACH device codes: 70 (output) and 134 (input)

Control codes: none; but see the discussion of transmis-
sion protocols, above.

Escape control sequences: none. The “escape” control
character (ASCIl code 27) is treated as data.

THE MODEM

The modem enables you to communicate with other compu-
ters via telephone. Two rubber cups on the modem hold the
mouthpiece and earpiece of a standard telephone handset.

The modem encodes the information that the HHC writes to
itin sound patterns and transmits them over the telephone. It
receives information in the same fashion, and passes it to
the HHC when the HHC “reads” the modem.

The modem contains an object called a control ROM, which
is similar to an HHC capsule, but contains a program to
control the operation of the modem itself, as well as an
application program that you can run from the primary menu.

The modem’s control ROM is interchangeable in much the
same way that an HHC capsule is. Two control ROMs are
available for the modem at this time; their names are
Telecomputing | and Telecomputing 2. Their functions are
similar, but Telecomputing 2 has more features than
Telecomputing | does. For details on the features of these
programs, study the instructions that accompany the mod-
em, and speak to the distributor of your HHC.

M@QGQQOOOQOOOOOQQ&OOOOOGOOO(\(\(\(\(\(\C
[&000\6000\)\)\)OODO&OOWD&Q\)OQOOOOOOOC‘%

Initializing the Modem

Before you use the modem for the first time, you may need
to use the telecomputing system’s configuration selection to
make the modem compatible with the computer you want
the modem to communicate with. The procedure for con-
figuring the modem is very similar to the procedure for
configuring the serial interface adaptor, described above.
The major differences are:

1. The modem’s configuration file can hold only one set of
configuration data, rather than one set per I/0 slot, as the
serial interface’s configuration file does.

2. The modem supports XON/XOFF protocol, but does not
support ETX/ACK protocol. (Telecomputing | sends XON/
XOFF to the host computer, but does not “listen” for
them. Telecomputing 2 can send and listen for XON/
XOFF)

Technical Information
ATTACH device code: 130 (input) and 66 (output)

Control codes: none; but see the notes on XON/XOFF
protocol above, and under the description of the serial
interface adaptor.

Escape control sequences: none. The “escape” control
character (ASCIl code 27) is treated as data.

QQQQQWOOOOOQOQ&OQOQ/O&O&OOOOQOQQQQ

}

d OGP B BPIPOPDDBPPDLOLOLGPDPDPOPLOLUOOUUOGUY &IV Y@

CHAPTER 8: PEEKS AND POKES

INPUT AND OUTPUT

The System Device Table (SDT)

The HHC keeps track of LUN attachments through the
System Device Table (SDT). The SDT is kept at locations

705 through 712.

The byte at: represents LUN:
705 #0 (normally the keyboard)
706 #1 (normally the LCD)
707 #2
708 #3
709 #4
710 #5
711 #6
712 #7
713 #8
714 #9
715 #10
716 #11
717 #12
718 #13
719 #14
720 #15

Interpret the value of each byte as follows:

value means
0 Keyboard is attached to this LUN.
6 LCD is attached to this LUN

255 Nothing is attached to this LUN.

other A peripheral is attached to this LUN.
Values indicate the order in which
peripherals were ATTACHed, not
peripherals’ device types.

To unattach a device, POKE 255 into the proper SDT entry.

To attach the keyboard or LCD to a LUN, POKE 0 or 6 into
the proper SDT entry. (The ATTACH statement does not
work for these devices, since they have no device codes.)

Note: never leave a device attached to more than one LUN

8-1

at a time! If you do so, your program may behave unpredict-
ably.

Treat LUNs #0 and #1 very carefully, since they are your
channels for communicating with the HHC. If your program
should leave LUN #0 without a properly attached device,
you will be unable to control the HHC; if it leaves LUN #1
without a properly attached device, you will be unable to see
what you are doing. Either way, you may have to press
CLEAR to reset the device attachments.

Note: do not press any key on the HHC’s keyboard when
LUN #0 is attached to a peripheral device. If you do so,
the HHC may “freeze up” and execute only one Basic
statement each time you press a keyboard key. If this
happens, the HHC will remain “frozen” until you return to the
menu or reattach LUN #0 to the keyboard.

Note: do not “type ahead” with the HHC keyboard or any
peripheral attached to LUN #0.

The ATTACH Statement

The ATTACH statement does not give error messages, even
when it fails. In the normal course of things, your first
indication of an unsuccessful ATTACH is an 10O error when
you try to do an INPUT, GET, or PRINT.

To determine whether the most recent ATTACH suc-
ceeded, PEEK at location 926:

value means
0 most recent ATTACH failed, or no ATTACH
done vyet.
1 most recent ATTACH succeeded

THE HELP AND I/0O KEYS

To make the HELP and/or I/O keys function while you are
in Basic, POKE the following values into location 524

value means
0 HELP and I/O both function

1 HELP functions
4 |/O functions

5 neither key functions (the normal case)

8-2

Q-OGOGGOOQOOOQGNQ&&OVOOQOGOOOGOQQOC

"WV OBDOOPVOIOIVDOIIPIPIPIIPOVLVOOVOVODWD YOO @

4

Note: if you have used the POKE to activate the HELP
function, your setting in location 524 may change after the
HELP key is actually pressed.

Note: while you are in Basic, the /O key may only be used to
determine how much free space remains in a memory area
other than the current memory area, and to determine
whether a peripheral is on or off.

To determine how much free space remains in the current
memory area, use the FRE function. To turn a peripheral on
or off, return to the Basic menu or the primary menu before
using the 1/O key.

THE KEYBOARD BUFFER

The HHC stores keystrokes that it has not yet processed in a
keyboard buffer. You can use PEEK to look ahead at the
contents of this buffer before you do an INPUT or GET, and
you can use POKE to “type” into the buffer, so that your
program, in effect, is pressing keys on the keyboard.

Note:you must be very careful because one character can be
removed from the buffer for each Basic instruction executed.

Structure Of the Keyboard Buffer

The keyboard buffer is 8 bytes long. The bytes in the buffer
are numbered 0 to 7. The HHC places the first character
typed in the 7th byte, the second in the 6th byte, etc. After
the 8th character typed has been placed in the Oth byte, the
9th character typed is placed in the 7th byte (assumingthe
1st character typed has been read by the program), and so
on.

The HHC maintains two pointers to the keyboard buffer. A
“store” pointer contains the number (0 to 7) of the byte
where the next character typed on the keyboard will be
stored. A “fetch” pointer contains the number of the byte
where the next character read by the program will come
from.

For example, suppose you have just entered Basic and
nothing has been typed yet.!"! The keyboard buffer and its
pointers look like this:
———————— keyboard buffer
“store” pointer
I “fetch” pointer

1. This is an oversimplification, since the same buffer is used by
the rest of the HHC. Something had to have been typed for you to
have entered Basic from the primary menu. The discussion of the
process is accurate, however.

Now suppose you type in 3 characters, ABC’. Your program Buffer Locations

does a GET, so that you have input 3 characters, and your

program has read one. Now the buffer looks like this:

t “store” pointer
! “fetch™ pointer

You continue typing in the alphabet, and your program
continues GETing characters. At some later time when you
have typed the alphabet through J and your program has
read it through E, the buffer looks like this:

t “store” pointer
t “fetch” pointer

The Pushkey Buffer

The HHC has a second buffer called a pushkey buffer
which it uses to hold characters that are “pushed” back into
the input stream by a program.

Whenever Basic does an INPUT or GET, the HHC returns
any characters that are in the pushkey buffer before going to
the keyboard buffer. Thus, any characters you store in the
pushkey buffer will be read before characters typed in
through the keyboard, even if the keyboard characters go
into their buffer first.

The pushkey buffer is 4 characters long. It is used as a LIFO
queue (the last character put in is the first taken out). The
“bottom” of the buffer, where the first character is pushed, is
character 0; the “top,” where the last character may be
pushed, is character 3.

A pushkey counter indicates the number of characters
already in the buffer. Its value may be 0 to 4. A value of 0
means the pushkey buffer is empty; 4 means the pushkey
buffer is full, and there is no more space for characters to be
pushed into it.

For example, if you push a ‘2, then a ‘G’ into the buffer, the
buffer looks like this:

2 G ___ pushkey buffer

pushkey counter = 2
INPUT or GET will receive the ‘G’, then the ‘2’:

____ pushkey buffer
pushkey counter = 1

— ——— pushkey buffer
pushkey counter

I

0 (empty)

8-4

[EQCQR QIR AININIIPAIFNNIAFANANCONOOOOO O

GG B B®BBLBDBDODOODLPODBBBIBBOUYGUYLUUUUY O U O

location contains

620 keyboard buffer (iocation of character 0)
518 “store” pointer to keyboard buffer
519 “fetch” pointer to keyboard buffer
628 pushkey buffer (location of character 0)

522 pushkey pointer

PEEKs and POKEs

To inspect the pushkey buffer, PEEK at the pushkey
pointer. If it is 0, the pushkey buffer is empty. If it is not zero,
use it to extract the contents of the pushkey buffer.

The following subroutine assembles a string whose value is
the current contents of the pushkey buffer:

i

L

To POKE a character into the pushkey buffer, check to
make sure it is not full. It it is not, POKE the character into
the buffer position indicated by the pushkey counter, then
increment the counter.

To POKE a character into the “top” of the keyboard
buffer, so that it will be the next character to come out: first,
check to make sure that the buffer is not full. Then move the
“fetch” pointer backwards one location, and POKE the
character to the location the “fetch” pointer now indicates.

Do not try to put a character into the “bottom™ of the
keyboard buffer by POKEing into the location indicated by
the “store” pointer and advancing the pointer. If you do this,
there is always a risk that you will POKE a character at the
same time that the real keyboard inputs a character; if this
happens, one character or the other will be lost.

8-5

FUNCTION KEYS

The defin_itions of the three function keys are kept in three
consecutive areas, each 16 bytes long. Each area begins
with a byte containing the length of a function key definition
in characters, followed by 15 bytes containing the definition.
If the definition is less than 15 characters long, the part of the
area beyond the end of the definition is ignored.

The locations that contain the function key definitions are:

location contents

642 Length of f1's definition.
643 f1's definition.
658 Length of f2's definition.
659 f2's definition.
674 Length of f3's definition.

675 f3's definition.

You can change the definition of a function key by POKEing

appropriate values into the that function key's definition
area.

“Typing” a Function Key

You can “type” a function key by POKEing it into the
keyboard buffer, but the preferred way to do it is to do the
two POKEs described below.

tLhet FA =642, the iocation of the length of F1's definition:
en:

to “type’” a
function key perform POKEs
f1 POKE 520,PEEK (FA)
POKE 521,1
f2 POKE 520,PEEK (FA + 16)
POKE 521,17
f3 POKE 520,PEEK (FA + 32)
POKE 521,33
8-6

A

[y

ll\ﬂgﬁﬂﬂﬂﬂﬂwﬂﬂﬂ(‘ﬂﬂQOQOOOOOOOGOQGQQOC

- -

4 QOB D IPVPIPVIOPDOOOOBPIBEGGD QD@D @ @

When you “type” a function key in this way, your program
will INPUT it before any of the characters in the keyboard
buffer or the pushkey buffer.

You cannot “type” a function key by POKEing it into the
pushkey buffer. If you try, your program will INPUT the ASCI|
code that represents the function key (#21, #22, or #23)
instead of the function key's current definition.

THE STOP/SPEED KEY

The HHC's LCD rotation speed and menu speed are control-
led by the value at location 535. This location may be
PEEKed or POKEd. The value's meaning is:

value STOP/SPEED setting
10 1 {slowest setting)
9 2
8 3
7 4
6 5
5 6
4 7
3 8
2 9
1 0 (fastest setting)
0 Faster than fastest STOP SPEED setting

DATE AND TIME

The HHC maintains a the current date and time in a 5-byte
memory area at locations 526 through 530. You can PEEK at
this area to get the current date and time.

The HHC's timer is not directly available to you: locations
526 through 530 contain a copy of it. This has two consequ-
ences:

1. The date and time that you can PEEK are not absolutely
accurate. They are updated periodically by the HHC. The
updating schedule is too complicated to explain here in
detail, but at a minimum, the date and time are updated
whenever one of the following events takes place:

a. The cursor flashes on (every 0.7 seconds. when the
cursor is flashing).

b. When a character is input to the HHC from the
keyboard or from any peripheral. (This refers to the
physical event of inputting a character, not to the prog-
ram’'s execution of an INPUT statement, which may
happen much iater.)

c. Approximately every 9 hours.

2. You cannot POKE the date and time. If you try, the value
you POKE will be wiped out the next time the HHC
updates the timer.

Format Of the Date and Time

The date and time are kept in a single integer number that is
5 bytes long. The value of this integer is the number of clock
units (one clock unit = 1/256 second) from the beginning of
January 1, 1980, to the present. The bytes of the date and
time count the following units of time:

location counts units of

526 1/256 second
527 seconds
528 256 seconds

529 65,536 seconds
(approximately 18 hr., 12 min.)

530 16,777,216 seconds
(approximately 194 days, 4 hr.)

One reasonable way to use the date and time is to define a
5-element array and move each byte of the value into one
element:

Then you can write a variant of our day-of-year calculator to
convert the 5-element array into a meaningful date and time.

You can simplify the task somewhat by ignoring the first byte
of the time, since the time will seldom be accurate to more
than a second.

If you are concerned only with elapsed time, you can build
two arrays like Tl, above, one for a start time and one for an
end time. Then you can “subtract” one array from the other.
Do this by analogy with the ordinary process of subtracting
two numbers by hand; treat each element of the array as a

8-8

OO BBIBBBIVOOLVOOBIBBIDPIPOOOVLVLOOVON U @

PEOOOGONINRINNINNIIIFIINNNNNNOOOO OO O C

-

“numeral” and borrow from the next greater element when
necessary:

After performing this subtraction. the result should represent
a value small enough to hold in a numeric variable without
loss of precision:

ROTATION MODE

The LCD's rotation mode is controlled by the value at
location 534. The value's meaning is:

value rotation mode

0 fill mode. The LCD is filled with text, left to
right, as fast as a program can display it.
After the LCD is full, the HHC erases
everything and starts filling the LCD again.

1 fill-and-rotate mode. The LCD is filled with
text as in fill mode. After the LCD is full, the
HHC shifts characters off the left end to make
room for new characters on the right. (This is
the HHC's normal mode of operation.)

2 rotate mode. Characters are rotated onto the

LCD from the right edge, even when the LCD is
not full of text.

Note that the rotation mode is not reset by the CLEAR key.

VARIABLES AND ARRAYS

Locations of Variables and Arrays

For some kinds of mathematicat calculations it is useful to be
able to PEEK and POKE the parts of a numeric variable
directly.

For example, if you must multiply two numbers together and
first want to determine whether the product will overflow, you
can PEEK at the two numbers’ exponents, add them, and
determine whether the sum is over or near the maximum.
(See the definition of the trigonometric function ATAN2 in
Chapter 2 for an example of this.)

Basic stores all variables consecutively in memory. It stores
all arrays consecutively in another part of memory.

The locations that point to the variable and array areas are:

location contents'®

200-201 Address of beginning of variable area. Note
this address changes when you edit your
stored program.

202-203 Address of end of variable area and
beginning of array area. Note, this address
changes when you edit your stored program
or use a new variable.

204-205 Address of end of array area. Note, this
address changes when you edit your stored
program, or use a new variable or array.

2 _in each two-byte integer value or address, the first byte is the
least significant and the second byte is the most significant. Thus,
you can reconstruct the address of the beginning of the variable area
(for example) like this:

AD=FEERS

8-10

BOOBPIVVLLVLVLVOLOIDOBOOVLOOLOOON O OO W

T E O OO TPPIARANAONITPEIRTNNNANNOOODOOO O

»

Formats of Variables

Variables are stored in the variable area in the order that the
program first refers to them. Each variable occupies 7 bytes.

Anumeric variable has the following format:

byte contents
0 First character of the variable name, in
ASCIL.
1 Second character of the variable name, in

negative ASCII!® If the name is one
character long, PEEK(byte 1) = 0.

2-6 Value of the variable in numeric format (see
the Format of a Numeric Value section in the
following text.)

An integer variable has the following format:

byte contents

0 First character of the variable name, in
negative ASCIL.

1 Second character of the variable name, in
negative ASCIL. If the name is one character
long, PEEK(byte 1) = 128.

2-3 Value of the variable in two’s complement
binary form 2!

4-6 Unused.
A string variable has the following format:
byte contents

0 First character of the variable name, in
negative ASCII.

1 Second character of the variable name, in
ASCI. If the name is one character long,
PEEK(byte 1) = 0.

2 Length in characters of the string value.

3 . To convert negative ASCII to ordinary ASCH, substract 128
from the value returned by PEEK.

8-11

3-4 Address of the first character of the string
value. The characters in the value are stored
consecutively. Note, this address may change
any time you create a new string variable or
array, or change the value of an existing
one.

5-6 Unused.

Formats of Arrays

Arrays are stored in the array area in the order that the
program first refers to them.

All arrays have the following format:

byte contents

0-1 Array name, in ASCII and/or negative ASCII.
The conventions used to indicate the type of
the array are the same as for variables.

2-3 Length of this array, including the name,
length field, etc. Add this length to the
address of this array to get the address of
the next array (if any).

4 Number of dimensions.

5. Size of each dimension. Each size field is two
bytes long. The sizes of the dimensions are
given in reverse order, i.e., the rightmost
dimension is given first, the leftmost last.

varies After the dimensions come the elements. In
multi-dimensional arrays, the first element
varies fastest. For example, in an array XY
dimensioned (1,1), the elements would be
stored in the order (0,0), (1,0), (0,1),

(1,1).

In a numeric array, each element is five bytes long, and is
stored in variable format (see below).

In an integer array, each element is two bytes long, and is
stored in two’s complement binary notation.

In a string array, each element is three bytes long. The first
byte gives the length in characters of the value of the
element. The second and third bytes contain the address of

8-12

£0NANNNNINNAINAININIRANNNNNNOOO0OO6000
SOIIIIVVBVIVBIDIIBIPVIDOORVOOOR VWO W

— . e

:

the first character of the element. Note, this address may
change any time you create a new string variable or array, or
change the value of an existing one.

Format Of a Numeric Value
if a numeric value is expressed as
n=sm2e
where
s = the sign, =1,
m = the mantissa, in the range 1.0<=m<2.0,
e = the exponent, in the range =127,
then the variable’s format is:

bytes(bits) contents
0(0)-0(7) 128 + e in binary form. If this field is 0,
then the numeric value is 0, even if
m=0.
1(0) Sign bit.

If s=-1 (n<0), the bit is on.
If s=1 (n>=0), the bit is off.

m-1.0. Stored as a 31-bit binary fraction
with the “binary point” before the first
bit.

Other Useful Addresses

Here are some other useful addresses relating to variables
and programs:

location contents

71-72 Address of the variable or array element most
recently referred to. If the variable or

array is numeric or integer, this is the
address of the value. If it is string, this is

the address of the length byte. Note: in

an assignment statement of the form .

XX =PEEK(71) + 256*PEEK(72), the "variable

most recently referred t0” is XX!

212-213 Line number of the line currently being

executed. In immediate mode, the “line

8-13

number” is greater than 63,999 (the largest
valid value).
214-215 Line number of the line that was being
executed when the most recent of the
following events occurred in deferred mode:
1. Execution of a STOP statement.
2. Execution of an END statement.
3. Program interrupted by the C1 key.
218-219 Line number of the DATA statement currently
being read.

Finding a Variable’s Value

The most convenient way to find a variable’s value is to refer
to the variable, then PEEK at location 71-72 to get the
address of the value. For example, the following code may
be used to assign EX the value of the exponent of VL:

S
=1

SEROE

Note that this statement would not work if line 500 said
‘VL=VL, since line 510 assigns EX the address of itself.

Pmonnaoawaon««nwvwmwanaonnnmnaaaqc

COVIDBIIVVOVDOIDIDIDOVOIVOVVOOVO UV O O ¢

4

CHAPTER 9: ASCIl CHARACTERS

The character set used by the HHC is listed in order of the
numbers that represent the characters in ASCI notation.

CONTROL CHARACTERS

The following table lists characters #0 through #31. These
characters are control characters, rather than graphic char-
acters; that is, their customary function is to perform a
control function on an output device, rather than to display a
symbol like A or ‘?".

The meanings of the columns in the table are:

® Numeric value: the number used to represent this char-
acter in the HHC's memory. If NV is the numeric value of
the character, then CHR$(NV) is the character.

® HHC name: the name, or description, used to identify this
character in the HHC system.

® ASCIH name: the name or description used to identify this
character in “pure” ASCII.

® HHC key: key on the HHC keyboard that inputs this
character.

® HHC graphic: the graphic symbol that represents this
character when the character is displayed on the LCD.
For characters that have a control function, you must use
the ‘ESCDC’ escape control sequence to display the
character.

® LCD action: control function performed by this character
when it is sent to the LCD. If this column is empty, the
character has no control function; it displays the graphic
symbol listed under ‘HHC graphic’.

numeric HHC ASCII
value name name
0 NUL, Null
1 SOH, Start of heading
2 STX, Start of text
3 ETX, End of text
4 EOT, End of transmission
5 ENQ, Enquiry
6 ACK, Acknowledge
7 Rotate; Bell BEL, Bell

8 Backspace BS, Backspace

9 HT, Horizontal tab
10 Line feed LF, Line feed

11 i{e} VT, Vertical tab

9-1

numeric HHC ASCIl
value name name

12 Form feed FF Form feed

13 Enter CR. Carriage return

14 Stop Speed SO, Shift out

15 Sl. Shift in

16 DLE. Data link escape

17 DC1, Device control 1, XON

18 DC2. Device control 2

19 DC3. Device control 3. XOFF

20 Help DC4. Device control 4

21 f1 NAK. Negative acknowledge

22 {2 SYN, Synchronous idle

23 3 ETB. End of transmission block

24 CAN. Cancel

25 EM. End of medium

26 SUB. Substitute

27 Escape ESC. Escape

28 FS. File separator

29 GS. Group separator

30 RS. Record separator

31 US. Unit separator

numeric HHC HHC LCD
value key graphic action

0

1

2

3

4

5

6

7 ROTATE “beep”

8 Backspace cursor;
erase character under
cursor after backspace.

9 I

10 J

11 [Ke] k

12 -

13 ENTER Il Erase LCD: move
cursor to left edge.

14 STOP SPEED'" B

15 X

16

17

18

19

[l

- This key has an immediate function in Basic, and so cannot

normally be read by GET. Note that none of the control characters
#0 through #31 can be read by INPUT.

9-2

20
21
22
23

24
25
26
27

28
29
30
31

numeric HHC
value key

HELP
f10
2
31"

HHC
graphic

LCD
action

Begins an escape
control sequence.

DISPLAYABLE CHARACTERS

The HHC’s use of characters #32 through #126 conforms
exactly to the ASCII standard.

PP TTININNOOODO O QO C

COBIBDIVVOSODOBBIBDIDIVOOOOOODOOVV O

numeric HHC keybd
value character name
32 space
33 ! exclamation mark
34 ' quotation mark
35 # pound sign
36 $ doliar sign
37 % percent sign
L 3 38 & ampersand
39 ' apostrophe
e
40 (left parenthesis
e/ 41) right parenthesis
42 B asterisk, star, or “times” sign
e 43 + plus sign
44 , comma
e 45 - hyphen, dash, or minus sign
46 . period /
L3 47 / slash :
‘!, 48 0
49 1
; 50 2
e 51 3
» 52 4
53 5
» 54 6
55 7
[)
~ 56 8
} 57 9
Q. 58 : colon
Qd 59 ; semicolon
&(. E]
.
LI 9-3

“ =
numeric HHC keybd ‘T ; numeric HHC keybd
value = _character name 2 value _ character name
60 . left angle bracket or “less than" sign G 112 p
61 - equal sign o ; 113 q
62 : right angle bracket or "greater than” sign ‘ 114 r
63 ? question mark e 115 s
64 (e c e 116 t
65 A 117 u
66 B ;) 118 v
67 C G_ 9 119 w
68 D . : 120 X
69 E : 9 121 y
70 F 122 z
71 G - -] 123 ! left brace
72 H 124 I vertical bar
73 I e L 125 ! right brace
74 J 2 126 - tilde
75 K e
76 L °
7 M e P ADDITIONAL CHARACTERS
79 0 |~) The HHC uses characters from #127 up as displayable char-
5 o >] acters and control characters.
81 Q B rY In “pure” ASCII, character #127 represents the control char-
gg g . acter “delete.” Characters above #127 are undefined.
84 T . 5 numeric HHC HHC HHC Lco
85 U . 9 value name key graphic action
86 v) —_ -
87 W , 127 ‘“insert” cursor
88 X e 5 128 uparrow - 1
89 Y
90 Z e 129 leftarrow ¢ + Backspaces cursor; does not
91 [left bracket t 9 disturb character under cursor
N) o after move.
92 ackslas
93 | right bracket e 9 130 rightarrow »e Advances cursor; does not
94 ~ caret disturb character that was
95 _ underscore t e under cursor before move.
96 s grave ®] 131 downarrow -2 L
97 a)
98 b ‘9 132 "AM" symbot INSERT'® “,
99 c | -
133 "PM" symbol DELETE™® k.

100 d Q
101 M e 134 superscriptM i r
102 f -]
103 g) 135 division sign 14
104 h E 9
109 | - 9 2 - INPUT reads this character as ENTER.
107 3

= L 8- INPUT cannot read this character; it performs its usual editing or
108 | control function.
109 m . ®
110 n : (4} ;
111 0 s - INPUT reads this character as SPACE.

9-5

©
B
© a0

numeric HHC HHC HHC LCcD
value name key graphic action

136 “times’ sign 4

137 blockcursor SEARCH?

138 “delete” cursor [

139 ‘a'withumlaut CI® i Except when read by GET, causes
‘break” in execution of the
program that is running.

140 ‘o’ with umiaut c2 I

141 ‘u withumlaut C3 i

142 'n’withtilde C4

9-6

EQGOGQOGQGOOQQOGOQOGOOQOQG,(\(\OQQOQG

-

 GDBIBIOVIDDOIBDIIIIIOVOOOVOOOV VOV O 4

CHAPTER 10: ERRORS

ERROR MESSAGE FORMAT

When Basic detects an error in immediate mode, it beeps
and displays a message saying

T B

where xxis one of the two-character codes described below.

When Basic detects an error in deferred mode, it beeps and
displays a message saying

where xx is a two-character code and nnnn is the line
number of the line that was being executed when the error
occurred.

ERROR CODES

BS - Bad Subscript

You tried to use an array element that is outside the
dimensions of the array. This message can also occur if
you use the wrong number of subscripts.

CN - Can't Continue

You tried to CONTinue a program when you have not
done a RUN, after execution was interrupted by an error,
or after you edited the program.

DD -- Duplicate Dimension

You tried to define an array with DIM after the array was
already defined. This error often occurs because the
array was defined implicitly (by using one of its elements)
before the DIM statement was executed.

FC -- Function Call

You gave a function an argument whose value was out of
range. Check the description of the function in question
for the permissible range of values.

10-1

ID -- illegal Direct

You tried to execute a statement in immediate mode that
is only allowed in deferred mode.

10 -- /O Error

First possible cause: you tried to do an I/O operation on a
LUN that was not successfully ATTACHed to a peripheral
device. Note that an unsuccessful ATTACH does not
produce this error; the first /O operation on the LUN
produces it.

Second possible cause: an 1/0 operation failed to com-
plete successfully. An I/O operation may fail to complete
because the operation is illegal (e.g., an INPUT operation
on a LUN attached for output), or because the device is
improperly set up or out of order.

This error can occur if you try to do an I/O operation on a
LUN that has been “unattached” by a POKE.

LS -- Length of String

You tried to use the concatenation operation, ‘+’, to
create a string more than 255 characters long.

NF -- NEXT without FOR

Basic encountered a NEXT statement that did not corres-
pond to a FOR/NEXT loop it was executing. This can be
caused by a NEXT that does not match any FOR; a NEXT
with the wrong variable name; or a GOTO that passes
control to a line inside a FOR/NEXT loop without execut-
ing the FOR statement.

OD -- Out of Data

You executed a READ statement, and no DATA items
remained for it to read.

OM -- Out of Memory

There is not enough memory for your program to run. This
can be caused by any combination of the following

conditions: the program is too large; the program requires too
much memory for variables and arrays; the program has too
many nested FOR/NEXT loops; the program has too many

10-2

4

AN AL AL LA A A

I3

14

€

ﬂ('('(!"f’frVr?(!(!(Y('((Yﬁ.ﬂﬂﬁﬂﬂﬂQQ

QVBIBPVOIDDODIBOISIIIDOIOVOOOOVOVOOOVU O+

l«(

nested GOSUBS; or an expression is too complicated.

OV -- Overflow

You tried to perform a calculation whose result was too
large to be represented in Basic’s numeric format. The
largest number Basic can represent is approximately
1.70141+10%

Note that underflow does not produce an error in Micro-
soft Basic. It just returns a zero result.

RG -- Return without GOSUB

You tried to execute a RETURN without having executed
a GOSUB. This is often caused by passing control to a
subroutine with GOTO instead of GOSUB, or by letting
control fall into a subroutine instead of passing it some-
where eise.

RT -- Run Time Error

This message indicates an error in an operation which
Basic requested one of the HHC’s intrinsic programs to
perform. It is often associated with an invalid /0O opera-
tion.

SN -- Syntax Error

You made an error in writing a statement, such as missing
parentheses in an expression, use of a reserved word in a
variable name, missing elements in a statement, etc.

ST -- String Formula Too Complex

You tried to use a string expression too complex for Basic
to process. Break it up into two or more shorter express-
ions.

TM -- Type Mismatch

An assignment statement tried to assign a string value to
a numeric variable, or vice versa; or an operator found a
value of the wrong type; or a function found an argument
of the wrong type.

10-3

UF -- Undefined Function
You tried to use a function that has not been defined.

US -- Undefined Statement

You tried to go to a non-existent line number with IF
GOTO, or GOSUB.

/0 -- Division by Zero

You tried to divide a number by zero. Note that dividing
zero by zero produces this error.

10-4

b‘noa't.vwaawaooowcvmwawawwan,nqnnqqqc

e s080000000800820000000000000O0:

INDEX

A

Array

Format of, 8-12

Last referred to, 8-13

Location of, 8-10
ASCII, 71

Character set, 9-3

DELETE character, 9-5
Assignment statement, 1-2
ATTACH

POKE and, 8-1
ATTACH statement, 1-3

Errors in, 8-2

B

Body of function definition, 1-6
BYE statement, 1-3

C

C1 key, 1-4

Line number of line interrupted by, 8-14
CALL statement, 1-4
Character

Displayable character set, 9-3
CLEAR key, 1-3
CLEAR statement, 1-4
Clock unit, 8-8
CONT statement, 1-4, 10-1
Control character, 7-1, 9-1
Gontrol ROM, 7-10
Cursor, 7-1

D

DATA statement, 1-4, 1-5, 1-20, 10-2
Date, 8-8

DEF statement, 1-6

DIM statement, 1-7, 10-1

E

END statement, 1-4, 1-7

Line number of most recent, 8-14
ENTER key, 1-10
Error

Message format, 10-1
Escape control sequence, 7-2, 9-1
ETX/ACK protocol, 7-9, 7-11

-1

F

FOR statement, 1-4, 1-8, 1-15, 1-16, 10-2
FOR/NEXT statement, 10-2
Formal parameter, 1-6
Function
DEF statement, 1-6
Function key, 1-10
Defining a, 8-6
Precedence over keyboard & pushkey buffers, 8-7
Simulating keystrokes, 8-6
Functions
Trigonometric, 2-4

G

GET statement, 1-10

GOSUB statement, 1-4, 1-11, 1-20, 10-2, 10-3
GOTO statement, 1-11

Graphics, 7-6

H

HELP key
Using in Basic, 8-2

170

Error, 10-2
I/0O key

Using in Basic, 8-2
IEEE, 7-7
IF statement, 1-12
INPUT statement, 1-12

Institute of Electrical and Electronic Engineers, see IEEE

Integer value
Range of, 5-1

K

Key
2nd SFT, 1-10
C1,1-4
CLEAR, 1-3
ENTER, 1-10
Function, 1-10, 8-6
HELP 8-2
/0, 8-2
SHIFT, 1-10
STOP/SPEED, 8-7

|
|

O PPN PTPIIPIOTNNNNOONOANAEQEQ

r

'y

— Keyboard, 7-5
L= Additional characters, 9-5

Control character input, 9-1
Displayable character set, 9-3
Keyboard buffer, 8-3
Reattaching, 8-2

GUVBIIBVVVVOVDVIBIIIIVVOOO®VOOV OO O

L

LCD, 7-5
Additional characters, 9-5
Control character display, 9-1
Displayable character set, 9-3
Reattaching, 8-2
Rotation mode control, 8-9
STOP/SPEED control, 8-7

LET statement, 1-2, 1-13

Line
Maximum length of, 5-1

Line number
Currently being executed, 8-13
Most recent STOP, END, or break, 8-14
Range of, 5-1

LIST statement, 1-14

Logical expression, 1-12

LUN
Attaching keyboard or LCD to, 8-1

M

Machine language subroutine, 1-4
Message (ETX/ACK protocol), 7-9
,Micro printer, 7-6

‘Modem, 7-10

N

NEW statement, 1-15
NEXT statement, 1-4, 1-8, 1-15, 10-2
Number Overflow, 10-3
Numeric value
Format of, 8-13
Range of, 5-1
Rules for display, 5-1
Rules for input, 5-2

STOP statement, 1-4, 1-20
Line number of most recent, 8-14
STOP/SPEED key, 8-7

R

READ statement, 1-5, 1-18, 1-20, 10-2

6
¢
o - IF, 1-12
] INPUT, 1-12
ON/GOSUB statement, 1-16 ¢ LET 1-2, 1-13
ON/GOTO statement, 1-16 Y HSJV 11_1145
Overflow, 10- Ly
w, 10-3 ‘ NEXT, 1-4, 1-8, 1-15, 10-2
ON/GOSUB, 1-16
P 53 ON/GOTO, 1-16
POKE, 1-16
POKE statement, 1-16 -3 PRINT, 1-16
PRINT statement, 1-16 ' READ, 1-5, 1-18, 1-20, 10-2
Protocol, 7-8 . REM, 1-19
ETX/ACK, 7-9 ~ RESTORE, 1-4, 1-20
XON/XOFF, 7-8 RETURN, 1-11, 1-20, 10-3
Pushkey buffer, 8-4 -1 STOPR, 1-4, 1-20
Precedence over keyboard buffer, 8-4 , TROFF, 1-21
. TRON, 1-21
-
<
~»~
L 4
&

3930000009023 990000000V0VVHUHYV

REM statement, 1-19 String, 10-3
RESTORE statement, 1-4, 1-20 DAIA statement, 1-5
RETURN statement, 1-11, 1-20, 10-3 Length, 10-2
ROM ’ Subroutine
Control, 7-10 . Machine language, 1-4
Rotation mode, 8-9 T
RS-232 interface, 7-7 ¢
S - Telecomputing system, 7-11
Television, 7-6
SDT ¢ Time, 8-8
Addresses in, 8-1 2 Trace, 1-21 _
Serial interface, 7-7 Trigonometic functions, 2-4
SHIFT key, 1-10 ¢ ‘TROFF statement, 1-21
Statement TRON statement, 1-21
Assignment, 1-2 ¢ TV Adaptor, 7-6
ATTACH, 1-3, 8-2 e
BYE, 1-3 \
CALL, 1-4 e)
CLEAR, 1-4 Variable
CONT, 1-4, 10-1 & Format of, 8-11
DATA, 1-4, 1-5, 1-20, 10-2 A Last referred to, 8-13
DEF 1-6 7 ¢ Location of, 8-10
DIM, 1-7, 10-1 .-
END, 1-4, 1-7 v W
Egg/l\}EA’X'IJ 18 (’)_12'15’ 1-16, 10-2 < Word break character, 7-4
GET 1-10 . Word-wrap, 7-4
GOSUB, 1-4, 1-11, 1-20, 10-2, 10-3 4
GOTO, 1-11 —
-4 ' -5

\
f

0000000000000 CCECeTOEOOO00ECETH

ececcr‘ccccccteeeQa\eceeteatt:t.‘tcrc

I-6

XON/XOFF protocol, 7-8, 7-11

Zone, 1-17

v39939999505599990QQQQQQQQQQQOQOCL

RN VAR A VL PPV ND Y SO0 RO H0 N R SCR PR R N0 SV ISV R RSt St BSUNE UV S SRRt

>

N

VU Uy

|\ 1' 1’ ' &' A A W"W*UUUUV UV‘\!

POPOVUY

2

o

('-’ ‘,i

FRIENDS AMIS, INC.

The program described in this document is furnished under a
license and may be used, copied, and disclosed only in
accordance with the terms of such license.

Friends Amis, Inc. (“FA’) EXPRESSLY DISCLAIMS THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR USE FOR A PARTICULAR PURPOSE RE-
SPECTING THE HHC SOFTWARE PROGRAM AND
MANUAL. THE PROGRAM AND MANUAL ARE SOLD “AS
IS”. THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR USE FOR A PARTICULAR PURPOSE
AS TO THE MEDIUM ON WHICH THE SOFTWARE IS RE-
CORDED ARE LIMITED TO SIXTY (60) DAYS FROM THE
DATE OF LICENSING BY THE INITIAL USER OF THE PRO-
DUCT AND ARE NOT EXTENDED TO ANY OTHER PARTY.

USER AGREES THAT ANY LIABILITY OF FA HEREUN-
DER, REGARDLESS OF THE FORM OF ACTION, SHALL
NOT EXCEED THE LICENSE FEE PAID BY USER TO FA.
FA SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES, SUCH AS, BUT NOT LI-
MITED TO, LOSS OR INJURY TO BUSINESS, PROFITS,
GOODWILL, OR FOR EXEMPLARY DAMAGES, EVEN IF
FA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

FA will not honor any warranty when the product has been
subjected to physical abuse or used in defective or non-
compatible equipment.

The user shall be solely responsible for determining the
appropriate use to be made of the program and establishing
the limitations of the program in the user's own operation.

§
An:important note: Good data processing procedure dic-
tates that the user test the program, run and test sample sets
of data, and run the system in parallel with the system pre-
viously in use for a period of time adequate to insure that
results of operation of the computer or programs are satisfac-

tory.

By

