Panasonic

USA

Panasonic Company
Division of Matsushita Electric Corporation of America
One Panasonic Way,
Secaucus, New Jersey 07094

Panasonic Hawaii Inc.
91-238 Kauhi St. Ewa Beach
PO.Box 774
Honolulu, Hawaii 96808-0774

Panasonic Sales Company
Division of Matsushita Electric of Puerto Rico, Inc.
Ave. 65 De Infanteria, KM 9.7
Victoria Industrial Park
Carolina, Puerto Rico 00630

CANADA

Panasonic Canada
Division of Matsushita Electric of Canada Limited
5770 Ambler Drive, Mississaugo,

Ontario L4W2T3

OTHERS
Matsushita Electric Trading Co., Ltd.
32nd floor, World Trade Center Bldg.,
No. 4-1, Hamamatsu-Cho.2-Chome,
Minato-Ku, Tokyo 105, Japan
Tokyo Branch P.O. Box 18 Trade Center

www.pocketmuseum.com

& g4 Not for sale
[ ]



SnapBASIC

an advanced programming
language for the HHC™

VOLUME I: TUTORIAL

www.pocketmuseum.com Not for sale



Copyright © 1982 by Matsushita Electric Industrial Co., Ltd.
All Rights Reserved. HHC™ is a Trademark of Matsushita
Electric Industrial Co., Ltd.

www.pocketmuseum.com

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

WHAT IS BASIC? ... . . 1-1
WHAT CAN SnapBASIC DO? .............. ... ... . . 1-1
HOW TOUSE THISBOOK .................. ... . 1-3

CHAPTER 2: GETTING STARTED

PREPARING THE HHC TO RUN SnapBASIC ....... . 2-1
GETTING ACQUAINTED ....................... .. . 2-2
STARTING SnapBASIC ................. .. ... .. .. .. 2-3
HOW SnapBASIC HANDLES ERRORS .......... ... . 2-5
THE PRINT STATEMENT .............. ... ... .. . . .. 2-6
Fingers Tired? .......... ... ... ... ... ... .. ... .. 2-7
INTERLUDE: USING THE SHIFT KEYS, AND
OTHER MATTERS ....... ... ... ... .. .. . . ... .. .. . 2-7
The SHIFT Key .......... ... ... .. . . . . . .. ... ... 2-8
The 2nd SFTKey ............ ... ... .. . . . . .. .. ... 2-8
NEGATIVE NUMBERS ............... ... ... ... .. .. . 2-9
DOING SOME CALCULATIONS ............... ... .. 2-9
EXPRESSIONS ... ... ... .. ... ... . . . . . .. ... 2-10
The Order of Arithmetic Operations ............ . 2-10
Overriding the Normal Operator Precedence . .. ... 2-11
TURNING THEHHC OFF ............... ... ... .. .. 2-12
THE AUTO-SHUTOFF FEATURE .................. 2-13

CHAPTER 3: VARIABLES

INTRODUCTION TO VARIABLES ............. . .. 3-1
NAMING VARIABLES ................... .. . 3-2
THE INITIAL VALUE OF A VARIABLE ....... 3-2
VARIABLES AND EXPRESSIONS . ........... . 3-3
X=X+, .2 3-3
PERFORMING A CALCULATION IN STEPS ... .. 3-4
WHAT IS PROGRAMMING-ABOUT? ......... . 3-5

CHAPTER 4: WRITING A STORED PROGRAM

WRITING A PROGRAM ... ... ... ... .. . . . . . . . ... .. 4-1
Memory, Storage, and Some Other Terms .......... 4-1
Getting Started ........... ... ... ... .. .. ... 4-2
What Happened ................. .. ... .. .. ... . 4-2
Adding Statements To a Program ................. . 4-3
Limit On the Length Of a Line ................. ... 4-3

Not for sale




LIST: REVIEWING THE CONTENTS

OF A PROGRAM ... ... . 4-4
Listing Part Of a Program ......................... 4-5
Replacinga Line ............. ... ... ... . . . . . ... . 4-5
Entering the Editor ............ ... ... ... ... ..., 4-5
Changing the Contents Of aLine ................. 4-6
Moving the Cursor Right ......................... 4-6
Deletingaline ............. ... ... .. ... .......... 4-7
Copyingaline .............. .. ... ............ 4-7
The Auto-Repeat Feature ........................ 4-8

TRICKS FOR LAZY PROGRAMMERS ............... 4-8
More About Editing ............ ... .. ... ... ... .. .. 4-9

SAVING A PROGRAM INAFILE .................... 4-9
On the Relation Between SnapBASIC and
the File System ........ ... ... .. ... .. ... ... ..., 4-10

VARIABLE VALUES AND RUN ..................... 4-10

THE INPUT STATEMENT .......................... 4-11
INPUT With Multiple Variables ................... 4-11
INPUT Witha Prompt ........................... 4-12

CONCLUSION . ... ... 4-13

CHAPTER 5: MORE ABOUT BASIC

ERROR MESSAGES IN A BASIC PROGRAM ......... 5-1

THE RANGE OF A NUMERIC VALUE ................ 5-2

HOW BASIC PRINTS VERY LARGE AND

SMALL NUMBERS ........ ... ... ... .. . . . ... ..... 5-3

MORE ABOUT THE PRINT STATEMENT ............. 5-4
Printing Several Values Onaline ................. 5-4
How SnapBASIC Spaces Values .................. 5-4
Printing String Constants ......................... 5-5
How To Avoid PRINT's Zones ..................... 5-5
Combining Strings and Numbers
In a PRINT Statement ............................ 5-6

SEVERAL PRINT STATEMENTS,

ONE PRINTED LINE ....... ... ... ... .. . . . . . . ... ..., 5-6
The SPC$ Function .............................. 5-7

THE POS FUNCTION ...... ... ... ... . . . . . . . . . .. ... 5-7

THE STP/SPD KEY ... ..., 5-8

CHAPTER 6: MORE ABOUT EDITING

PROGRAMS

INSERTING A CHARACTER INALINE ............. . 6-1
Inserting Several Characters InaLine.............. 6-2
The « and » Keys InInset Mode ................ 6-2

DELETING A CHARACTERINALINE ............... 6-3

EDITING A LINE LONGER THAN THELCD ......... . 6-4

REVIEWING ALINE .............. ... .. ... ......... 6-5

www.pocketmuseum.com

THE « AND® KEYS ... . .. ... . .
SOME ADDITIONAL EDITING OPERATIONS .

SHIFTING CASE WITH THE LOCK KEY .............
NOTE ON EDITING IN IMMEDIATE MODE ..........

CHAPTER 7: MANAGING PROGRAM FILES

KEEPING AN EYE ON YOURFILES ................ 7-1
HOW TODELETEAFILE ......... ... ... ... ... .... 7-1
WARNING: AVOID THE CLEARKEY ................. 7-2
HOW TO RECOVER FROM CLEAR WHILE
EDITING A BASIC PROGRAM ...................... 7-2
HOW TO RENAME AFILE ........ ... ... ... ... ... 7-3
HOW TOCOPY AFILE ...... ... 7-3
INTRODUCING THE PROGRAMMABLE
MEMORY PERIPHERAL ........... ... ... ... .. .... 7-4
Copying a File To a Programmable
Memory Peripheral ................ ... ... ........ 7-4
When You Run Out Of Space ..................... 7-5
Managing Files In a Programmable
Memory Peripheral ...... ... ... .. ... ... ... .. L. 7-6
Recovering a File From a Programmable
Memory Peripheral ....... ... ... ... . ... . ... L, 7-7
Programmable Memory Peripheral
Anomalies . ... 7-7
Note On Multiple Peripherals ...................... 7-7
CHAPTER 8: REMARKS IN SnapBASIC
PROGRAMS
THE REM STATEMENT ... ... ... ... ... .. .. ... ..., 8-1
ADVANTAGES IN USING REM STATEMENTS ........ 8-2
DISADVANTAGES IN USING REM STATEMENTS ..... 8-2
WHAT TO WRITE IN REMARKS .................... 8-3
CHAPTER 9: FLOW OF CONTROL
INTRODUCTION TO FLOW OF CONTROL ........... O-1
THE GOTO STATEMENT ......... ... . . .. O-1
ENDING EXECUTION OF THE PROGRAM ........... 9-2
SOME GENERAL NOTES ABOUT GOTO ............ 9-2
INTRODUCING THE IF STATEMENT ................ 9-3
RELATIONAL OPERATORS ........... ... ... .. ...... 9-4
More Relational Operators ........................ 9-5
AlLittle Quiz ....... ... ... ... .. . 9-5
IFE . . THEN . 9-6
Some Variations On the Program .................. 9-7
PLANNING PROGRAMS FOR CHANGE ............. O-8

Not for sale



MULTIPLE TESTS IN ONE “IF" ... ... .. ... ... ... .. 9-9
Examples . ... 9-10

SEVERAL STATEMENTS ONALINE ............... 9-10

THE ON/GOTO STATEMENT: MULTI-WAY

DECISIONS . ... ... . 9-11

CHAPTER 10: MORE ABOUT VARIABLES

PROPERTIES OF REAL VARIABLES .............. . 10-1
INTEGER VARIABLES .......... ... .. ... ... ..., 10-3
BOOLEAN VARIABLES ....... ... ... ... ... . ...... 10-5

CHAPTER 11: ARRAYS

WHAT IS AN ARRAY? ... . L, 11-1
THE DIMENSION OF AN ARRAY .................. 11-2
USES OF ARRAYS . ... ... i, 11-2
AN EXAMPLE: CALCULATING THE NUMBER

OF ADAY INAYEAR ... ... ... L, 11-3
ANOTHER EXAMPLE: RECORDING VALUES

INORDER ... ... 11-4
MULTI-DIMENSIONAL ARRAYS ................... 11-5

CHAPTER 12: SOME EXAMPLES

WHERE DO THE EXAMPLES COME FROM? ....... 12-1
THE DAY-OF-YEAR CALCULATOR ................ 12-1
THE VALUE-ORDERING PROGRAM ............... 12-4
SOME NOTES ON DEBUGGING .................. 12-8
Avoiding Bugs .......... .. . 12-8
EliminatingBugs ........... ... .. ... ... .. ..., 12-9
Execution Tracing Aids . ....................... 12-10
The CONT Command ......................... 12-12
Finding Allthe Bugs . ......... .. ... ... ... . ... 12-12
CONCLUSION ... s 12-13

CHAPTER 13: THE FOR/NEXT STATEMENT

SOME TERMINOLOGY AND RULES ............... 13-1
AN EXAMPLE ... ... .. . 13-2
ABOUT THE INITIAL VALUE AND THE LIMIT ...... . 13-3
THE STEPWORD ..... ... ... ., 13-3
NESTED FOR/NEXT LOOPS ...................... 13-4
THE VALUE ORDERING PROGRAM, REVISITED ... 13-5
SPEEDING UP LOOPS ... ... ... .. . L. 13-6
SOME DETAILS ... ... 13-7

www.pocketmuseum.com

CHAPTER 14: MORE ABOUT 1/O

THE READ AND DATA STATEMENTS ..............
Some Rules For Using READ and DATA ..........
The RESTORE Statement ......................

USING PERIPHERALS ......... ... ... ... .........

GettingReady .................... ...,
Connecting the Micro Printer ....................
Writing Information To the Printer ................

Attaching the Printer ............................

—

—h

Y

.

—k
I

—d

—h ek
-Fh-h-b-h-?-h-h-b-b-
abLbhrpbOON-—-

Detaching Devices .............. ... .. .......... 14-5
Input From Peripherals ......................... 14-6
GETting from Peripherals ....................... 14-6
More About LUNS . ....... ... ... ... . . . .. 14-6
Device Independence ............ ... ... ... ..... 14-7
LISTingOnthe Printer .......................... 14-7
/1O ANOMALIES ... et 14-8
ATTACH CODES FOR VARIOUS DEVICES ......... 14-9
CHAPTER 15: FUNCTIONS
AN EXAMPLE . ...... ... . 15-1
SOME OTHER USEFUL FUNCTIONS .............. 15-3
INTEGER FUNCTIONS ......... ... . 15-4
CONVERSION BETWEEN INTEGERS AND
FLOATING POINT NUMBERS ..................... 15-4
AN IMPORTANT NOTE ABOUT
FUNCTION CALLS ...... .. 15-6
USER DEFINED FUNCTIONS ..................... 15-6
The Formal Parameter. Some Examples .......... 15-6
Some Benefits Of Using Defined Functions ....... 15-8
Some Limitations On User Defined Functions ... . .. 15-8
CHAPTER 16: STRINGS
STRING VALUES ........ .. .. . 16-1
STRING VARIABLES .......... ... .. ... ... ... ..., 16-2
SOME SIMPLE STRING OPERATIONS ............. 16-2
Assignment . ... .. 16-3
The INPUT Statement . ......................... 16-3
The READ Statement ....... [ 16-4
String Values vs. Numeric Value
In INPUT and READ ........................... 16-5
CONCATENATION . ..., 16-5
STRING SUBTRACTION ............. ... ... ... .... 16-6
THE INSERTS FUNCTION ........................ 16-6
THE ERASES FUNCTION ............. ... .. ...... 16-7
Comparison .............. ... . 16-7

AN EXAMPLE: THE FUEL EFFICIENCY

Not for sale



CALCULATOR ... e 16-7
EXAMPLE: THE DAY-OF-YEAR PROGRAM ......... 16-8
GETTING THE LENGTH OF ASTRING ........... 16-10
COMBINING STRINGS AND NUMBERS ........... 16-10
Converting a Number Toa String ............... 16-10
Converting a String To a Number ............... 16-11
EXTRACTING PIECES OF STRINGS ............. 16-11
The LEFTS$ Function .......... ... .. ... ..... 16-11
The RIGHTS$ Function ......................... 16-12
The MID$ Function .............. ... ... ...... . 16-12
EXAMPLE: DAY-OF-YEAR CONVERSION
USING SUBSTRINGS .......... ... ... .. ... .. ... 16-13
MORE EXACT FORMATTING: THE STRF$
FUNCTION ... . e 16-14
MORE ABOUT CHARACTERS ................... 16-18
Comparing Characters ........................ 16-18
Comparing Strings . .......... i 16-19
ASCIl Code ........ . i i 16-19
Converting Characters To Numbers... ........... 16-22
LJAnd Back L 16-22
Example: Forcing Characters To Lower Case . .. .. 16-22
VALand ASC ... ... . i 16-23
STR$and CHR$ .......... .. .. ... .. .iou... 16-23
THE GET STATEMENT ........ ... ... ... ... .... 16-24
GET Reads One Character .................... 16-24
GET Does NotEcho .......................... 16-25
SOME IDEAS FOR PRACTICE ................... 16-25

CHAPTER 17: SUBROUTINES

A SIMPLE EXAMPLE ........... ... .. 17-1
ANOTHER EXAMPLE: THE DIFFERENCE
BETWEEN TWO DATES .............. ... .. . .. .... 17-2
Note On Errors In Subroutines .................. 17-4
Planning Ahead .......... .. ... . ... ... ... ... ... 17-4
GENERALITY VS. EFFICIENCY ................... 17-5
About Line Numbers and Subroutines ............ 17-5
What Should Go Into a Subroutine? .............. 17-6
ERRORS THAT GOSUBS CAN CAUSE ............ 17-7
THE ON/GOSUB STATEMENT .................... 17-7
CHAPTER 18: PEEKS AND POKES
INTRODUCING THE PEEK FUNCTION ............. 18-1
Note On PEEKing Two-Byte Fields ............... 18-1
Example: |Is a Device Attached Toa LUN? ........ 18-1
INTRODUCING POKE .......... .. 18-2
How POKE Works ........... .. 18-2
An Example: Disabling the Auto-Off Timer ........ 18-3

www.pocketmuseum.com

CAUTIONI oo 18-3
OTHER PEEKS AND POKES ...........cccvvvn... 18-4

CHAPTER 19: USING THE FUNCTION KEYS

DEFINING A FUNCTION KEY ..................... 19-1
EXAMPLE: A FUNCTION KEY FOR LIST .......... . 19-1
DISPLAYING A FUNCTION KEY'S DEFINITION ..... 19-2
SPECIAL KEYS IN A FUNCTION KEY DEFINITION .. 19-2
HOW TO CORRECT A FUNCTION DEFINITION .... 19-3
HOW TO ERASE A FUNCTION DEFINITION ........ 19-3
LIKELY USES FOR FUNCTION KEYS .............. 19-3

CHAPTER 20: ADVANCED 1/O TECHNIQUES

CONTROL CHARACTERS ............ ... .. ... .. 20-1

Displaying Control Characters On the LCD .. ..... . 20-2
ESCAPE CONTROL SEQUENCES ................. 20-2
SQUEAK COMMAND ...... ... . e 20-3

CHAPTER 21: ADVANCED FILE TECHNIQUES

VARIOUS FILE TYPES ... ... ... . . i 2
BINARY FILES . ... ... 2
TEXT FILES ... . e 2
EXAMPLES ... ... g

2

YD O oOw—=-—

FILE ERRORS . ... . e
SPECIAL FILE TECHNIQUES ............. ... .. ...
SUGGESTIONS FOR USE OF FILES

IN SnapBASIC ... ... 2
EXAMPLE: A TEXT FILE SORTER ................. 2

— b b — bk
1

|

CHAPTER 22: THE FINAL
STAGE—PREPARING A CAPSULE

HOW TO PREPARE A SnapBASIC PROGRAM

FORBURNING ......... ... i, 22-1
HOW TO BURN ... ... e e 22-3
ASAMPLEBURN ... ... ... . . 22-5

CHAPTER 23: EXCEPTION HANDLING—THE
ONERR STATEMENT

ANOTHER USEFUL TRICK

Not for sale



CHAPTER 24: LOADING PROGRAMS FROM

FILES AND PERIPHERALS - CHAPTER 1: INTRODUCTION

THE LOAD COMMAND ............... ... ... 24 -1 This book Is your introducﬂgn to computer programming with
DOWNLOADING PROGRAMS FROM SnapBASIC for your HHC™.

OTHER COMPUTERS ....................... ... 24-2 Whether you are a new user learning to program for the first

................... 24-4 time or an experienced programmer just beginning to use the
HHC, you will find that programming in SnapBASIC is a
pleasant, challenging and rewarding experience.

WHAT IS BASIC?

The unique power of a computer is based on the fact that it is
programmable. This means that it not only can store data
and do calculations, as a pocket calculator can do; it also can
run under the control of a set of instructions which defines the
steps in a calculation that is far more complex than you could
perform by hand. Such a set of instructions is a computer
program.

There are two ways you can run programs on the HHC. First,
you can buy pre-packaged programs in HHC capsules. To
run such a program, all you need do is plug the HHC capsule
into your HHC.

Often, however, the program you want to run is not available
in an HHC capsule. In that case you can write the program
yourself, or obtain it from another person who has written it.’

SnapBASIC is a programming language—a convenient
form of notation for writing computer programs. Your HHC can
run SnapBASIC programs with the help of another program, in
this case the SnapBASIC compiler/interpreter, which is
contained in the HHC capsule that accompanies this book.

WHAT CAN SnapBASIC DO?

BASIC is a programming language that is often used on

personal computers and time sharing systems. Its major
benefits are:

® |t is easy to learn and use. This makes it a good first
language if you are just learning to program.

® |t is convenient for many tasks that involve mathematics or
manipulating strings of characters. It is often used to write

accounting programs and similar programs for business or
personal use.

® |t is available on many different computers. Once you are
familiar with SnapBASIC, you will find that you can learn to

www.pocketmuseum.com - Not for sale



use many other kinds of computers, large and small, with
little effort.

® Many computer programmers know it. More users of small
and medium-size computers know BASIC than any other
single language.

® Many computer programs have been written in it. When
you need a program to solve a problem, you will often find
that someone has already written it, and you can adapt it to
the HHC with relatively little work. If you are using the HHC
as a portable device for communicating with a larger
computer, you will often find that programs already running
on the larger computer can easily be adapted to the HHC.

The SnapBASIC compiler/interpreter has some special
features:

e While the ease of access to BASIC through the interpreter
has been retained, all the code of the program is compiled,
i.e. it runs much faster than if it were interpreted.

® Well tested programs can be ‘BURN’'ed into EPROM and
ROM capsules. This allows you to duplicate your own
programs for your own use or for distribution.’®

® SnapBASIC provides a powerful interface between itself
and the file system, allowing processing by SnapBASIC of
information in text files generated with the HHC editor, as
well as data base capabilities using text or binary files.

While most types of applications can be programmed in

SnapBASIC, another language will sometimes make your
programming work easier because of:

® Features that make large programs easy to write and
change.

® Greater efficiency. Some programs written in SnapBASIC
may run less efficiently than equivalent programs written in
another language.

If you are interested in writing programs in another language,

consider learning to program in the following language:

® SnapFORTH, a very powerful language designed for
professional programmers who want to develop packaged
programs. SnapFORTH was used to write much of the
HHC's internal software, and most commercially available

capsules.

' - In many cases it is possible to store a completed BASIC program in a
HHC capsule. This protects the program from being changed or erased
accidentally, and makes it cheap and easy to distribute to large numbers
of users. If you are interested in having a program stored in ROM
capsules, contact your HHC dealer.

¢ - Another way is to use the new HHC EPROM burner adaptor.
Information on this and other HHC peripherals is available from your

dealer.

1-2
www.pocketmuseum.com

Both SnapFORTH and SnapBASIC are good languages for
developing new HHC capsule programs.

Your HHC dealer can provide you with information about

these and other HHC programming languages as they
become available.

HOW TO USE THIS BOOK

This book is organized as a tutorial guide that teaches you
how to program in SnapBASIC.

This book’s companion volume, the SnapBASIC Reference
Guide, contains detailed information that you can refer to as
you write programs. We will refer to it as the Reference
Guide.

If you are new to both SnapBASIC and the HHC, read
every part of this book carefully. Try all the examples. Start
writing your own programs as soon as you can; you'll find that

there is nothing like practice for increasing your programming
skill.

If you are familiar with BASIC, but not the HHC, study the
sections of the book that are marked with this symbol: {H}.
These sections describe the mechanics of using the HHC.
Also study the sections of the book that are marked with this
symbol: {B}. These sections describe features of SnapBASIC
that differ greatly from other versions of BASIC, and/or will
cause you trouble if you do not understand exactly how they
work. Look at the Reference Guide to see what statements,
functions, operators and keywords SnapBASIC recognizes.

If you are familiar with the HHC, but not with SnapBASIC,

you can skim over the sections of the book that are marked
with {H}.

If you are familiar with both BASIC and the HHC, and only
need to know how SnapBASIC on the HHC differs from other

BASICS,_ you can skim over most of the book; pay attention to
the sections that are marked with {B}.

1-3

Not for sale



www.pocketmuseum.com

CHAPTER 2: GETTING STARTED

PREPARING THE HHC TO RUN SnapBASIC

If you have not yet used your HHC at all, there are some very
simple set-up procedures you must carry out to make it ready
for use.

Turn the HHC so that its keyboard is facing away from you.

The rectangular panel along the bottom of the back can be
lifted off easily by pulling up the tab next to the legend ‘OPEN'.
Lift off the panel and look at the three ROM sockets behind it.
Each of these sockets can hold an HHC capsule.

Plug the HHC capsule containing SnapBASIC into any of the
three sockets. The flat side of each capsule should face
inward; the arrow on the outward-facing side should point
down, to match the arrow on the bottom of the socket. (This is
the only way a HHC capsule fits in the socket; you can’t insert
one incorrectly!)

After inserting the SnapBASIC HHC capsule, replace the
panel that covers the sockets.

The HHC’s ALL OFF switch is located in a recessed slot
above the left end of the panel. Use a slender object such as a

pencil to move this switch to the ON position. Don’t worry if it
already ON.

The HHC's ALL OFF switch should stay ON at all times—even
when you put the HHC away at the end of the day. In this way,
data that you tell the HHC to preserve can be preserved.
Because of the HHC's unique power-conserving design,
leaving the main power switch ON does not cause an undue
drain on the HHC’s battery.

With the keyboard still facing away from you, find the circular
hole on the left end of the HHC. This hole is a socket for
plugging in the HHC's AC Adaptor. Plug the AC adaptor’s

jack into this socket, and plug its power cord into an electrical
outlet.

The AC Adaptor can be set to operate on either 110 volt or
220 volt power. Be sure your AC Adaptor is set for the voltage
that your electrical system provides. If you try to use the AC

Adaptor at the wrong voltage setting you may damage it
seriously.

The HHC has built-in rechargeable batteries that let you
operate it for many hours without the AC Adaptor. To keep the
batteries fully charged, however, we suggest that you use the
AC adaptor whenever it is convenient to do so. The AC

2-1

{H}

Not for sale



iHj

Adaptor charges the HHC's battery whenever it is plugged in.
unless the HHC’s ALL OFF switch is set to OFF.

If you try to use your HHC when the batteries’ charge is
uncomfortably low, the LCD displays the message ‘BAT
LOW’, and the HHC turns itself off. This is a signal that you
had better plug in the AC Adaptor to run the HHC and
recharge the batteries.

GETTING ACQUAINTED

Hold the HHC with its keyboard right side up and facing
toward you. Find each of its features as we describe them.

® o the right of the main keyboard are the ON and OFF
keys, which you use to turn the power on and off as you use
the HHC. Unlike the ALL OFF switch on the back of the
HHC, the OFF key preserves the contents of the HHC's
internal storage. Below the ON and OFF keys is the
CLEAR key, which you use with many HHC programs to
reset the HHC when you have finished a task. Never use
the CLEAR key to exit SnapBASIC, except for in the most
dire emergencies. If you do, you will most likely discover
that your program is completely unusable when you try
select it again. Use the BYE command instead. Repeat:
NEVER USE CLEAR.

® Above the keyboard is a long rectangular frame containing
a liquid crystal display (LCD for short). The LCD is the
HHC’s primary means of displaying information. It is
capable of displaying one line, 26 characters long.

® Just below the LCD is a line of words that say

SHIFT LOCK 2nd SFT
DELETE INSERT ALARM ON LINE

The HHC can display a row of triangular dots called blips
on the LCD, above these words. The HHC uses blips to
give you information about the status of the HHC. For
example, the SHIFT blip goes on when you press the
SHIFT key (which is similar to the case shift key on a
typewriter).

There is one more unmarked blip to the left of the SHIFT
blip. This is used to indicate that SnapBASIC is busy with
some or another internal task, such as ‘housekeeping'.
When this blip goes off, SnapBASIC continues normal
operation.

® The keyboard occupies most of the HHC’s face.
The keys in the central part of the keyboard type characters

2-2

www.pocketmuseum.com

like ‘a’, ‘4’, or ‘?” when you press them. The symbols
inscribed next to these keys show that the keyboard's
layout is similar to that of a typewriter. (Many of the keys
are labelled with two symbols, and some of the symbols in
the second set may not be familiar to you; you'll learn how
to enter these symbols later in this chapter.)

Other keys are labelled with arrows, with words like ‘HELP’ or
abbreviations like ‘STP/SPD’, or with codes like f1". These
keys are used to control the operation of the HHC rather than

to type characters.
The following control keys are especially important:

e ENTER, located near the lower right corner of the
keyboard. It is similar to a typewriter's RETURN key.

e SHIFT, just to the right of ENTER. It is similar to a
typewriter's SHIFT key. Notice that there is only one SHIFT

key on the HHC.

e 2nd SFT (short for “second shift”), to the left of ENTER.
This key is similar to SHIFT, but gives you a second set of
upper case characters. With the aid of this key you can type
a total of 96 different characters.

Look at the HHC's left side. The slot you see is a socket for
plugging in a peripheral device such as a printer or a
telephone coupler (modem), or connecting to the I1/O Adaptor
when multiple peripherals are used.

STARTING SnapBASIC (H)
Attach the AC Adaptor to the power socket on the HHC's side,
and plug the AC Adaptor into an electrical outlet. Remember,
the AC Adaptor not only provides power to the HHC, but also
keeps its battery charged so that you can use it without
plugging it in when you want to.
Turn the HHC on by pressing the ON key. Look at the LCD. It
should display some information in black letters on a clear
background. |
If the LCD displays the word ‘RESTART’, press the CLEAR
key once or twice to make the word go away.
Now the LCD should display the following messages, one line
at a time, over and over:

P=CRl oA TOR

S=LLOCE SCOMTEOLLER

a=FILE =Y=TEHN

G=RLUMN SHAF FREROGESMS

a=mr PR LU

2-3
Not for sale



This display is a menu. It is the HHC's way of asking you what
you want it to do. You pick a selection from the menu by
pressing the corresponding number key. For example, to
make the HHC run the calculator, you would press the ‘1’ key.

The HHC displays many different menus at different times.
The one you are looking at now is called the primary menu,

since it leads you to all the other functions that the HHC can
perform.

You want to run SnapBASIC, so you should respond to the

primary menu by pressing the ‘5’ key. (If you should happen to

press the wrong key, press CLEAR once or twice to get back
to the primary menu.)

The HHC displays the message
=P PBEAS IO

to confirm your choice. Then it begins running the SnapBASIC
interpreter.’

SnapBASIC displays another menu that looks like this:

Pehag 1l
Py F e

There’s only one numbered selection on this menu: #1, “New
file”. This selection allows you to create a new SnapBASIC
program. The message says “New file” because when
SnapBASIC saves a program, it sets aside part of its storage
for the program, and this part of its storage is called a file.

Pick the “New file” selection now by pressing the ‘1’ key.
The SnapBASIC interpreter displays the message

Mew e

to confirm your choice. (It works just like the primary menu.
Most of the HHC’s menus work the same way!) Then the
Interpreter displays the message

Mew Frogromn Momes:

followed by a flashing black square. This prompt asks you to
give a name to the file that your program will be stored in. The

flashing black square is a cursor which invites you to enter
characters on the keyboard.

The name you give the file may be of any reasonable length,
and may contain any character you can type on the keyboard,
Including “space”. For convenience, we suggest that you use

' - Note to old HHC hands: Now is the time to select your RAM bank, if you
need to. The I/O key is disabled in SnapBASIC. Its 1/O peripheral
capabilities are replaced with the ATTACH and DETACH statements; the
only function that is not replaced is RAM bank selection.

2-4
www.pocketmuseum.com

names that are fairly short, but describe your programs well,
and contain no strange characters like ‘?’ or ‘@’

Enter the program name of your choice through the keyboard,
and press ENTER. For example, if you decide to name your

program ‘program 1, type
Frosram 1

and press ENTER. Don’t use the shift key yet; let your
program name be all in lower case. This will make it easier for
you to remember in the future. Later we will find out how to
use SnapBASIC to manipulate files, and you will see the
advantages about being consistent in your use of lower case

fllenames.

The cursor is always over the next position where a typed
character will be displayed, like the type element of a
typewriter. Note that if you enter a name longer than 10
characters, the “New progam name” prompt will scroll to the
left, and the cursor will remain in the rightmost position in the
LCD. The name may be whatever you like; whatever
characters you desire may be included. It may be up to 80
characters long, if you really want to type in that much. (After
80 characters, the HHC will beep at you.)

When you press ENTER, your program name disappears,
and is replaced by the symbol

followed by the cursor. Now SnapBASIC is waiting for you to
start programming.

HOW SnapBASIC HANDLES ERRORS

Before you begin learning to write correct SnapBASIC
programs, let's see what happens when you write an incorrect
one. Youre going to write plenty of those while you're
learning, so you might as well get used to it now!

Enter something that is obviously nonsense, such as “qwerty”,
and press ENTER. SnapBASIC will list the line and display the
error message

ws OUERTY (——SV-FERREOR

This means “Syntax error”, an error in the way you wrote

something. SnapBASIC is telling you what you did wrong and
when.

That wasn't so bad, was it? There is nothing you can type into
your HHC that will harm it physically, and there are few errors
you can make in a SnapBASIC program that will have any

2-5

1B}

Not for sale



effect more serious than this one did. (The few “dangerous”

errors can happen only in rarely used parts of SnapBASIC
that we will point out clearly when we get to them.)

So don’t worry about damaging your HHC by typing the wrong
thing. You can't.

THE PRINT STATEMENT

A computer program consists of steps which accomplish
some desired result when the computer executes them in the

proper sequence. In SnapBASIC, each step in a program is
called a statement.

We're going to start programming in SnapBASIC by executing
some simple statements on the HHC. We will begin with the
PRINT statement, which displays information on the LCD.

Type in the following statement:
Frimt 15
Press the ENTER key and watch what happens.

When you press ENTER, SnapBASIC clears the LCD (that
always happens when you press ENTER) and displays the
number ‘15’ (that is the function of the statement you entered).

The statement ‘print 15’ has two parts. The first part is the
word ‘print’. ‘print’ is a reserved word—a word that has a
special meaning to SnapBASIC. A list of such words is
contained in the Reference Guide.

The second part of the statement is the word ‘15’. We call ‘15’
a constant, because it represents a value that does not
change. This particular constant is a numeric constant,

because its value is a number, 15. We will learn about other
kinds of constants later.

Try entering the following statement:
Froomt 15,3

SnapBASIC obediently displays ‘15.3". SnapBASIC is not
limited to calculations iInvolving integers; it can deal with
fractional numbers, too. Computer people call numbers of this
sort real numbers or floating point numbers.

Try the following statement:

Frimt 15, SEAHAS

SnapBASIC displays ‘15.3’, not ‘15.300000’. This is because
SnapBASIC processes the statement ‘print 15.300000’ in two
steps:

www.pocketmuseum.com 2-6

1. SnapBASIC processes the the number ‘15.300000’.
SnapBASIC processes the number by converting it to an
internal format that it uses to do arithmetic, in which
‘15.300000°, ‘15.3', and ‘0015.3" are all represented the
same way. | |

2. SnapBASIC processes ‘PRINT'. The function of PRINT is
to convert the following number from internal format to
external format, and display it on the LCD. When
SnapBASIC displays a number it always omits trailing
zeros after the decimal point.

Try. the following statement:
Frivt 1.880]125450 072

SnapBASIC doesn’t display exactly what you entered; it
rounds the number to ‘1.00012345679’. SnapBASIC stores
numbers in a form that limits their precision to twelve decimal
places. If a number can't be represented exactly in twelve
decimal places, SnapBASIC rounds it to the nearest

twelve-place number.

Try displaying other numbers with zeroes before the decimal
point, as well as after it. (For the moment, avoid very large
numbers and very small decimal fractions.) You should be
able to predict how SnapBASIC will display each of the
numbers you enter.

Fingers Tired?

Here's a useful hint: SnapBASIC accepts ‘?’ as an
abbreviation for the word ‘print’. For example, in place of ‘print
229.5, you can type ‘? 229.5’. You will find the ‘?’ just to the
left of the SPACE bar.

Knowing this will save you a lot of key strokes as you learn to
program.

INTERLUDE: USING THE SHIFT KEYS, AND
OTHER MATTERS

In the next section we're going to start using the PRINT
statement to display the results of calculations. First, to enter
arithmetic symbols like ‘+’ and ‘-, we must learn how the
HHC’s shift keys work.

The HHC has two shift keys. They are labelled ‘SHIFT’ and
2nd SFT’ (“second shift”).

2-7

1B}

H}

Not for sale



www.pocketmuseum.com

The SHIFT Key

The SHIFT key is meant to be used only to capitalize the
alphabetic keys, A through ‘Z'.

You use the SHIFT key by pressing it, releasing it, and then
pressing the key you want to shift. SHIFT affects only the next
key that is pressed after it.°

Press the SHIFT key, release it, and then press the ‘P’ key.
You should get an upper case ‘P’ instead of a lower case ‘p’.

Now press the ‘R’ key. You get a lower case ‘r', since you
didn’t press the SHIFT key first.

Press SHIFT again, then ‘I'. Notice that the ‘SHIFT’ blip goes
on when you press SHIFT, and stays on until you press ‘I’.
This blip tells you that the next key you press will be shifted.

By now you should have the following characters on the LCD:
sl

Finish the rest of the word ‘print’, type in a number, and press
ENTER. See how the HHC accepts ‘PrINT’ or ‘PrINt’, just as

happily as it accepts ‘print. SnapBASIC statements may be
entered in upper or lower case; the HHC does not care.

What if you press the SHIFT key, and then decide you don't
want to shift the next character? Just press SHIFT again. The
SHIFT blip will go off and the shift will be cancelled. Try it.

Now that you know how the SHIFT key works (and now that
you know you don't need it) you can ignore it until you get to

later chapters where we learn about situations in which SHIFT
IS useful.

The 2nd SFT Key
The 2nd SFT (“second shift”) key produces all the characters
Inscribed on the HHC’s keyboard in red.

2nd SFT works the same way as SHIFT: you shift one key by
pressing 2nd SFT, then the key that is to be second-shifted.

Let's use the 2nd SFT key to perform a simple calculation.
Enter

PFriomt 15435

* - You can also hold the SHIFT key down while you press several other
keys, as you would on a typewriter. But beware—this will shift every
character up to and including the first one entered after the SHIFT key is
released! Do you see why this is consistent with the way the SHIFT key
works on a single character?

The ‘+’ sign is on the ‘Y’ key. To enter ‘+’, press 2nd SFT,
then ‘Y’. End the statement by pressing ENTER, and watch
the HHC display the result: 20.

Enter another PRINT statement with a “+’ in it. When you
press 2nd SFT, notice that the "2nd SFT’ blip goes on. This blip
tells you that the next key you press will be second- shifted.

If you press the 2nd SFT key and then decide that you don't
want to second-shift, you can press 2nd SFT again to return to
lower case; or, you can press the SHIFT key to go directly into
upper case. (You can also use the 2nd SFT key to go directly
from upper case to second-shifted case.)

NEGATIVE NUMBERS

Now that you know how to enter a minus sign (it is the
second-shifted ‘U’ key on the HHC keyboard), you can enter
negative numbers, as well as positive ones. Try the following
statement:

i ] =~y "3

Frimh =il o
The HHC obediently displays *-25.3".

DOING SOME CALCULATIONS

Now let's learn to do arithmetic with the PRINT statement.
We've already tried addition,

Frimt 1o+

and seen that it works. Let’s try subtraction:
Friomt 100

This gives the result you would expect, too.

To do multiplication, use the *’ symbol (the second-shifted ‘M’
key), not the ‘X’ symbol (on the ‘I' key®). The *' is almost

universally used for multiplication in computer programming
languages:

Frimt 103
To do division, use the /' symbol (the second-shifted ‘?’ key),

not the “+’ symbol (on the ‘O’ key*). Again, this use of /' is
almost universal.

Frint 1555

3,*-The ‘x’and ‘+’ symbols are used for multiplication and division in the

HHC'’s calculator program. In most other prgrams, including SnapBASIC,
they duplicate the function of the SPACE key.

2-9

Not for sale



EXPRESSIONS

Statement parts like ‘15+ 5’ and ‘15/5’ in the examples above
are called “expressions”. An expression is a group of values
(like "15" and ‘5’) joined together by operators (like ‘ +’ and /)
In a valid way.

You can write more complicated expressions if you wish. For

example, you can write an expression that adds several
numbers:

Frimt 15+293, 17+5+52, -
or multiplies several numbers:
Frimt 1295075, 135

You can write an expression that subtracts or divides several

numbers, or does any combination of operations in one
statement:

Frivt ZS5#E-—dg-2

You can perform exponentiation with the operator . For
example:

Frimt 772

displays 49, which is 72, or 7*7.
Frimt =74

displays 16, which is 22, or 2*2*2*2.

Non-integer exponents are allowed: for example:
Frimt 250G, 3

dLsEIays 19.6983106135, which is the approximate value of
277,

Negative exponents are also allowed: for example:
Frimt = =—d

displays .0625, which is the value of 24(1/16).

The Order of Arithmetic Operations

Look at the PRINT statement in the last example, above.

Notice that the result depends on the order in which the
operations are done.

SnapBASIC has rules that determine the order of operations
for every valid statement. Computer programmers call these
rules operator procedure rules, since they determine which
operators ("+', /', "', etc.) take precedence in a calculation.

2-10

www.pocketmuseum.com

If you are familiar with mathematics, you will find that
SnapBASIC’s operator precedence rules are the same as the
ones you are used to. Here are the rules:

1. Negation, *-', used to express a negative number, has the
highest precedence; that is, it is performed first. Example:
in ‘5*-3’, ‘-’ is performed before *'.

2. Exponentiation, ', has the next precedence. Example: in
‘5*2% . is performed first, then ', then ‘*'.

3. Multiplication and division have the next precedence.
Example: in '5+3*8", "’ is performed before ‘+’. (The
result is 29.)

4. Addition and subtraction have the next precedence.

5. Relational operators ‘>’ ‘<’ and ‘=' have the next
precedence, followed by relational AND’ and ‘XOR’,
followed by ‘OR'.

6. If two or more consecutive operations hae equal
precedence, they are performed left-to-right. Examples: in
'5-2-1", 2 is subtracted from 15, then 1 is subtracted from
the difference. (The result is 12.) In ‘15/3*2’, 15 is divided
by 3, then the quotient is multiplied by 2. (The result is 10.)

Overriding the Normal Operator Precedence

If you want an expression to be evaluated in some order other
than the one defined by SnapBASIC’s operator precedence
rules, put parentheses around the part of the expression
SnapBASIC is to evaluate first.

For example, consider the following statement:
Frivt 15#12+1-2-3-5

Here is how we make SnapBASIC evaluate ‘12 +1/2’ first,
getting ‘12.5’, and then evaluate ‘15*12.5-3-5":

Frimt 1201+ 02 —50-5

Note that inside and outside the parentheses, normal
precedence rules apply. In the expression above, SnapBASIC
would evaluate "1/2’ first, then add 12 to the quotient. (/' has
higher precedence than ‘+’.) Then SnapBASIC would
multiply the sum by 15 (*’ has higher precedence than *-),
then subtract 3 (equal-precedence operations are performed
left-to-right), then subtract 5. The result would be 179.5.

Where would you insert parentheses in the statement
Frivt 15+3#15-3-S%32, 141590

SO that_ SnapBASIC will do the addition, the subtraction, and
multiplication by pi (3.1415926) first, then do the other
multiplication, then do the division? Try it on your HHC; does

2-11

Not for sale



your solution work? The result it should produce is
13.7509873177.

You can write expressions that use parentheses inside
parentheses if you wish. For example, suppose you want to
calculate the value of this expression:

1+ 1
2+ 1
3+ 1
18
You can do it like this:
Frioot 1+1-024 1203+ 18 00

THE AUTO-SHUTOFF FEATURE

The HHC will automatically turn itself off ten minutes after the
last program input, or ten minutes after the last key is pressed.
If a SnapBASIC program runs continuously with no 1/0 or key
press for longer than ten minutes, the HHC will automatically
shut off. Each character received by SnapBASIC, either in
immediate mode or by the execution of an INPUT or GET
statement, starts the 10 minute period all over again.

The auto-shutoff feature is designed to preserve the HHC's
batteries in case you absentmindedly leave the HHC on when
you are done using it. (You can disable this feature from
SnapBASIC if you need to. See the chapter in this manual on

PEEKS AND POKES.)
To turn the HHC on again, just press the ON key.

We say that this expression has two levels of nested
parentheses.

But be cautious: expressions with too many levels of
parentheses are usually very hard to read (as this one Is!).
What's worse, they might be too complex for SnapBASIC to
handle. Your programs will be clearer if you divide complex
expressions into several simple steps, and perform each step
In a separate statement. You will learn how to do this in the
next chapter.

{H}  TURNING THE HHC OFF

We have covered a lot of ground in this chapter, and you have
learned almost everything there is to know about writing
numeric expressions. Before we end the chapter, let's take a
look at one more remarkable feature of the HHC.

Enter part of a PRINT statement. Then turn the HHC off by
pressing the OFF key at the right edge of the keyboard.> On any
other computer, this would erase everything in the computer’s
storage; when you turned the machine on the next time, it
would be just as if you were turning it on for the first time.

But turn the HHC back on by pressing the ON key. There’s your
partially entered statement, jut as it was when you pressed
OFF! You canb turn the HHC off at any time, and whatever

operation the HHC is performing will continue undisturbed
when you turn it back on.

> - Note the ALL OFF switch on the back of the HHC. Remember, this
switch stays ON at all times.

2-13

212 Not for sale
www.pocketmuseum.com



CHAPTER 3: VARIABLES

INTRODUCTION TO VARIABLES

So far we've been writing expressions that consist entirely of
constant numbers like 517 and 3.1415926. Clearly, this is
limiting. The computer programs we re going to write have got
to manipulate different values at different times.

Let's see how we can do this in SnapBASIC. Turn your HHC
on; type in the following SnapBASIC statement and press
ENTER:

r=2
(‘=" is the second-shifted ‘P’ key.)

When SnapBASIC executes this statement, it creates a
variable named “X” and assigns it the value 5.

Now enter the following statement:
Frimt X

and SnapBASIC displays the value of the variable X, which is
5.

Every variable has a name and a value. For example, we
have just looked at a variable whose name is X, and whose
value is 5.

When we write programs, we refer to variables by name.
When we run programs, SnapBASIC manipulates the values
of the variables, as if we had entered those values as
constants. In our example above, since the value of X is 5, the
statement ‘print X’ has the same result that the statement “print
5 would have.

Try entering the two statements:

I—I- l:—u-

Frinmt X

Now SnapBASIC displays -8.2" instead of ‘5. By executing
the statement 'x=-8.2", we have changed the value of X to
-8.2. The former value, 5, is gone without a trace. This is why
we call X a “variable;” its value changes—varies—every time
we execute a new “x=. . .” statement. (This kind of

stat_ement Is called an assignment statement, because it
assigns a new value to a variable.)

3-1
www.pocketmuseum.com Not for sale




{B}

1B}

1B}

www.pocketmuseum.com

NAMING VARIABLES

Whenever you write a program, you must choose names for
the variables you plan to use. In naming SnapBASIC
variables, you must observe the following rules:

1. The first letter of a variable name must be a letter. (Upper
and lower case, remember, are equivalent.)

2. Every following letter of variable name must be a letter or a
numeral.

3. A name may be any reasonable length; SnapBASIC will
use all characters to distinguish names. This is in contrast
with most BASICs that ignore all characters after the first
two. Note however that longer names take more room in
memory; also, you can’t put more than eighty characters on
a line, in any case.

4. A variable name may not be or start with a reserved word,
such as ‘print’. This is in contrast to most Basics, that will
not allow a variable to contain a reserved word anywhere
within the name.

An attempt to use an illegal variable name will cause an SY
(syntax) error.

Here are some reserved words that could appear as the
beginning of your variable names if you don’t guard against
them:

AND END NEW PI
CONT FOR NOT REM
DATA IF ON RUN
DEF LET OR TO

You can find a complete list of SnapBASIC reserved words in
the Reference Guide, Chapter 4.

Note that all the function words will be seen as variables
unless the typical word is followed by a left paranthesis “(” or is
followed by a $ sign for string functions.

You can write more readable programs if you give your
variables names that are connected with their uses in the
program. For example, in a program that computes compound
Interest over a period of time, a variable to hold the length of
time in months would be better named MONTHS, or at least
MN, rather than just M or (horrors) X.

THE INITIAL VALUE OF A VARIABLE

Try PRINTIing a variable you have never assigned a value to,
such as DAYS. You will get 0.

Every variable that you use in a SnapBASIC program has an
initial value of zero. You can often take advantage of this fact.

3-2

For example, if you are writing a program that computes the
sum of a series of numbers, you can safely assume that the
variable you use to accumulate the sum has a value zero
before you add the first number to it. Thus, you need not write
a statement like ‘'SUM =0’ at the start of your program.

VARIABLES AND EXPRESSIONS

You can assign the value of an expression to a variable, just
as you can PRINT the value of an expression. Try this:

=i ] SIS0 0
Frimt *

these two statements display exactly the same value as:
Froomt Clo+Dad 5005

Variables can appear in an expression, as well. Try this:

=15

by

i IR Ty B Ry
Frimt ¥

It should give you the same result again.

X=X+1...?

Consider the following statement:
=1+

This statement takes the current value of X, adds 1 to it, and
assigns the sum to X as its new value.

Notice that as a mathematical statement, “x =x + 1” is absurd.
There is no way a mathematical variable could possibly be
equal to itself plus 1. This points up an important difference
between the meaning of the symbol ‘=' in mathematics
(particularly in algebra) and its meaning in SnapBASIC.

In mathematics, ‘=’ represents a statement of fact.

X=Yy+1"means, “X is equal to Y + 1; whatever the value of Y
happens to be, the value of X is 1 greater.”

In SnapBASIC, ‘=’ represents an assignment operation.

X=Yy+ 1" means, “take the value of Y. add 1 to it, and assign
the sum to X.”

There_ IS also an important difference between the concept of
a variable in algebra and in SnapBASIC. In algebra, we deal
with equations like ‘2x+1=25"_ where the “variable” X has

3-3

Not for sale



some fixed, pre-existing value. Our task, if we wish to solve
the equation, is to find the value.

In SnapBASIC, we deal with statements like x=2*X+1’,
where X has one value before the statement is executed, and
a different value afterward. A computer's task, if it is
commanded to execute such a statement, is to create a new
value.

In order to avoid being confused about what a computer
program does, keep these differences clear in your mind as
you progress through this book.

PERFORMING A CALCULATION IN STEPS

Remember the mathematical formula and the corresponding
SnapBASIC statement that we used to illustrate the idea of
nested parentheses?

1+ 1
2+ 1

3+

® = |

corresponds to:
Frimt 1+1-0241 700+ 10

Let's use our knowledge of variables to calculate the value of
that formula in a more readable way.

We begin at the place where we would begin computing the
value by hand: the innermost part of the formula, ‘1/18’. We
will work outwards from there until we have calculated the
value of the whole formula.

What is the largest part of the formula that we can write in a
thoroughly legible way? For most of us it will be ‘3+ 1/18". We
write a statement that computes that part of the formula:

T=o+110

Now we can simplify the formula by substituting X for the part
of the formula that X will represent after the statement above
has been executed:

1+ 1
2+ 1

X

What is the largest part of the new, simplified formula that we
can write legibly? Probably 2+ 1/X'. Let's write this as a
statement after the first one:

www.pocketmuseum.com 3-4

The formula is simplified again:
1+1
X

Think about what we have here. There are two SnapBASIC
statements, which we intend to execute in order. The first
statement computes an intermediate value representing part
of formula. The second statement computes a second
intermediate value representing a larger part of the original
formula. The new formula is equivalent to the first one, with X
substituted for the expression whose value it will contain after
our second statement is executed.

Advancing one more step, we can represent the whole
formula with this set of three SnapBASIC statements:

r==+1-1:
r=+1-%
r=1+1-"%x

If we execute these three statements in order, and then
Frinmt X

we should get the same value that we got from
Frimt 1+1-0Z2+1-024+1-1200

(Do we? Try it.)

WHAT IS PROGRAMMING ABOUT?

There are two important lessons to learn from the exercise we
just went through.

1. A complicated expression (or statement, or procedure) can
usually be broken down into a series of simpler
expressions, or statements, or procedures. This makes
each part easier to understand, and so makes the whole
easier to understand.

2. A complicated problem can often be broken down in the
same way. If you can figure out the right way to break a
problem down, it becomes easy to solve, and its solution is
easy to understand, and therefore to program.

After you master the “ABC’s” of SnapBASIC, most of your
programming time will be spent figuring out how to describe
the solutions to problems so that a SnapBASIC program can
solve them for you. The best way to do this is to break a
problem down systematically into smaller and smaller parts,
until the solution to each part of the problem becomes clear.

3-5

Not for sale



Smart computer programmers are not those who can write CHAPTER 4: WRITING A STORED

complicated programs; they are those who can write simple
programs, even when they are solving problems that seem PHOG RAM

complicated.

WRITING A PROGRAM

Up to now, we have used SnapBASIC as a sophisticated
calculator. We have typed in numbers and operators, and it
has calculated a result when we pressed ENTER.

Now we’re going to start writing computer programs. We're
going to type in statements that SnapBASIC will hold in
storage rather than execute. When we have typed in several
statements, we will tell SnapBASIC to execute them all at
once. Those statements will make up a program. We will be
able to execute the same program as many times as we want,
with or without changes.

Memory, Storage, and Some Other Terms

Before we begin, we will introduce some terms that relate to
the HHC's facilities for remembering things.

We will use the term memory to describe any part of the HHC
that can store information. We may also apply the term
‘memory” to information storage in a peripheral device.

A computer has two kinds of memory. One is random access
memory (RAM for short), which can be used to store and
retrieve information. The other is read-only memory (ROM
for short), in which the computer's manufacturer stores
unchangeable information that is needed to run the computer. °
ROM can either be permanent, or programmable, in which

case it is usually called PROM (Programmable ROM) or
EPROM (Erasable PROM).

We will use the term storage to describe RAM in which you
can store, edit and run SnapBASIC programs. The HHC has
some built-in storage, called intrinsic RAM. Depending on
the model of HHC you have, the intrinsic RAM may have room
for approximately 3,000 to approximately 7,000 characters of
storage. You can give your HHC an even larger, additional

storage area by plugging in a Programmable Memory
Peripheral.

Kinds of memory that are not ‘storage” are the built-in ROMs
that hold the HHC'’s fundamental operating programs; the
ROM in HHC capsules: and any memory in a peripheral
device other than a Programmable Memory Peripheral.

56 4-1 Not for sale
www.pocketmuseum.com



Getting Started

Let's write a simple computer program on paper. This is
actually something we've already done. Any two SnapBASIC
statements that perform a meaningful task when executed in
order, make up a program. Here's the very simple program
we’re going to work with:

T=6

Frinmt x
Turn on your HHC. Enter the two-statement program we just
wrote—not as it is shown above, but with the numbers 10 and
20 in front of the two lines, like this:

1H x=/

S Print X
Notice that when you finish entering the program, the LCD

does not display a 67. SnapBASIC hasn’t executed either
statement yet.

Next, type the command
LI

and press ENTER. Now SnapBASIC executes the program
and displays the value 67.

As you entered the statements, SnapBASIC stored them.
When you entered the command RUN, SnapBASIC executed
(ran) the program.

Enter RUN a few more times. Watch SnapBASIC execute the
program each time you enter RUN.

What Happened

SnapBASIC compiled the statements instead of executing
them because of the line numbers, 10 and 20, that preceded
the statements. A line number before any SnapBASIC
statement means, “don’t execute this statement now; store it
In the program.”

When SnapBASIC is executing a stored proram, we say it is
running in deferred mode, because execution is deferred
from the time you enter the program until the time when you
enter RUN. When you enter a statement without a line
number, SnapBASIC executes it in immediate mode; that is,
SnapBASIC executes the statement immediately when you
press ENTER.

Notice that we called RUN a command rather than a
statement. That was because RUN is customarily used only In

www.pocketmuseum.com 4-2

immediate mode. We reserve the term statement for lines
that customarily may be used in programs.

We often refer to the statements in a program, collectively, as
code. The process of writing a program, as distinct from
designing one or correcting errors in one, is called coding.

Adding Statements To a Program

Enter the following two statements:

= Print X
g x=

i
-
and type RUN again. SnapBASIC displays 63, then 67.

When you entered statements preceded by the line numbers

8 and 6, SnapBASIC compiled the statements of the program

into memory in line number order. Thus, the program ended

up looking like this:

R e

= Frimt X

18 x=g/
i

2H Print x

RRRR

Do you see why the program did what it did?

Limit On the Length Of a Line

You cannot create a line in a SnapBASIC program that is more
than about 80 characters long. If you try, SnapBASIC will type
the 81st and subsequent characters on top of the 80th

character; what's worse, they will not be accepted by
SnapBASIC.

Also, because SnapBASIC does not necessarily LIST lines in
the exact same way in which you entered them, there is the
possibility that entering a line shorter than 80 characters may
still make SnapBASIC try to LIST the line as longer than 80
Characters. When this happens, the line will be listed in
Inverse video, and part of the line may be lost, necessitating
splitting the line and restoring the lost information. This is most

likely to happen if you don't enter spaces and if you say ‘7’ for
PRINT at the beginning of a line.

When a line is displayed, there may be a funny symbol at the
right end of the LCD that looks like four little hyphens stacked
on top of each other. This indicates that the line continues

past the right end of the display. Pressing the right arrow key
will bring that part into view.

4-3

{B}

Not for sale



Long program lines are hard to enter and read in any case, so

it is good practice to keep your program lines much shorter
than the limit.

LIST: REVIEWING THE CONTENTS OF A
PROGRAM

If you make many changes to a program after entering it, you
will have trouble remembering what statements are in the
program. Therefore, SnapBASIC has the LIST command,
which reconstructs a listing of the current program and lists it
on the LCD, one line at a time.

To list your program, simply enter
AT

and press ENTER. The first line of your program, ‘6 X=63’,
appears on the LCD.

After a small waiting time, SnapBASIC displays the next line
of your program, ‘8 PRINT X'. (The display speed is
controlled by the STP/SPD key.) After that, SnapBASIC
displays the next line, and so on, until the last line of your
program has been displayed.

Notice that although you typed your program in lower case,
SnapBASIC lists it in upper case. SnapBASIC does this to
almost all parts of a SnapBASIC program. From here on we're
going to show SnapBASIC programs in upper case in this
book, too.

SnapBASIC also inserts blanks in some places in your
program, and deletes them in other places. For example,
whether you enter

o 5 R (- B

or
SEPrint . de T

SnapBASIC will display the statement as
ok FPEIMT =08, 2

This feature of SnapBASIC is intended to make vyour
programs efficient to store, and at the same time give them a
uniform, readable appearance. You can take advantage of it, if
you wish to do so, by entering a program with no blanks at all
to minimize the number of keystrokes you have to enter.
SnapBASIC will put blanks in all the right places when it lists
the statement. If you don’t enter blanks, you better stay way
short of the 80 character limit, since trouble will occur when
SnapBASIC attempts to list the line if it is too long.

www.pocketmuseum.com 4-4

Listing Part Of a Program

You need not start listing a program at the very beginning. You
can start at any line. Neither do you need to list a program until

the very end. You can stop at any line.

To list a program starting at some line after the beginning, and
stopping at some line before the end, enter LIST followed by
the numbers of those lines, seperated by a comma. For
example, to start listing your program at line 6, and stop at line

10, enter
izt & 1E

Try this. After line 6 appears, line 8 will appear, followed by
line 10, and then the SnapBASIC prompt }.

f you enter LIST with a line number that does not exist,
SnapBASIC will start listing your program at the next larger
line number, and stop at the previous smaller line number that

does exist.

Once you start a listing, it will continue at a speed depending
on your current speed setting. If you want to stop the listing
momentarily, press the STP/SPD key again. To slow down or
speed up the listing, press the STP/SPD key and then a
number from 0 to 9. 1 is the slowest speed and 0 is the fastest.
Finally, to abort the listing prematurely, press the BREAK key.

Replacing a Line

To replace a line in a program, simply type in a new line with
the same line number.

Entering the Editor

SnapBASIC allows you to change the contents of any line in a
program. There are two ways of doing this. The first way is to

type a whole new line. The other way is to use the Line Editor
feature of SnapBASIC.

It is easy to enter the Editor. Just press # or #. This will take you
into the last accessed line of your program. For instance, if you
had just LISTed a line, the #r key will take you into this line in
‘edit mode’. That is to say that you can use all the usual HHC
commands to delete, insert and change characters. Also you
can use the # or ¥ key to go to a previous or to a following line
(any changes made in the line are made permanent by doing
this). You can also enter the Editor by LISTing a single line.

4-5

1B}

Not for sale



1B}

1B}

It is also easy to exit the Editor. Just press ENTER, or the
BREAK key. (The BREAK key is the one labelled C1 on the
HHC keyboard. We will refer to it often.) When you press
enter, the changes in the last accessed line are made
permanent, but when you press BREAK the changes are not
accepted and the original line, if existing , is restored. In both
cases you will have exited from the Editor. BREAK is also
used to interrupt a running SnapBASIC program.

Changing the Contents Of a Line

To change the contents of a line, LIST the line, move the

cursor right to the part you want to change, and type new
characters over the characters that are already there.

Let’s try this. Enter LIST 6 to list line 6 of your program:

. P
R

1 cursor is here
Use the ®key to move cursor right seven spaces:

£ H=ED
t

cursor is here
Change the line to ‘6 X=53’ by pressing the “5” key:

B =5

} .
cursor is here

Press ENTER. Now list your program again. Line 6 says
x=53". Run your program. Line 8 displays ‘53’: line 20
displays ‘67’, as before.

Enter LIST 10 to list line 10 of your program, and change the
67" to some other number. Now end your editing of this line by
pressing BREAK, not ENTER. List your program again; you will

find that the contents of line 10 has not changed. When you
end an editing operation with ‘BREAK’, that means, “I've
changed my mind; | don’t want to modify this line after all.” Only

ENTER, %, and # store the changed line in your program.

Moving the Cursor Right

You can move the cursor to the right without changing the text
Dy pressing the ® key, just as you can move the cursor to the

left by pressing the « key. (But you can’t move the cursor right
of the rightmost character in a statement with » any more

4-6

www.pocketmuseum.com

than you can move the cursor left of the leftmost character
with <. Try itand see what happens. You can, of course, extend
the line to the right by adding more characters.)

Deleting a Line

Sometimes you don’'t want to change the contents of a line;
you want to take the line out of your program completely. You
can do this by replacing the entire contents of the line (except
for the line number) with spaces.

Try deleting line 6 in this way. Now list your program. Line 6 is
gone, line number and all.

Since you can replace a line by entering a new line with the
same line number, you can delete a line by entering a “line”
that consists of a line number and nothing more. This is
convenient if you happen to know the number of the line you
want to delete without using LIST.

Note: to delete a line, you must leave the line number, and the
line number only (i.e. line# ENTER). Alternatively, you can
use the command DEL line# or DEL line#1, line#2 (first
through last) (see the Reference Manual). Deleting a long
range of lines, like DEL 100,2520 can take a long time. Be
patient!

Copying a Line {B}
You can copy a line from one place in your program to another
by changing its line number.
For example, consider your program as it now stands, with
line 6 deleted. Let’s get line 6 back, not by typing it in again,
but by making a copy of line 10.
Enter ‘LIST 10’. SnapBASIC will display line 10 like this:
1 ==57
L cursor is here
Move the cursor to the line number, and change it from 10 to
6:
1H ==y
} .
cursor is here
=
! .
cursor is here
4-7
Not for sale



tH}

1B}

leeS?] ENTER. List your program again. Now it should look
ike this:

-
5
e

T
ot Ty

R

1
T
PMT =
LIST your program again, and change line 6 from ‘X = 67" to

X=63". Make SnapBASIC accept the change you have made

by pressing ENTER. LIST your program again. Is it back in its
original form?

et 11T

]
1
-
KR

—F

The Auto-Repeat Feature

You don't have to press the « or » key over and over to move
the cursor a long way through a line. Just hold a key down, and
after a half second or so it will auto-repeat; that is, it will enter
characters until you let go.

All of the HHC's character-typing keys can auto-repeat, too.

This is useful, for example, when you want to replace a long
statement with spaces.

TRICKS FOR LAZY PROGRAMMERS

Some people get real annoyed at having to type in the line
numbers before every line. What can you do about this?

SnapBASIC has a facility, called AUTO, which will

automatically generate line numbers for you. Invoke AUTO
like this:

HLITD mlonl

where n1 is the first line number you want to enter, and n2 is

the number you want to increment the line number by. For
example,

HUTOD 183, 16
will generate line numbers 100,110, and so on.

C_)ncg you invoke AUTO, SnapBASIC will prompt you with the
first line number you specify. Enter and edit your line in the
usual way, typing ENTER when you are done. After you type
ENTER, SnapBASIC will prompt you with the next line
number. When you have entered all the lines you want, press
BREAK, and SnapBASIC will return to immediate mode.

A couple of details: If you already have a line in the program
with the same number that AUTO generates for you, it will be

www.pocketmuseum.com 4-8

deleted as soon as you press ENTER unless you press
ENTER immediately after the line number appears.

You can also enter a negative line increment, in which case
you can enter your program backwards. (Why anyone would

want to do this is a mystery, though.)
Yet another nice facility is available, called RESEQUENCE.
This command looks like this:

FE=EL
This will resequence (renumber) all the lines in your program
to multiples of n. For example,

RESEC 106
will change all of your lines to 100,200,300 arjd SO on. While
the resequencing is going on, the program will be displayed.

Note that GOTOs and GOSUBS get taken care of properly,
with the new line numbers inserted in place of the old ones.

A note about line numbers: You are sure to make mistakes
when entering your program, and will almost certainly want to
insert lines in between old ones. It makes working a lot easier
if you use line numbers like 100,200,300—you can then insert
a whole lot of lines. If, instead, you entered 1,2,3 you would be
stuck if you needed to insert a line between 1 _and 2.
Resequencing might take care of this, but resequencing only
really works when the program is somewhat complete
(because errors are generated if GOTOs have nowhere to

go).

More About Editing

You will learn more advanced ways of editing a program In a
later chapter. For now, you know enough to write and edit any

program you want.

SAVING A PROGRAM IN A FILE
SnapBASIC allows you to work on only one program at a time.
When you are done working on a program, you must save it
before you can work on another program, or use your HHC for
some other task.
To save a program, enter the command BYE:

ka1
When you enter BYE, SnapBASIC saves your program in its
file system, under the name that you chose when you first

4-9 Not for sale

1Bj



1B}

www.pocketmuseum.com

entered SnapBASIC. Then it returns you to the primary menu.
Select SnapBASIC again. Notice that the menu now says

1=Hew fils

Z=Frodram 1 or whatever you named your program

The “No file” line in the menu is gone, since there now is a file:
the one containing your program.

There are several things you can do next:

1. You can press the “1” key to create another program with a
different name.

2. You can press the “2” key to resume using the program you
just saved.

3. You can press the CLEAR key to leave SnapBASIC’s menu
and return to the HHC's primary menu, so that you can use
Some program other than the SnapBASIC interpreter.

Try pressing “2” to resume using “program 1.” Do a LIST to
verify that you do, indeed have your program back again.
(Sometimes it takes a long time to load a program from the

menu. Don’t panic! Be patient.) Enter BYE again to return to
the primary menu.

Pick selection 1, if you wish, and create another program. Get
some practice in writing and editing SnapBASIC programs,
and try switching back and forth between your two programs.
You can press CLEAR to leave the SnapBASIC menu, but it is

never a good idea—indeed, it is downright dangerous to leave
a selected file with CLEAR. Always use BYE!

On the Relation Between SnapBASIC and the
File System (A Note For Old HHC Hands)

The file system maintains a file type field for every file that it
stores. A text file created by the file system is one type of file;
a SnapBASIC program file is another type.

The SnapBASIC menu shows only SnapBASIC program files.

Thus, you will not see any files you have created with the file
system when you look at this menu.

The file system can edit only text files. You can edit a
SnapBASIC program only with the editor built into
SnapBASIC. You can, however, use the file system to create a

file that can then be compiled with the LOAD command. See
Chapter 24.

VARIABLE VALUES AND RUN

with RUN. Unfortunately, that doesn’t' work. Whe_n
sg?jg;‘a& a program, SnapBASIC sets all the variables to their

initial value of 0 before executing the first statement.

is habit of SnapBASIC is actually quite useful. It means that
;If-';'sp?:gram depgnds on the initial value of a variable being O,
you can run the program twice in a row, and the second run

will produce the same results as the first.

THE INPUT STATEMENT

' ' | iables. In
There’s an easy way to get data into a program's variable
fact, it's easier than typing an assignment statement. It is the

INPUT statement.

Here is a program that uses the INPUT statement to read two
numbers, and displays the difference:

ig IHFUT Ml

8 IMPUT HZ

=8 PRIMT HM1-H:Z
When this program is executed, the INPUT statem:ant in line
10 halts ang g%plays ‘2’ on the LCD. This is INPUT's prompt.
INPUT waits for you to type a number and press ENTER.
When you do, INPUT assigns the value of the number you

type to N1.

Similarly, the INPUT statement in line 20 halts and prompts
you with ‘?’ to type a number, and assigns the value of the

number you type to N2.

Finally, the PRINT statement in line 30 calculates the
difference between the two numbers you entered, and

displays it.

Input gets information into your HHC, and output gets
information back out. Input and output are closely related in
many ways. For example, they are both concerned with
peripheral devices, and they both are concerned with
converting numbers between external (keyboard or LCD) and
Internal (storage) formats. When we discuss such matters, we
often refer to input and output as a single topic called
iInput/output, or /0O (pronounced “eye-oh”) for short.

INPUT With Multiple Variables

One INPUT statement may input data into any number of
variables. List the variables after INPUT with commas
between them, like this:

18 IMPUT Hi.HZ

4-11

Not for sale




When INPUT prompts you for data, type the proper number of
values with commas between them, like this:

Pt o 17

If you enter too few numbers, INPUT assigns the numbers
you do enter to the first variables in the list. When INPUT runs
out of numbers, it prompts you again with ‘27", meaning “that’s
not enough; give me more numbers.” |t assigns the values you
enter to the next variables in the list, and prompts you with ‘??’

again until you have entered enough numbers to fill all the
variables in INPUT’s list. |

If you enter too many numbers, INPUT simply discards the
excess ones, and leaves the message:

Fezt  Tarmoree

If you enter a line of numbers that includes an invalid
number, INPUT discards the whole line. It does not assign a
value to any variable. It displays the message

Error. Fetdbs | ins

and prompts you again with a ‘?’ after the error statement and
starts reading the first variable in again.

INPUT With a Prompt

It would certainly be useful if you could make an INPUT
statement that could prompt you with a message of your
choice in place of ‘?’, which tells you nothing about what
INPUT wants. You can write an INPUT statement that prompts
you, like this:

e THFUT "1zt 8 2nd waluss"IHL, HE
This statement displays the following prompt:
l=1 & 2 woluss

Notice that now INPUT does not add a ‘?’ to the end of the
prompt. Nor does it append a space.

The two quotation marks indicate the start and end of the text
of the prompt.

The quotation marks and the characters between them form a
string constant. It is a constant because it has a fixed value,
Just like 5 or 3.141592. It is a string constant because its
value consists of a string of characters, rather than a number.

In a later chapter you'll learn more about what SnapBASIC
can do with string values.

Start a new file and type in the difference-of-two-numbers
program. Use the prompting version of the INPUT statement,

4-12

www.pocketmuseum.com

above. Note the ‘;’ that separates the string constant from the

. : o t a or
ist of variables; you must use a ;' here, no )
'ésnapBASIC will give you an error message! Run the program.

' | isplayed in lower
tice that the characters in the prompt are disp
?aose the way you entered them. String constants are one
placé where SnapBASIC does not force letters to upper case
or add and delete blanks according to its own rules.

CONCLUSION

| | lculator-like

ow you know enough to write fairly complex calcule
;Irogrgms. It's time for you to get some prac'flce in writing and
editing SnapBASIC programs, if you haven't begun to do so

already.

| | -trivial calculations
Choose a few tasks that involve dpmg non-trivia )
on one or more variables, and displaying the results. Write,
enter and execute a program to perform each task. If any of
your programs does not work the way it should, figure out

why, and correct it.

If you don’t have any interesting tasks that you want to use as
programming exercises, we suggest the following ones:

® Given four numbers, calculate and display their average.

e Calculate your car’s fuel efficiency in miles per gallon,
given the odometer readings at two consecutive trips to the
pump, and the amount of gas pumped at the second

reading.

4-13

Not for sale



www.pocketmuseum.com

CHAPTER 5: MORE ABOUT BASIC

Now you have been introduced to most of the fundamental
concepts of programming in SnapBASIC. This chapter
discusses some more advanced “nuts and bolts” aspects of
programming that will come in handy as you work with
SnapBASIC.

ERROR MESSAGES IN A BASIC PROGRAM

You have already encountered error messages. When you
entered an invalid statement in Chapter 2, you got an error
message that said “SY ERROR” (for “syntax error”). You've
probably gotten this message more than once, and you may
have gotten other messages too, when you entered
erroneous statements by accident. (Remember, everyone
does this frequently while learning to write programs, and it
doesn’t hurt anything.)

Let's see what happens when SnapBASIC finds an error while
executing a program in deferred mode. Turn on your HHC and
enter SnapBASIC, if necessary; select “program 1” from the
SnapBASIC menu. If your version of ‘program 1° still matches
the one developed in this book, it looks like this:

B S0
= FEIMNT =
L =iy
S FREIMT =
We're going to introduce an error into this program on
purpose. List line 10 and change it to say

16 =,

(& and " are the second-shifted characters on the ‘6’ and ‘7
keys, respectively.)

When you press ENTER, telling SnapBASIC to accept this

“statement,” SnapBASIC objects and gives you the error
message

18 k=% J-—CH-ERROR
The error code, CH, tells you what happened.

The line number, ‘10°, reminds you which line you were trying
to compile in your program when the error happened. (This
happens in exactly the same way as when you were entering
Statements in immediate mode, because the error was always

In the statement you had just entered; however there were no
line numbers.)

S-1

1B}

Not for sale



This information gives you a good start on finding the cause of
the error.

Here are some error codes you are likely to encounter, and
their meanings:

SY  Syntax Error. A SnapBASIC statement is
Incorrectly written: parentheses do not match, an
operator is used in an improper context. a
reserved word is misspelled, etc.

1Q lllegal Quantity. The result of a calculation is too
large to be represented in SnapBASIC's internal
numeric format. (Such a result must be very large
Indeed, as you will see when we deal with the
range of a variable’s value, later in this Chapter.)

Division by zero also gives this error.

CO  Command Error. You have tried to use a

statement in iImmediate mode that is only legal in
deferred mode; or vice-versa.

OM  Out of memory. Your program is too large,
and/or you are keeping too many programs in the
HHC's file system. Before you can continue. you
must shorten or delete at least one program, or
move the program you are working on to a
Programmable Memory Peripheral and continue
working on it there. Chapter 7, “Managing
Program Files,” explains how to move a program
to a Programmable Memory Peripheral. (Note: if
you decide to delete a program to make space,
you can preserve a copy of it in a Programmable
Memory Peripheral before doing so.)

AE Arithmetic Error. A standard function call is

Incorrect, or an overflow in in a floating point or
Integer number occurs.

SnapBASIC can display several other error codes in
situations that you haven’t encountered yet. As we present
more features of SnapBASIC, we will also discuss the error
codes that are likely to come up in connection with them.

For a complete list of SnapBASIC’s error codes, see the
Reference Guide, Chapter 10.

THE RANGE OF A NUMERIC VALUE

You already know that numeric values in SnapBASIC are
limited in precision to twelve digits. They are also limited in
range, although the limits are very broad.

5-2
www.pocketmuseum.com

The greatest positive number that SnapBASIC can represent
is about 9.99999999999*10'°%° (that is, 999999999999
followed by 1012 zeroes). The greatest negative number that
SnapBASIC can redpresent Is the negative of this
-9.99999999999*10'94°,

There is also a limit to the tiniest absolute value that
SnapBASIC can represent: about 1.00000*107'9%4 (1 preceded
by a decimal point and 1023 zeroes). The tiniest negative value
that SnapBASIC can represent is the negative of that:
-1.00000*107'9%3, If a calculation results in a number smaller
than this, it will become zero.

HOW BASIC PRINTS VERY LARGE AND
SMALL NUMBERS

SnapBASIC does not represent very large and small numbers,
like 32,963,000,000,000,000 and .00000000000002911, in
ordinary numeric format. If it did, the numbers would be
unreadable; who could keep track of all those zeroes?

SnapBASIC displays very large and small numbers in
scientific notation, like this:

G G o

(represents 32,963,000,000,000,000)
ceH211E~-14

(represents .00000000000002911)

To interpret such a number, multiply the part to the left of the

E’ (the mantissa) by 10 to the power to the right of the ‘E’ (the
exponent). For example,

R LN o S
(represents 3.2963*10'6)

e F11IE-14
(represents 2.911*10°'4)

An easy way to interpret a number in scientific notation is to
shift the mantissa’s decimal point right by the number of digits

given by the exponent. If the exponent is negative, shift the
decimal point left.

The rules that SnapBASIC follows when displaying a number
are explained in the Reference Guide, Chapter 5.

You can ‘use scientific notation to describe any numeric
constant in a SnapBASIC program. You can also use it to
enter any numeric value in response to an INPUT statement:

o-3

Not for sale



Printing String Constants

You can display string constants with PRINT. A string constant
can appear anywhere in a the list of values that PRINT

displays. This can be useful if you want to display a message
like

you may use both an upper case ‘E’ or a lower case ‘e’ before
the exponent.

MORE ABOUT THE PRINT STATEMENT

1B}

Printing Several Values On a Line

So far you have used PRINT to display a single numeric value
at a time. Now you're going to learn how to use PRINT for
much more than that.

Try entering the following statement in immediate mode:
FEIMT 25,45

SnapBASIC displays the numbers 25 and 43 at the same

time, with some space between them.

You can display any number of values on a line by writing a
PRINT statement that lists them all, in order, with commas
between them:

FEIMT 1.2.2. 4.5, 6.7,

This statement displays ten values with spaces between
them. Try executing it. Notice that since it is too long to fit on
the LCD all at once, the HHC scrolls it past the LCD a
character at a time, like a message displayed on a lighted
sign.

The values displayed by this kind of PRINT statement may be
of any type: constants, variables, or expressions:

: 2 I_:_.Z! i l-1

Fusel efficiencd = 28,6 mPg,

Here is a program that can calculate your car’s fuel efficiency
program and display a message like the one above. It uses a

variable named SR to hold the odometer’s starting reading, a
variable named ER to hold the ending reading, and a variable

named GA to hold the number of gallons of gasoline
consumed. A variable named MP holds the calculated result.

18 IHFUT "Start & end odonster SR ER
=E THFUT "Gol lomns dsedd s L
SE MP=CER-SE e L .
GEH FRIMT "Your fusl sfdiciencd 1=
R omPe, T
Enter this program into your HHC and run it. Notice that it

displays its result with a lot of spaces around the number,
scrolling across the LCD screen, something like this:

3

o et 15

Vour fuel efticiencd 1= S ) |
lemles Py,

Why did this happen? Remember how SnapBASIC divides a
line of output into 22-character zones! |f we printed this
program’s output and marked the divisions between zones,
the reason for the odd spacing would become clear:

R e Veair fFrae | ef e isremd s FLEASLISE1ES
FEIMT 1.H, 2%e+5,7, 5, 7EE+2 four tuel efficiencd s (R LSAE11ZE123
1st zone 2nd zone 3rd zone

How SnapBASIC Spaces Values

When you display several values on a line, SnapBASIC
spaces them according to the following rules:

1. It divides the line into zones, each 22 characters wide.

2. It displays the first value beginning at the left edge of the
first zone: that is, in LCD position 0.

3. It skips to the beginning of the next zone.

4. It displays the second value beginning at the left edge of the
second zone, and so forth until all the values have been
displayed.

Note that SnapBASIC differs from other BASIC systems in

that it does not automatically print spaces before and after

numbers. This is because of the limited size of the LCD
display.

www.pocketmuseum.com 5-4

The first value displayed by line 30, “Your fuel efficiency is’, is
just long enough to extend into the second zone. Since PRINT
always skips to the start of a new zone when it finds a comma
between two values, it puts the number in the third zone. For
the same reason, PRINT puts the third value, ‘mpg.’, in the
fourth zone, off the end of this page.

How To Avoid PRINT’s Zones

PRINT’s habit of aligning values in zones is a nuisance when
you want to display a message like ‘Your fuel efficiency is 27.5
mpg.’ Is there a way to make PRINT ignore the zones, and
place the beginning of each value right after the end of the
preceding one? Yes, there is. Simply replace the commas in
the PRINT statement with semicolons:

5-5

Not for sale



www.pocketmuseum.com

Sk PEIMT "Your fusl efficiencd iz ;
MFs " mpa, "

Modify your program in this way and try executing it. Does it
produce the desired result?

Combining Strings and Numbers In a PRINT
Statement

Let's mark off the divisions between the values in the second
version of our program’s result, as we marked off the divisions
between zones in the first version:

doE fue ]l ef o iencd 2 2V SHZTIZRIED mpy,

\ _ VAN
first value second value l
third value

SEVERAL PRINT STATEMENTS, ONE
PRINTED LINE

Up to now, every PRINT statement you have seen has
displayed exactly one line. Sometimes this is not what you
want; you want to “build up” a line of displayed output from
pieces displayed by several different PRINT statements.

SnapBASIC lets you do this easily. To end a PRINT statement
without ending the line it displays, simply end the statement
with a comma or semicolon instead of a value, like this:

FEIMT Ha4 3,
or
FRIMT =it 2%

When you write a PRINT statement like this, SnapBASIC
displays and spaces each value as it usually would. After
displaying the last value, it spaces to the start of the next zone
If you ended the statement with a comma, or does not space
at all if you ended the statement with a semicolon.

The following mileage calculator displays its result in exactly
the same format as the one we just tried:

LE THFUT "Start & engd ocdomster "1SRLVER
o THFUT "Caolloms gseod "I00

Sk MF=CER-SE Y A0S

41':1 PFIHT ;i d 'i'.-i-"':":’i ‘""'i:-'i i | e - k i
okt FREIMT M

mE FREIFRT Y mpo

This suggests one use for ending a PRINT statement with a
semicolon or comma; it lets you break a long, complex PRINT

5-6

statement into several shorter ones. If you were constructing a
message out of a dozen or so values, this sort of simplification
would be invaluable. You could divide the message among
several PRINT statements that each displayed a few logically

related values.

By the way, you can use PRINT with no values to print an
empty line, or to end a line built up by several PRINT

statements that end with ;'s:

2EH PRIMNT "Yaour fusl sfdiciencd 1= M
G FPREIMNT MEF-

=E FREIMT 7 mPa, s

E OFREIMT

The SPC$ Function

SPC$ makes PRINT display a specified number of spaces in
a line of output. It may be used anywhere in a string
expression. For example, consider the following statement:

l::I FI I l'-IT o I'I'I IR _I_ I | = 'i' + 1 - | by i - ) :
SPCFCS P

In this statement, ‘SPC$(8)" means, “display 8 spaces at this
point” in the output line. The following statement does exactly
the same thing (we are using the symbol ‘#’ for ‘space’ so that
you can see how many spaces there are):

FEIMT "Your fusl sfficiencd 1=

HHFHHAFHFE =« [MF

THE POS FUNCTION

The POS function is a way of determining the POSition of the
current character in the LCD. It is useful for placing your
output precisely where you want it to be. It looks like this:

L= O

and returns a number (the same way a variable does). Don’t
worry about the (0); just use it. It is a dummy parameter, and
you will learn more about such things in the chapter on
Functions. POS is particularly useful when you are outputting
data to a printer, or to a multi-line device like the TV Adaptor,
instead of the LCD. POS makes it easy for you to align a
column of numbers exactly where you want them. For
example, the following sequence of statements:

Gt FREINT "Start reading =3
G PRINT SPCFOIS-POSCEa 3 SRS

SPCFCEY-FOSOEY 38 "mi les "

1B

5-7 Not for sale



1B}

o FEIMT "Erd reoding =3

o FREIMT SPCFECIS-POSCEY 9 FRo
SFCFECST-POSCE D "mi et

D FRIMT "Gollons used ="

Ee FREIMT SPCFEOIS-POSCEY 3 GO

CEOPREINT "Your fusl efficierncd iz s

FRINT SFCECIS-POSCEN 2 MPPY mpat
will display output looking like this:

M

stort reading = 25505 miles
Ervd reading = OO i les
Lol lons ysed = =
Yodr Fuel efficiencd i

L T I L R e T ]

186, BYE9E9R9 ] mpy

The_item SPC$(X-POS(0)) puts output at position X by
figuring out the current position (with POS), subtracting it from
X to dgtermine how many spaces are needed, and then
generating the spaces with SPC$. Note that the fourth line of
the output is not aligned; SPC$ with a negative argument
does not generate anything.

THE STP/SPD KEY

You can use the STP/SPD (“stop-speed”) key to change (1)
the LCD's rotation speed, (2) the minimum time that a line of
output will remain on the LCD before being replaced, and (3)
the speed of the keyboard’s auto-repeat feature.

To change the HHC’s speed, press STP/SPD. Whatever the
HHC is doing, it will “freeze”. To set the speed and unfreeze
the HHC, press one of the number keys.

The ‘1" key sets the HHC to its slowest speed when used with
STP/SPD; the ‘2’ key sets the HHC to its second-slowest
speed, and so on. The ‘9’ key sets the HHC to its

second-fastest speed, and the ‘0’ key sets the HHC to its
fastest speed.

You can use STP/SPD to “freeze” the HHC if you want to look
at something displayed on the LCD for a longer time than the
HHC would otherwise display it. To unfreeze the HHC without
changing its speed setting, simply press STP/SPD again.

It is possible to get a speed faster than that of the 0 key, but
you must issue a special command (POKE) to get it. See the
section in this manual on PEEKS AND
POKES.

5-8

www.pocketmuseum.com

CHAPTER 6: MORE ABOUT
EDITING PROGRAMS

So far you've learned how to insert or delete a line in a

SnapBASIC program, and how to edit a line by moving the
cursor left and right. As we noted, there’s more to editing than

that.

In this chapter you'll see many new editing functions. Unless
you have a photographic memory, you are not likely to
remember them all. That's OK; you don’'t have to remember
any of them if you are content with the simple (and
time-consuming) procedures you learned in earlier chapters.

As you become more experienced with SnapBASIC, you will
want more sophisticated editing functions to speed up your
work. You can return to this chapter and learn how to use a
new editing functions each time you decide that you want to
use one. That's a perfectly acceptable way to use this book.

INSERTING A CHARACTER IN A LINE

Suppose you have a line in a program that looks like this:
Te=Tr+., G FF-EF s +ETHH

Suppose ‘.06’ is the wrong number; it should be ".065". You

could change it by typing over everything from the ™ to the
end of the statement, but it would be much easier to insert a

‘5" between ‘.06’ and *’, pushing the rest of the line one
character to the right.

SnapBASIC lets you do this by using the INSERT key. This
key is located just above the ENTER key on the HHC's
keyboard. When you press INSERT, the next character you
type is inserted under the cursor. The rest of the line moves

one position to the right.

Let’s try this. Enter the line above into SnapBASIC, with a line
number before it, so that SnapBASIC will hold it as a
statement in a program.

Now list the line. Move the cursor over the *’ with the » key.
Press INSERT.

The INSERT blip goes on, and the cursor changes from a
solid rectangle to a checkerboard one. These are both signals
that you are about to insert a character.

Press the ‘5’ key. Watch a 5 appear under the cursor, while the
™" and all following characters move to the right.

6-1

Not for sale



1B}

When SnapBASIC is in insert mode (or lock-insert mode)
the « and » keys do not have their usual functions. They

www.pocketmuseum.com

Now notice that the INSERT blip has gone off, and the cursor
looks like a solid box again. INSERT mode applies only to one
character at a time; the next character you type will replace
the ™ unless you press INSERT again.

Inserting Several Characters In a Line

Suppose you want to change a line like
FEIMT "Fusl ="3iMFi "mpg, "
to say
FEIMT "Fusl efficierncd ="iMF "mpo. -

You could press the INSERT key once for each character you
want to insert, but it would be more convenient to tell
SnapBASIC, “start inserting characters, and keep on inserting
them until | tell you to stop.”

SnapBASIC lets you do this by using the INSERT key with the

LOCK key.
Let’s try this. Enter the line above into SnapBASIC (with a line
number). List the line and move the cursor to the ‘=" in the

first string constant. Press LOCK, then INSERT.

The INSERT blip goes on again, and the cursor changes its
appearance again.

Type in ‘efficiency’ (with a space at the end). Watch the HHC

insert the text as you type, pushing the ‘=" and following
characters to the right.

To get out of lock-insert mode, just press the INSERT key

again. The INSERT blip goes off, and you are back in “non-
Insert” mode.

The « and » Keys In Insert Mode

)

inshert spaces at the cursor, pushing the rest of the line to the
rignt.

* moves the cursor to the right. « leaves the cursor unmoved,

so that a space appears to open up to the right of the cursor as
you insert spaces.

Practice using the « and # keys in insert mode to become
accustomed to them.

6-2

DELETING A CHARACTER IN A LINE (B)

What about the reverse of inserting characters: deleting
characters? The HHC lets you do that, too.

To learn how to delete characters, let’s reverse the change we
made in the assignment statement above: we'll change ".065°

back to ‘.06'.

List the line we're going to change, and move the cursor to the
‘5’ Press the DELETE key (located to the right of the INSERT

key) and then the * key.

Notice that when you press DELETE, the cursor changes from
a solid box to a empty box, and the DELETE blip goes on.

When you press * , the ‘5’ is deleted; the following characters
move one position left to fill the gap. The cursor becomes a
solid box again, and the DELETE blip goes oft. DELETE, like

INSERT, affects only one character at a time.

Re-insert the ‘5’ at the cursor. Move the cursor back to the 'S'.
Press DELETE and then the « key. Again, the ‘5’ is deleted
and the following characters move in to fill the gap; but in
addition, the cursor moves left one position.

If this seems odd, remember the following rules:

® You delete a character by pressing DELETE, then » or -

e |f you press ® , the cursor ends up on the character that
was to the right of the deleted character. If you press < ,
the cursor ends up on the character that was to the left of
the deleted character.

Can you lock SnapBASIC in delete mode, as you can lock it in
insert mode? Yes, you can. Press LOCK, then DELETE. Now,
each time you press # or «  the character under the cursor
will be deleted, and the cursor will go to the next character to
the right or left of the deleted character.

Try this. Press LOCK, then DELETE, then play with the *
and « keys. Watch SnapBASIC delete one character after

another from the line.

Notice how DELETE « and DELETE # function when you use
them this way. DELETE « deletes the character at the cursor,
and then characters to the left, toward the beginning of the

line. DELETE #, deletes the character at the cursor, and then
characters to the right, toward the end of the line. (Try it
again.)

To get out of lock-delete mode, press DELETE again.

By experimenting with DELETE, we've thoroughly messed up
the line. Can we undo what we've done? Yes; press BREAK
(C1) as you learned to do when we first introduced LIST, and

6-3

Not for sale



1B}

www.pocketmuseum.com

SnapBASIC will leave this statement unchanged. (List it again
to assure yourself of that.) When you are done entering a line,
you must press ENTER or the # and # keys to make
SnapBASIC accept the changes you have made. Pressing
BREAK will always make SnapBASIC ignore the changes.

EDITING A LINE LONGER THAN THE LCD

In your experiments with the editing keys, you may have
created a line so long that all of it could not fit on the LCD at
one time. SnapBASIC’s editor lets you handle a line up to 80
characters long with little difficulty.

Let's enter a line too long to fit on the LCD. Create a long
SnapBASIC statement of your own, or enter this one:
F‘F..'IHTI Rue ] o efficiencd ="My Tmea, U

After the cursor reaches the last character position on the
LCD, it does not go off the LCD; it remains at the right edge,
and all the characters you had have entered so far are pushed
left to make room for more. The beginning of the line is
pushed off the left edge of the LCD. But it isn’t lost; it is just
invisible for the moment.

Now, suppose you want to edit the first part of the line. Move
the cursor left by pressing the « key repeatedly. (You can just
hold it down to make the auto-repeat feature work for you.)
When the cursor reaches the left edge of the LCD,
SnapBASIC starts pulling the beginning of the line back onto

the LCD, and shifting characters off the right edge to make
room.

You can think of the LCD as a little window, and of the line as a
big wheel that you can turn back and forth behind the window,
allowing you to see the whole wheel a piece at a time. This
sort of activity is called rotation.

Notice that when the right end of a line is rotated off the right
edge of the LCD, the symbol ‘ =’ appears just beyond the last
character on the LCD. (There is no corresponding indication

that the beginning of a line is rotated off the left edge of the
LCD.)

The time may come when you LIST a line, and it comes up in
inverse video (that is, white characters on a black
background). This means that the line you entered, when
LISTed, is longer than 80 characters. This probably happened
because you used ‘?’ instead of PRINT, and the rest of the line
came close to the 80 character limit. This means that the end
of your line has been lost! You need to recover from this by

6-4

splitting your line in two parts. You shoul_d avoid this
unpleasant occurrance by keeping your lines shorter,

especially when you are using ‘7",

REVIEWING A LINE

To review the entire contents of a long line, just press the
ROTATE key. Try this now, and watch the results.

SnapBASIC treats the line like a ring, with the beginning
joined to the end. It rotates the entire statement to the left,
bringing the beginning back onto the right edge of the LCD
after the end appears. To make SnapBASIC stop rotating,
press any key. The right arrow is the best key to use here,
since it will not change your line at all.

THE ¢ AND ® KEYS

When SnapBASIC is in immediate mode , the # and # keys
initiate EDIT mode, and show the last accessed line. You can
now edit the line using all the edit functions described here.

When SnapBASIC is in edit mode, the # and ¥ keys allow you
to go to a previous line or to a next line, just as you are
accustomed to in using the HHC. Before the commands are
executed, SnapBASIC will recompile the whole line you have
just been editing, and will give an error message in case of an
error. If an error is found, the original line is not changed, and
any original line is again available for editting. But remember,
once a line has been accepted, its changes are permanent.

SnapBASIC will remember the last line you were editing; if

you press one of these arrow keys from the } prompt, you will
be shown the last line you were editing.

If you are viewing the last line in your program, pressing the
down-arrow key will return you to the SnapBASIC prompt, the
down-arrow key will return you to the SnapBASIC prompt,
indicating that there is no more program. Pressing the
down-arrow again will get you to the first line in the program.
Similarly, an up-arrow from the first line will get you to the
SnapBASIC prompt; hitting it again will get you to the last line

in your program.

To exit from edit mode, press the RETURN key . Any changes
In the line you have been editting will have been made

permanent when you typed the ¢, # or RETURN keys.

When you typed the BREAK (C1) key, SnapBASIC will exit

the edit mode and will not update the current line.

6-5

iBj

{H}

Not for sale



tH}

1B

www.pocketmuseum.com

SOME ADDITIONAL EDITING OPERATIONS

Here are some more editing operations that are less
frequently used than those above, but are still useful to know:

® Going directly from insert mode to delete mode: just
press DELETE « or DELETE #» (or LOCK DELETE = .
etc). You don't have to cancel insert mode by pressing
INSERT first.

® Going directly from delete mode to insert mode:
similarly, just press INSERT, or LOCK INSERT, or etc. You
don’'t have to cancel delete mode by pressing DELETE
first.

A complete chart of SnapBASIC editing functions is contained
in the Reference Guide.

SHIFTING CASE WITH THE LOCK KEY

You can also use the HHC’s LOCK key with the SHIFT key
and the 2nd SFT key.

To lock the HHC in upper case, press LOCK, then SHIFT.
Notice that when you press SHIFT, the SHIFT blip and the
LOCK blip go on. The LOCK blip is reserved for indicating that
the HHC is locked in upper case or in second-shifted mode.

To get the HHC out of upper case, press the SHIFT key again.
The SHIFT and LOCK blips go off, and the HHC returns to
lower case.

To lock the HHC in second-shifted mode, press LOCK, then
2nd SFT. The 2nd SFT and LOCK blips go on. To get out of
second- shifted mode, press 2nd SFT again.

NOTE ON EDITING IN IMMEDIATE MODE

All of the editing functions that we have described in this
chapter are usable in immediate mode, too.

It's best, however, to keep immediate-mode statements fairly
short. Why put a lot of effort into entering something that will
be used once, and then will disappear?

6-6

CHAPTER 7: MANAGING PROGRAM
FILES

Your HHC has a finite amount of space for storing program
files. Sooner or later you will fill that space up. When you do,
you will get the message “NO ROOM, DELETE FILE” when
you try to create or select a program, or you will get the
message ‘OM error’ when you try to extend or run a program.

When you must delete a file, you can avoid losing a useful
program by copying the file to a Programmable Memory
Peripheral before you delete it. A later section of this chapter
explains how to do that.

KEEPING AN EYE ON YOUR FILES

We suggest that you periodically review the files that are
stored in your HHC, and delete any that you no longer want. In
this way you can delay or avoid the ‘NO ROOM, DELETE
FILE' message. You can also make your active files easier to
manage by eliminating irrelevant things from the SnapBASIC
menu.

You can tell roughly how much file space you have left by
going to the SnapBASIC menu or the primary menu, and
pressing the I/O key. The I/O key interrupts whatever task the
HHC is performing, and presents a menu showing the file
storage in the HHC's intrinsic RAM, and all the peripherals
presently attached to the HHC. The first selection on the I/0O
key’'s menu represents the intrinsic RAM: it looks like this:

T=IHT ExM. 215 FEEE

The number “515” in this selection is the number of characters
of memory stiil available for you to store programs in.’

To leave the I/O menu, press the I/O key again.

HOW TO DELETE A FILE

To delete a file, return to the primary menu. (Remember, enter
BYE to save your program, and to leave SnapBASIC).Then
pick selection 3, “File system”. This is the name of an intrinsic

application program, built into the HHC, that you can use to
delete, copy, and rename files.

' - You actually cannot use all of this space to store programs; if you did,

SnapBASIC would have no space left to hold the values of variables
when you wanted to run a program!

7-1

1B}

H}

Not for sale



iH}

The file system presents a menu that begins with the following
two items:

1=HEW FILE

=0 FILE

o name of first file

« « =« name of second file

etc.

Find the file you want to delete, and enter its menu selection
number. The file system displays the file name, first in normal
letters, and then in inverse video (clear letters on a black
background). It leaves the cursor one character past the end
of the name.

Delete the file’'s name by pressing DELETE, and then # . (Or
you can delete the name as if it were text on a line in a
SnapBASIC program by pressing LOCK, DELETE, «, « @
until the name is all gone.)

Now press ENTER. The file system deletes the file, and then
returns you to its menu. The menu is the same as before except
that the file you deleted is no longer in it.

q

-y

L L]
ot
L]
L

-

WARNING: AVOID THE CLEAR KEY

Pressing the CLEAR key quickly twice in succession can be
disasterous. DON'T DO IT! Always use the BYE command to
leave BASIC. If for some reason you must use the CLEAR key
to exit BASIC, press it once, wait a second, and then press it
again. You should then re-enter the same BASIC file and exit
with BYE.

HOW TO RECOVER FROM CLEAR WHILE
EDITING A BASIC PROGRAM

If you should happen to press CLEAR while running or editing
a SnapBASIC program, the HHC will act as if its file storage
space were almost full.

The amount of free memory for the HHC depends also on
FREE : the amount of free memory in SnapBASIC.

FREE (HHC) = Total (HHC) - BASIC (program)
- BASIC (variables)
- BASIC (free)

www.pocketmuseum.com 7-2

To recover from this condition, do the following:

1. Return to the SnapBASIC menu.

2. Select the file that you were working with when you pressed
CLEAR. If you have further editing to do to the file, you may
do it now. If you have no more editing to do, just enter the

BYE command.

If you were editing a line when you accidentally pressed
CLEAR, anything you did to that line is lost. Otherwise, your
program is in the same condition it was in before you pressed

CLEAR.

HOW TO RENAME A FILE

To rename a file, go to the file system. Select the file from the
file system’s menu, just as if you were going to delete it. Use
the familiar editing functions to change the name to whatever
you want it to be. Remember to press the ENTER key when

you are done.

HOW TO COPY A FILE

You can use the file system to copy a file, that is, to create a
duplicate of the file. |

Let's make a copy of one of the files you have created while
practicing SnapBASIC programming.

To copy a file, go to the file system and pick selection 2,
“COPY FILE”, from its menu.

The file system presents a new menu containing only the
names of files you can copy. Select the file you want to copy
from this menu.

Next the file system displays the prompt “SELECT
DESTINATION RAM”, followed by another menu. We'll come
back to what this menu means in a minute. For now, pick
menu selection 1. (This “will only occur if you have a
Programmable Memory Peripheral.)

The file system copies the file, displays the message “COPY
DONE?”, and returns to its top-level menu (the one that starts
with “1 =NEW FILE"). Look at that menu, and notice that it
contains two entries with the name of the file you just copied.
One of these is the original file; the other is the copy.

It would be confusing to have two files with the same name;
therefore you should immediately rename one of these files (it
doesn’t matter which one) so that you can tell them apart.

H}

{H}

7-3 Not for sale



{H}

H}

INTRODUCING THE PROGRAMMABLE
MEMORY PERIPHERAL

Most computers allow you to attach peripheral devices
(“peripherals” for short) to them. Peripherals are accessories
that you can use to read information from sources other than
the computer’s built-in keyboard, and write it to destinations
other than the computer’s built-in display.

The HHC is no exception. It can accept several peripherals,
such as printers, TV Adaptors, and modems, which you can
use to transfer information in to and out of the HHC.

One useful peripheral is the Programmable Memory
Peripheral (“PMP” for short). This peripheral contains
additional storage of the same sort that the HHC uses to store
your SnapBASIC programs. The Programmable Memory

Peripheral, like the HHC’s intrinsic RAM, can hold SnapBASIC
programs in files.

A PMP has many uses. Among them are:

® Holding and running larger programs than your HHC's
intrinsic RAM can hold.

® Transferring programs from your HHC to one owned by a
friend.

® Storing programs that you do not currently need. This is an

important use if you have more programs than the HHC's
Intrinsic RAM can hold.

® Backing up a file you want to preserve; that is, making a
copy of the file in a safe place, so that the file will not be lost
if you make a mistake in editing it, or if some accident

should damage the files stored in your HHC's intrinsic
RAM.

Copying a File To a Programmable Memory
Peripheral

You can use the file system to copy, rename and delete files in
a PMP  just as you use it to copy, rename and delete files in
the HHC. Let’s learn the procedure by making a copy of one of

the files you created while practicing SnapBASIC
programming.

www.pocketmuseum.com 7-4

Save your SnapBASIC program, if you are editing one, and
return to the primary menu. Press the OFF key, plug your
PMP into the HHC’s bus socket, and press the ON key.

Go to the file system and pick selection 2, “COPY FILE”. Pick
the file you want'to copy from the file system’s menu.

As before, the file system displays the prompt “SELECT
DESTINATION RAM”, followed by another menu. Look at this
menu now. It has two entries, which look like this:

1=NTNERE. =2 FREE
==ExT REAf. 2123 FREE

(The exact numbers you see in this menu will depend on the
amount of intrinsic RAM in your HHC, the amount of RAM in
your PMP, and any RAM currently being used for existing
files.)

Each of these menu selections represents one “memory area”
that is available for you to copy a file to. (A memory area is
simply a name for an area of storage, which is capable of
storing files.)

The first entry, “INT RAM”, is your HHC's intrinsic RAM. This
Is the memory area where you have been storing all your files
up to now.

The number after “INT RAM” is the number of bytes
(characters) of RAM that is free for storing new files in the
intrinsic RAM’s memory area.

The second entry, “EXT RAM?”, is the extrinsic (not built-in to
the HHC) RAM in the PMP. The number following is the
number of bytes of free RAM in the PMP’s memory area.

You want to copy your file to the PMP, so pick selection 2. The
file system copies the file to the PMP, displays “COPY DONE”,
and returns to its top-level menu.

When You Run Out Of Space

When you run out of space in the memory area, you get the
message “OM error” (if you are in SnapBASIC) or “NO
ROOM, DELETE FILE” (if you are not). This is a signal that

you had better free up some space in the memory area if you
want to continue your work.

> - Be sure to save your SnapBASIC program before plugging in the
PMP! Plugging in_a peripheral has the same effect on the HHC as
pressing CLEAR. Recall that pressing CLEAR while you are editing a
program will have you lose the last unfinished updates of the line you are

working on. Plugging in a peripheral has the same
effects.

7-5

Not for sale



{H}

The “NO ROOM” message is followed by a menu showing the
files in the memory area. You can delete any file by selecting it
from the menu. This will usually solve the immediate problem.

If there are no files you are willing to lose, you can return to the
primary menu and use the file system to copy one or more
files to a Programmable Memory Peripheral, then delete the
files.

If you get the “NO ROOM” message right after connecting a
peripheral to the HHC, you may have to disconnect the
peripheral before you can run the file system. This is because
a peripheral uses space in the memory area, and can trigger
the “NO ROOM” message if the space it needs is not
available.

Managing Files In a Programmable Memory
Peripheral

You can do all of the same things to a file in the PMP that you
can do to a file in the HHC's intrinsic memory area: you can
RUN it, LIST it, copy it, delete it, rename it, and edit it.

To do these things, you must first make the PMP’s memory
area the HHC’s current memory area: that is, the memory
area that the HHC uses when you perform any operation on a
file.

The file system’s “DESTINATION RAM” menu shows which
memory area is the current one by displaying its name in
Inverse-video characters.

To select a new current memory area, press the 1/0 key. Find
your PMP on the I/O key menu. Pick the corresponding
selection to make the PMP the current-memory-area device.
Press the I/O key again to return the HHC to the file system, or
to whatever other task it was performing when you pressed
the 1/O key the first time.

Once you have made the PMP the current device, return to
the file system (if you have left it) and look at the menu that
shows files. Notice that it contains only the file(s) that you
copied to the PMP. None of the files in the HHC’s intrinsic

memory area are shown, since that is not the current memory
area.

You can copy the file(s) in the PMP, rename them, or delete
them. If you leave the file editor and enter SnapBASIC, you
can edit them directly with SnapBASIC’s program editor.

www.pocketmuseum.com 7-6

Recovering a File From a Programmable
Memory Peripheral

To copy a file from a PMP back to the intrinsic memory area,
simply make the PMP the current-memory-area device, and
copy the file, selecting intrinsic RAM as the “DESTINATION
RAM”.

Programmable Memory Peripheral Anomalies

When the PMP is selected and the BASIC interpreter is
entered, it is still necessary for BASIC to use a certain amount
of intrinsic RAM. It is possible that not enough intrinsic RAM is
available; if this happens, BASIC will automatically select
intrinsic RAM as the current RAM and enter the NO ROOM,
DELETE FILE menu. At this point you must free some intrinsic
RAM if you wish to continue using SnapBASIC.

Note On Multiple Peripherals

You can attach several peripherals to your HHC at one time if
you want to. For example, you can attach a PMP a printer, and
a modem. You can also attach more than one Programmable
Memory Peripheral.

To attach multiple peripherals, you must get an I/O Adaptor.
This is a peripheral which plugs into the HHC'’s bus socket and
has several bus sockets of its own that can hold other
peripherals. You can use as many peripherals simultaneously

as the I/O adaptor has sockets. (The current model of the He
adaptor has six sockets.)

For information on how to use other peripherals such as
printers with SnapBASIC, see the index of this book.

For_ more information on 1/0 adaptors, PMP’s, and other
peripherals, see the HHC Owner’s Manual.

7-7

{H}

{H}

Not for sale



CHAPTER 8: REMARKS IN
SnapBASIC PROGRAMS

THE REM STATEMENT

As you begin to write more complex programs in SnapBASIC,
you will reach a point where it becomes hard for you to
remember what they do. Sooner or later you will progress to a
point where it is difficult to remember all the details about one
of your programs even while you are working on it.

You can deal with this difficulty by keeping notes on what your
program does, and updating the notes whenever you change
the program. Such notes are generally called
documentation.

One very convenient way to keep notes is to incorporate them
right into the program file. You can do this in SnapBASIC with
the REM statement. REM stands for “remark”. A REM
statement contains a remark about the program.

You write a REM statement like this:
FEMremnork

Note: SnapBASIC does not insert a space between REM and
the remark, so that if you enter

FEM remork
LIST will show you
FEM remork

(in small letters, as you typed them)
If you enter

FEMremork
LIST will show you

FEMEEMARE

(in capital letters)

Here is a version of our fuel efficiency calculator that
llustrates how the REM statement may be used:

18 FEEM Fusl sfficiencd coloulotor.

<8 FEM Im: ztart & end odometer
Lo readingss fusl uyzed,
sk EEM Qut s milesogal fon,

8-1
www.pocketmuseum.com Not for sale



www.pocketmuseum.com

oo,
el

FEM Variablez: SE=ztart odom. .
EF=arcd odom. .

FEM GA=d0l lons.

IHFUT "Start 2 end odometer™s Sk, ER

ey RN RS E 0 AT}
R R RN

A IHFUT "Gollorns uzed” s GH

H FEIHT "Fusl eftficiencd ="s
H FEIMT C(ERE-%E2-TMAs

A FEIMT "mPa. "

i

e

You can put any number of REM statements anywhere in your
program. They have no effect on the program’s operation
when it is executed.

Important note: If you are going to BURN your program, you
must be more careful where you put your REM statements.
BURN removes all REM statements, so that optimum use is
made of memory space. But there is a catch: if a GOTO or a
GOSUB refers to a REM line, there will be no place to go
come burn time! Hence, if a program is to be BURNED, do not
ever GOSUB or GOTO a REM statement.

SnapBASIC does not squeeze out blanks from REM
statements, nor does it translate letters to upper case (except
in the word REM itself, and in any word immediately following
and connected to REM). You can use spacing and
capitalization to make your remarks more readable.

ADVANTAGES IN USING REM STATEMENTS

REM statements have several advantages over other kinds of
program documentation.

® Since they are right in a program, they are impossible to
lose — unless you lose the program too.

® They are easy to remember to update, since you can’t work
on your program without seeing them.

® Since you can put them anywhere you want in a program,
you can easily use them to describe what particular parts of
a program are doing.

DISADVANTAGES IN USING REM
STATEMENTS

The main disadvantage of using REM statements is that they
make your program file larger, and so use up more file space.

This disadvantage can be controlled by being making your
comments concise, using spaces economically, and
abbreviating where possible.

8-2

If you have to write a lot of information about a program, don't
include it in the remarks. Store it elsewhere, and write a

remark that refers to it.

WHAT TO WRITE IN REMARKS

Whenever you write a program, consider including each of the
following pieces of information in remarks:

1. The program's purpose.

2. Who wrote the program, and when. (This can be important
if other people will be using the program.)

3. How to use the program. (But if the users of the program
don’t know how to program in SnapBASIC, this kind of
information should be kept in a seperate document!)

4. What variables the program uses. What it uses each
variable for.

5. What the overall function is of each part of the program.
Begin each part of the program with one or more remarks
explaining the program’s function.

6. If there are any “tricky” parts in the program where it is not
easy to figure out what is happening (or why it is
happening), include remarks explaining those

parts.

8-3

Not for sale



CHAPTER 9: FLOW OF CONTROL

INTRODUCTION TO FLOW OF CONTROL

Up to now we've been working with programs that start
executing at the first statement, continue to the last statement,
and stop. In computer terms, flow of control has gone from
the first statement in a program to the last.

Now we're going to look at programs in which the flow of
control is more complex.

THE GOTO STATEMENT

Consider the mileage calculator that we developed earlier:

18 FEM Fusl etfficiencd coloulator.

“H FEM Ims =s=tart & ernd odomester
reacd i Es s fusl used,

S8 REM Ot s omiless9ol Lo,

J6 FEM Variobles: SE=sztart odon. .

ERE=arcd odom. .

=8 FEM GR=gal lons.

EE THRFUT "Start & end odometer”sSELDER
rE O THFUT "Gollons uzed” s GH

=E FEIMT "Your fusl sfdficiencd (= s
S FRIMNT CERE-ZFESGEs

1 FRIMT 7 mpPo,. "

We're going to modify this program to do any number of
calculations in one run. We can do this by adding a GOTO
statement at the end of the program. (We'll use boldface type
to emphasize the parts of the program that we're changing.)

1 EEM Fusl etfticiencd caoloulotor,

S EEM Ins =tort & encd ocdomster
_oreadings, fusl used.

S EEM Out: milessgal lor

G FEM Yoriobhles: =

ZE F=start odom.
ER=ardd ocddom, .
FEM GR=9al|lons=s.

IMFUT "Stort & end ocdometer"i Sk ER

F -P
st Lt

SEERR RS RN

BOIMFUT "Gol lons used” 1G5

HOFREINT "Your fusl efficiencd is 3
J FREINT CERE-SE-CAs

188 PEINT " mpg,”

116 GOTO €8

When SnapBASIC executes line 110, it goes to line 60. That

:sn theeofunction of the GOTO statement is to transfer control to
ine 60.

9-1
www.pocketmuseum.com Not for sale



1B}

We say that the statements from line 60 through line 110 f
orm

a loop. When flow of control reaches the end of the loop, the

GOTO statement sends it back to the beginning. |

Enter the program above into your HHC and run it See how

the the program transfers control back to line 60 |
| _ ev
line 110 is executed. oy fime

ENDING EXECUTION OF THE PROGRAM

Novy that control goes back from the end of our program to the
beginning, how can we make the program stop?

You can halt a program at any time by pressing the C1 key (in

the lower left corner of the kevboard). SnapBASI
with the message ! ) P © responds

Ereak in |ine #56

where “60” is the line number of the line SnapBASIC
executing when you pressed C1. P s

The C_1 key is particularly useful when you run a program that
contains an error, and the program does not stop when it
should._ After you halt the program by pressing C1, you can
collect information about what made the program misbehave

by noting what part of the program was executing and
displaying the values of variables with PRINT

We always refer to the C1 key as the BREAK key in this
manual.

You can also interrupt your program’s execution by pressin
the CLEAR key once (this takes you back to the Mgir? Menu)g.
The BHI_EAK key is preferable, however. Form the habit of
never using the CLEAR key in SnapBASIC unless the BREAK
key does not work for some reason. If you do accidently use
CLEAR, immediately return to the same SnapBASIC
program, and use BYE to exit it properly.

SOME GENERAL NOTES ABOUT GOTO

The numbe_r in a GOTO statement must be the number of a
!me that exists in the program. For example, the statement

GOTO 11’ in the program above would produce the error

message:

LUOERREDOR im line #116

which is short for “GOto Statement error”. The program has no
statement with the line number 11.

9-2

www.pocketmuseum.com

But the number in a GOTO statement may refer to a line that
contains a REM statement rather than an executable
statement. If it does, the REM will do nothing, but control will
proceed to the next statement that is not a REM.

INTRODUCING THE IF STATEMENT

Consider the following refinement of our fuel efficiency
calculator. We want to calculate fuel efficiency several times,
and then calculate an average fuel efficiency. How could we

make our program do this?

First, we need two more variables: one to accumulate the sum
of the miles-per-gallon results, and one to count them. When

we're done, we’'ll get the average fuel efficiency by dividing the
sum by the count.

Let’s call our new variables SU (sum of results) and CO (count
of results). Our program looks like this:

18 FEM Fusl efficiencd coloylator.

28 REM In: start & end odometer
Fread i fds.s Fuse] used,

s 9a ] or.

S8 REM Out: miles

JH FEM Variables: SE=start ocdon. .
ER=arud odon. .

=3 FEM GE=Yal loms, SU=sum of results,

S2 REM CO=count of results.

= THFUT "Stort & endd odomster” s SR ER

TEOITHFUT "Gollomzs u=zed s GH

=0 FRIMT "YYour Fusl efficiencd 1= s

A PREIMNT CEE-SE 5L

1 PRIMT © mPa,. "

118 SU=SU+CER-5SE>~-GA

128 CO=C0+1

1268 COTD el

This doesn’t quite accomplish our goal, since it doesn't
calculate and display the average. To finish the program we'll
need a new statement, the IF statement.

18 REM Fuel efficiencd caoloulator.
B FEM In: start 2 end odometer

reqd gz, fusel ysed,
2 BEEM Out: mi le=s-gal | o,
Jid FEM Voriablez: SE=ztort odom. .
ERE=armdd oddom. .
o BEEM GR=gal loms, SU=sum of results,
22 EEM CO=count of results,
CT="cont inue™" suitch.
= IMFUT "Stort & end ocdomneter” i SRLGER
O INPUT "Gol lons used” s GH
S8 FEIMT "Vour fusl efficiencd iz s
9-3

Not for sale



1B}

YE FEIMT (ER-SRE -G

1EE FPEIMT " mpea,

118 Sll=Sl+ RSk o

126 CO=C04+1

158 INPUT "TYPe 8 to =taop,

1 to continue"sCT

1488 IF CT=1 GOTO &5
138 PRINT "AveraoYe mpo="3SU.-C0

It CT is 1 when SnapBASIC executes line 140 SnapBASIC
goes to line 60. If CT is not 1, SnapBASIC continues
executing statements in top-to-bottom order; that is, it goes on
to statement 150 and displays the average fuel efficiency.

IF is a very powerful statement. It enables your program to
test whether a certain assertion is true, and take two different
courses of action depending on the result of the test.

RELATIONAL OPERATORS

In earlier chapters we learned about a variety of operators
such as ‘+’ (for addition) and *’ (for multiplication).

Now we’re going to consider another group of operators called
‘relational operators”. A relational operator makes an
assertion about a relationship between two values. If the
assertion is true, it produces the result “1”. If the assertion is
not true, it produces the result “0”.

To make this idea clear, take the statement:
IF &-F COTO 4%

We read the statement like this: “If A is greater than B, go to
line 45”. The statement is executed like this:

1. The expression “A>B” is evaluated. ‘>’ is a relational
operator that means “greater than”. If the assertion A is
greater than B’ is true, the result is 1: if not, the result is O.

2. If the value of the expression “A>B" is non-zero (r.e.,ifAis
greater than B), the IF statement transfers control to line
45. If the value of “A>B” is zero, the statement allows
control to pass to the next statement in the program.

When we talk about expressions that use relational operators,
we often refer to a non-zero value (particularly the value 1) as
a “true” value, and a zero value as a “false” value. Remember
that when we speak of true and false values, we are really
talking about numeric values.

:ﬁs far as the syntax of a SnapBASIC statement is concerned,
A>B"is interchangeable with “A + B”. Any place you can use

onlg& you can use the other. Thus, the following statements are
valid:

www.pocketmuseum.com 9-4

IF @+FB GOTO 42

and
C=f-B
Do you see what these statements do?

More Relational Operators

| | | | operators,
SnapBASIC recognizes SiX relationa
corre%ponding to the six possible relations between two

values:

operator meaning

equal to

greater than

less than

not equal to

less than or equal to
greater than or equal to

Notice that ‘=" is both a relational operator ‘(as in ‘IF’ A=B
GOTO 45’) and an assignment operator (asin ‘B=B+1’). 'l:hq
meaning SnapBASIC gives to ‘=" depends on the context " =

appears in.

All six relational operators are of equal p_recedenc;e. Their
precedence is below that of all the arithmetic operations. For

example, in the statement
IF f+l=F- GOTO 452

the addition and subtraction are performed first, then A+ 1 is
compared to B-C.

mn v AV I

V A A

A Little Quiz

Here is a quiz that will help you see if you understand what
we've said about relational operators so far.

Suppose A=5, B=4, and C=3. Then:

Q: What will ‘IF A=B+C GOTO 45’ do, anc;l why? |

A: Pass control to the next statement. A is 5; B+C is 7;
“A=B+C” is untrue.

Q: What will ‘IF (A=B)+C GOTO 45’ do, and why? |

A: Gotoline 45. A=Bis false, and so returns 0; but 0+ C is 3,
which is non-zero, and hence true.

9-5

Not for sale



Q: What will A=B=C+1’ do, and why? (Be careful;
remember the distinction between ‘=’ as a relational
operator, and '=" as an assignment operator!)

A: Assign A the value 1. C+ 1 is 4; B is also 4: so the value of
the expression ‘B=C+1'is 1.

Q: What will IF A=B=C+1 GOTO 45’ do, and why? (Be
careful again; consider all the precedence rules!)

A: Pass control to the next statement. “C + 1” is evaluated first;
itis 4. The two ‘='s are both relational operators, and they
have the same precedence. Equal-precedence operators
are executed left-to-right, so “A=B" is evaluated first. [t
returns a 0. “0=4" is evaluated next, and also returns a 0.

Note: in a real program, you would not want to write a
statement like this one. You would try to think of something

else that produced the same result, but was easier to
understand.

IF. . .THEN

SnapBASIC supports another variety of IF statements that is

even more powerful than the one you have just seen. Here is
an example of it:

IF A=E THEM FEIMT "The4're sgual.”

If “A=B" is true, this statement displays the message “They're
equal”. If “A =B"Is not true, the statement displays nothing. In
either case, it passes control to the next statement.

In place of ‘PRINT “They're equal”, you can use any

SnapBASIC statement. For example, all of the following
statements are valid:

IF A=E THEH f=0
{an assignment}

IF A:xE THEH IHPUT
{an INPUT}

IF A<xBE+1 THEH COTO 45
{a GOTO}

To_clarify the usefulness of IF.THEN, let's add another
refinement to our fuel efficiency calculator. We're going to

calculate and display the average fuel efficiency only if we've
done more than one set of calculations.

www.pocketmuseum.com -6

We could do this by replacing line 150 with the following:’

156 IF CcO<z GOTO 176 o
168 PRIMT "Averode mPa="s ool
17 EMD

But it is shorter and clearer to write the following:

156 IF COx1 THEW FEIMT "Averade

=" s =l M

Some Variations On the Program

If you use the fuel efficiency calculator for a while, you will
probably start to notice inconvenient things about it. ”For
example, the program makes you enter the “end reading for
one calculation and the “start reading” for the next even
though for several consecutive fill-ups, the two values
presumably will always be the same.

If this bothered you, you could modify the program to eliminate
the duplicate entry. You would make the program ask for a
start reading before the first loop, and the end reading and
gallons used for each loop. The end reading for each loop
would automatically become the start reading for the next

loop.
After such a modification, the program might look like this:

1A REM Fusl sfficiencHd coloulator.

“HREM Im: stort 2 oend odonster
Fencd T EE s Pus] LiseC

SE OFEM Gt s omi lesso9al ToM.

JE REM YWoriaobhles: SE=stort oddn.

FR=armod ocdom. . |
SE REM GA=gal lons. Sl=zum of resulis,
=2 FEM CO=count of results, OT=

“cont frueT switoh, |
68 INPUT "1st start reading™siSkE
62 INPUT "End reading this time"sERE
FECOIMFUT "Gal lons used” s LR o
=E OFRIMT "Your fusl o sbdiciencd 1200 s
“E PREIMNT CEE-SRE LA
1 FRINT 7 mPa.
118 Sli=SlvdERE-SRE 26
1760 ChO=00+41
122 SE=ER
12 IMFUT " T49Ps B Lo staoF, 1 Lo

coot s s 0T

143 IF CT=1 COTO &2
158 IF IZZ!EiZ:—l THEH FEIMT "Averoge

mPa="" s =L

'-ENDis a statement that makes_énapBASIC stop running the program
when it is executed.

9-7

Not for sale



Here's another possible refinement: eliminate the need to
answer a “Continue?” prompt by letting an “end reading” of 0
mean “there are no more calculations”. After such a change,
the program might look like this:

1 FEM Fusl ef+iciemncd coloulator,
2 EEM Imd ztort & erndd ocdometer
Fencd P s, Pue] s
FEM hat s mi lesd
FEM Variokbles: SkE==

nyeer
s

o ol
RN

Loort ocdoi
FRE=erod ocdom.
abl BEM GR=gal loms, Sl=sum of resyglts
e FEM CO=count of results,. OT=
ROl a i AR R S T =N AN R A v
s DHFUT "lst start readisy i SR
B THFUT "End readin this 4 ime
CH ends run) i ERE
&4 IF ER=A GOTO 156
el THFUT "Gol lons usedd” s G5
skl FREIMT "YYour fFus] ef P icisncd a0 U
S FEIMT CERE-SE 255
LEel FREIFNT Y mpo,
118 mh=Sl - CER-SR o 00
1o Ohe=rnd
122 Sk=EF
T GOTD s
Loe IR CO-1 THEM PRIMNT "dwerogs
mPa="s SLL-00

Notice that this version of the program lets you run the
program and make no calculations, because the “IF” is before
the calculation steps, not after. The previous versions forced
you to make at least one calculation. In some situations a
program must be able to handle a “do it zero times” calculation
like this in order to function correctly.

PLANNING PROGRAMS FOR CHANGE

You will often find shortcomings in a program only after the
program Is in use; and you will often decide to modify a
program in the light of such shortcomings, after the program is
supposedly complete.

As you write a program, give thought to how it can be made
easy to modify. Modify it you will, often many times, before
you are satisfied with it!

Enter the final version of our fuel efficiency calculator into your
HHC and run it. Do you understand how it works? Can you
think of other useful refinements to it?

www.pocketmuseum.com 9-8

MULTIPLE TESTS IN ONE “IF”

Suppose you have to perform a two part test like, “If A equals
0 and B is greater than 0O, then...?”

SnapBASIC lets you write such tests in a very natural way:
IF A= Al Brg THEM o .

AND is a logical operator. It operates on two values that can
be true or false, and produces a value that is true or false.?

AND obeys the following rules:

true AND true results in true
true AND false results in false
false AND true results in false
false AND false results in false

In other words, “A AND B” is true if both A and B are true;
otherwise it is false.

OR is another logical operator. It obeys the following rules:

true OR true results in true
true OR false results in true
false OR true results in true
false OR false results in false

In other words, “A OR B” is false if both A and B are false:
otherwise it is true.

XOR is another logical operator. It obeys the following rules:

true XOR true results in false
true XOR false results in true
false XOR true results in true
false XOR false results in false

In other words, “A OR B” is false if both A and B are false or if
both A and B are true: otherwise it is true.

The fourth logical operator in SnapBASIC is NOT. NOT
operates on one value:

NOT true results in false
NOT false results in true

The logical operators AND, OR and NOT have lower

precedence than the relational operators (‘<’, ‘=’, etc).
Among the logical operators,

% - Logical operators actually operate on Boolean variables (see Chapter

10, "More about Variables”.) Any non-zero value is considered to be TRUE,
while only zero itself is FALSE.

Not for sale



NOT has the highest priority,
the relational operators have the next priority,
AND has the next priority, and
XOR and OR have the lowest priority.
Note: NOT has however a higher priority than the 6 relational

operators, necessitating the use of parentheses in situations
like NOT ( A>B ) to first evaluate A>B, and then NOT.

Examples

Suppose A=5, B=4, and C=3. Then:

IF A=9 AND B=4 OR C=3 GOTO 45 reduces to
IF false AND true OR true GOTO 45 reduces to
IF false OR true GOTO 45 reduces to

IF true GOTO 45

Flow of control goes to line 45.

IF A=9 AND (B=4 OR C=3) GOTO 45 reduces to
IF false AND (true OR true) GOTO 45 reduces 10
IF false AND ( true ) GOTO 45 reduces to

IF false GOTO 45

Flow of control does not go to line 45.

IF NOT (A=9) OR B=4 GOTO 45 reduces to
IF NOT false OR true GOTO 45 reduces to
IF true OR true GOTO 45 reduces to

IF true GOTO 45

Flow of control goes to line 45.
IF NOT (A=9 OR B=4) GOTO 45 reduces to
IF NOT (false OR true) GOTO 45 reduces to

IF NOT true GOTO 45 reduces to
IF false GOTO 45

Flow of control does not go to line 45.

B0 SEVERAL STATEMENTS ON A LINE

Up to now you have seen every SnapBASIC statement on its
own line in your program file. You can store two or more
statements on one line by putting a ‘' between statements.

For example,
118 Sl=Sl+CER-SR LA
128 Ch=0041
R et o
www.pocketmuseum.com 9-10

may be written:
1168 SU=SU+CER-SRE DGR CO=C0+1 8 Sk=EF
If one statementon alineisan IFl .| .THEN, the outcome of the

IF_THEN will determine whether all of the remaining
statements are executed, or none of them are.

Consider the following line:
=i IF MCEE THEW AC=Al+1:bBl=bBl+1:
Co=C0+
This line is equivalent to:
=@ IF MCo=8 GOTO 2

o B e = T |
TH BC=RBC+1
S Cr=004
S

If ‘NC>0’ is true, than all three of the following assignment
statements are executed. If ‘NC>0' is false, none of the
assignment statements are executed.

‘ makes this piece of code more compact and more readable
than the equivalent statements with GOTO.

‘ has some other advantages:

e It saves a little space in the program file (to be exact, 4
bytes.)

e If several statements are logically very closely related,
putting them on the same line emphasizes their relatedness.

Caution: use ‘' sparingly. If you overwork it, your program will
end up with a lot of long, confusing lines; the statements will run .
together, and the program will be very unreadable. What's
more, when LIST expands the statements, they might well
exceed the 80 character limit.

Also, there is a limit on how complex a line is allowed to be. If
there are too many nested parentheses, or some other such
situation, a “CX error” (complexity error) will result. This must
be fixed by making the line simpler.

In any case, do not try to make a program line more than 80

characters long. SnapBASIC will not accept a longer line as
input.

THE ON/GOTO STATEMENT: MULTI-WAY
DECISIONS

SnapBASIC has another decision making statement, the
ON/GOTO statement, that is useful when you want to execute

9-11

Not for sale



one of several GOTO'’s, and you can base your choice on a
variable whose value is 1, 2, 3, etc.

The ON/GOTO statement looks like this:
SEOOF =N GOTO 11w 126, 150

“XY” is the name of a numeric variable. The numbers after
“GOTQO” are line numbers.

In this example, if the value of XY is 1, the ON/GOTO statement
passes control to line 110, the first line number. If the value of
XY is 2, ON/GOTO passes control to 120, and so on.

If the value of XY is not an integer, it is truncated to the next
lower integer.

If the truncated value of XY is less than 1 or greater than the

number of line numbers in the list;, ON/GOTO does nothing;
control passes to the next statement.

www.pocketmuseum.com 9-12

CHAPTER 10: MORE ABOUT
VARIABLES

Up until this point, we have not concerned ourselves with the
properties of the numbers that we have been using. All of the
numbers we have used have been real numbers. There are,
however, other types of variables in SnapBASIC, and there are
advantages to using each type where it iS appropriate.

PROPERTIES OF REAL VARIABLES

In Chapter 5, we talked about the range of a variable. We said
that a variable must be smaller (in magnitude) than 1.0E1024
(a quite large number—thats a 1 with 1024 zeroes after fit,
bigger than a googol) and that the tiniest number that could be
represented is 1.0E-1024. These limits are true for what we
call real variables. A real number in computer talk Is not the
same as a real number in mathematics, though. You might
recall from high school mathematics that a real number is just
about any number from minus to plus infinity, and that there
are an infinite number of them (and that between any two real
numbers there is another real number).

A real number in computer talk is quite a different thing. Every
number is represented by a bit pattern; to indicate an infinite
amount of real numbers would require an infinite amount of
bits (something that neither the HHC nor any other computer
is capable of). Rather, the term real number refers to the set
of numbers that can be represented as a thirteen-digit
mantissa multiplied by by a 10-bit exponent. (A real number
consumes 8 bytes total. Each byte of mantissa has two BCD
digits. The two extra bits are sign bits for the mantissa and the
exponent). As such, a total of about 2.048E16 values are

expressable—a plenty large number, but nowhere near
infinity.

What are the ramifications of this? For one, most of the
numbers are not stored exactly. Try this:

VELFEREIEE + ]

The result is 9.999E100. What happened to the + 17
Vanished. As far as SnapBASIC is concerned, the smallest

number that can be added to 9.999E100 to have any effect at
all is .00000000001E100.

The only place this is likely to cause problems is if you are
attempting to do exact calculations where there is an
intermediate result with a very large magnitude. It is to your
advantage (if you are interested in precision) to keep your
numbers as small as possible. As an example, the formula for

10-1

Not for sale



determining the number of ways n items can be selected from
a collection of m items is

C = (m!/(n'* (m-n)!))

where n! (read “n factorial”) is equal ton * (n-1) * ... * 1. N!
grows very quickly; for 1-10 it is

N 1234 5 6 7 8 9 10
N!' 12624 120 720 5040 40320 362880 3628800
So try this program.

18 THFUT M. H

s IF M < H O THEH FEIMT "Ho @ood,
Trd agaim. "2 GOTO 16

2B E = M o CQOSUE 18663 @ MF = EF

G0 E o= H @ COSUE 16868 @ HF = EF

ak Bo= MM COSUE 1888 1 MHF = EF

E FREIMT "The result = "iHF -~
L o FIMF

TEOGOTO 15

TEEE FEM A zubrout ine 1o colouglat e

Lhe Yoctorial of K,

118 EEM ImPut = K3 outPut iz EF.

5 S B S S |

L= IF K < 2 THEM RETURH

184 FORE I = 2 TO K

15 EF = EF # I-

THel HEST T

178 RETURHM

(Don’t worry about what the subroutine means right now—or
look in Chapter 17 to get an idea.) Now RUN the program.
Note that if you try the values m =458 and n =229, you get the
result 2.77337295706E136; but if you try m=459, n=229,
you get the message

I EREREOE im |ins 1856

What's going on? That E136 number is well below E1023; the
next value should not be much bigger. But in line 1050, where
we are calculating the factorial, we are trying to calculate 459,
which is greater than 1.0E1024—out of range.

So what can we do? Well, a little bit of examination reveals
that the expression C = M!/(N! * (M-N)!) can be modified to

C=m*"(m-1)*..*n+1)
(m-n)!

10-2

www.pocketmuseum.com

This will eliminate the very large number m!. Here’s another
program that does the same thing, then:

1 IMFUT "M ard M. FPlease!"iHLH
28 IF M<K THEH 11

=8 MF = 1

48 FOR I =1 TO H+1 ZTEF ~1

o8 MFE = T # ]

8 HEAT

ca MHFE = 1

ol FORE I = 2 To MM

S8 MHFE = IMHF # T

188 MHEST 1

118 FELIHT "The rezult iz "iHF -~ HMHF3
128 GOTO 168

Now you can try the larger values: for m=459, n=229, you
get the result 5.53468777084E136. In fact, you can use
numbers clear up to and including 747 and 374 before the IQ
error shows up.

So lesson number 1 about real numbers is: try to design your
formulas to keep numbers as small as possible. It works the
other way, also: numbers smaller than E-1023 can't be
expressed, so be careful when using tiny numbers as well.

INTEGER VARIABLES

You might very well have no need for floating point numbers. If
all of your calculations are going to be integers—that is,
numbers with no fractional part—and your numbers are never
going to be larger in magnitude than 32767, you have an
alternative. SnapBASIC provides integer variables. An
Integer variable can hold only integers.

YOL_I create an integer variable by putting a ‘%’ sign after a
variable name. For example, HE% is the name of an integer

variable. ‘The naming conventions that apply to real variables
apply to integer variables also.

You can operate on integer variables in the same way that you

operate upon real variables. For example, all of the following
statements are valid:

AN o= C15-30 % (1543

_l

I
u-l:.-.
-

i

FEIMNT =34

10-3

1B}

Not for sale



www.pocketmuseum.com

You can mix integer and real variables freely within a
statement:

4% = HE
HE = %

W o= 3 % HE

HE = 2.5 # XX

HE = (H%=—30# 085+ 3 0 HE

When SnapBASIC evaluates an expression containing
integers, it checks whether any conversions to real form are
required. If so, SnapBASIC converts all of the integer values
to real values; or, it might convert the real values to integers.
At any rate, some conversion will happen. This conversion is
necessary any time any real variable shows up in an
expression with integer variables.

Integer arithmetic is considerably faster than real arithmetic.
The statement

will operate considerably faster than

This advantage, however, only exists when integers and reals
are not mixed in expressions: as soon as a single real value
comes into the expression, the entire expression is evaluated
as real, and the speed advantage vanishes.

Integer variables have another advantage: they eat up less of
your storage space. Memory in your computer is measured in
units called “bytes”; a byte is the amount of memory required
to store one character of text data. A real variable requires 8
bytes, while an integer variable requires only 2 bytes.

SnapBASIC provides a number of functions that are
specifically designed for integers. Among these functions are:

® MOD%(A%,B%)—returns the remainder of A% / B%
® MIN%(A%,B%)—returns the lesser of A% and B%
® MAX%(A%,B%)—returns the greater of A% and B%

Three other integer functions are available that are designed
for operating upon specific bits within integers. These are:

® BAND(A%,B%) returns the bitwise AND of A% and B%.
® BOR(A%,B%) returns the bitwise OR of A% and B%.
® BXOR(A%,B%) returns the bitwise XOR of A% and B%.

For more information on how these functions operate, see the
Reference Guide.

10-4

Integer arrays are also possible. To create one, just say
DI mmsc e

(for example). An array of integers results in a substantial
space savings.

BOOLEAN VARIABLES

SnapBASIC provides yet another type of variable: the
Boolean variable. The name “Boolean” comes from George
Boole, a famous logician. Boolean variables may have only
two values: TRUE and FALSE. TRUE has the value of 1;
FALSE has the value of 0. They take up only one byte of

storage.

You create a Boolean variable the same way as you create
any other variable, but you add a '?’ to the end. For example,
VALID?, X?, and LEGAL? are all Boolean variables.

Why would you want to use a Boolean variable? Assume you
have a complicated expression like

LEootE=Ey Al Col=00 OF CE=%is THEH ...

that you need to test for several times within your program. It
would be a waste of both time and space to have to include
the same line over and over again. Instead, you could have
one line in your program that said

--I I -“:' . -- .-. R 1“I -' -.' : I1--- l-. --. :—-' EEEEE 1": '-- -'..= rl. .- I- I= I-Illl! ! --l .--
i.i} E.i.._i.... S S R I == O T I | o g T

and then, when you need to test the expression, you could say

PRobELLY THEHM ...
Boolean variables have their own special operations. These
are the same as the “relations” that you can include in an IF
statement. For example,

e
i
b
i
¥
o

are all pure Boolean operations.

As with integers, Booleans can be interspersed with other
data types in expressions. If this is done, the value FALSE will
be converted to the number 0, while TRUE will be converted

to 1. Also, reals and integers can be forced to Booleans (as in
the case of

BT = @ @MD 07

10-5

1Bj

Not for sale



www.pocketmuseum.com

In th_is case, A will be converted to Boolean (since AND
requires a Boolean operand). Any non-zero value is converted

to TRUE; only zero is converted to FALSE.

When entering Boolean data with the INPUT statement,
SnapBASIC uses any string starting with 0, F (for false), or N
(for NO) as FALSE, and any other value is determined to be

TRUE.

Boolean arrays are also possible; define a Boolean array as
DIF BOOLY <160

for example. Boolean arrays are the most space-efficient

array.

A good use of Boolean variables is when space is at a

premium, and there are a lot of flags in your program that can
either be on or off. For example, you might do this:

18 REM Def imitiorn of FLAGT

-._._'I:l':'l FEM Eit G I= 11 t e o | LdFe 53
Sk REM Bit 18 I= there fo wix ki

48 BEEM Bit 20 Iz the stowve on?

o REM Bit 320 dAre the dishes woshed?
tE REM amd ot her uzeful §Flogs. ..

P8 IF BAMDCFLAGT. 13 GOTO 1666
oE EEM ..ot tine for lunch

1 e Iﬁ HIET :I]:_':FH!-_JIIIZZI;'LQIZ‘?'J =4 THEM FRIMNT
wash dishest”
1H1E ;[.F BRMOCFLAGY 23 THEH PRIHHT

Hiowes =oms Fonodi©

Of course, you would probably do something more useful. But
this should give you the general idea.

Note that though there is a substantial space savings this way,
there is also a substantial time penalty. This is the usual
trade-off in optimizing: time vs. space.

10-6

CHAPTER 11: ARRAYS

WHAT IS AN ARRAY?

Up to now we have dealt with variables that have a single
value. SnapBASIC also knows about a kind of “variable” that
has more than one value. Such a “variable” is called an array.

An array consists of a group of elements, each of which can
hold a value, just as a variable can. All the elements of an array
have the same name—the array’s name—>but each element
has a unique subscript. You may remember from algebra that

members of the array A arereferredtoas A1, A2,andsoon.
There is no way to really write a subscript in SnapBASIC, so

instead we write an expression like this:
=D
where the (5) is the subscript.

An array reference (that is, an array name followed by a
subscript) may occur almost anywhere a normal variable may

be used.

AUEr=1T. R

This statement assigns the value 17.3 to element #5 of an
array named A. Similarly,

E=E#Ei o0

multiplies B by element #5 of array A, and assigns the product
to B. The subscript used with A in this statement is 5.

SnapBASIC distinguishes an array from a variable simply by
the fact that an array has a subscript and a variable does not.
For example, if you used the statement

E=E#H
and
E=E®mi o0

in the same program, the first statement would multiply B by a
variable named A, and the second statement would multiply B
by the 5th element of an array named A. SnapBASIC never
confuses arrays with variables. (But since you may confuse
them, we recommend that you never use the same name for
an array and a variable in the same program.)

11-1

Not for sale



THE DIMENSION OF AN ARRAY

The dimension of an array defines the number of elements in
the array. If an array has a dimension n, the array contains
n+1 elements. The first element of an array is always
element 0. For example, an array with the dimension of 53
contains 54 elements numbered from 0 through 54.

To create an array we use the DIM (“dimension”) statement.
Here is an example of a DIM statement:

LILTT R iz

This statement creates an array named A, with a dimension of

53. The array contains 54 elements subscripted from #0 to
#53.

You must create an array with a DIM statement before you try
to reference it. If you do not, you will get a UD (undefined
dimension) error. What's more, you may not redimension an
array by using the DIM statement a second time; if you do, you
will get an RD (redefining dimension) error.

Note that some BASICs assume a default dimension of 10 for
arrays. This is not true for SnapBASIC: all arrays must be
explicitly dimensioned.

USES OF ARRAYS

Arrays are useful for processing any sort of data that comes in

groups. Here are some examples of situations where arrays
may come in handy:

® You are doing calculations on the sales records of a store.
You have several sets of statistics for consecutive months
of business, and you want to compare each month to the
one before it. One way to approach the task is to create an
array for each statistic, with an element for each month.

® You have a set of numbers that must be put into ascending
order. You can put the numbers in an array, and then move
them from one element to another until they are arranged
the way you want them.

® You want to write a program that asks its user for a number,
and then checks the number against a list of acceptable
responses. If you keep the acceptable responses in an
array, you can write a loop to search through the array

elements until you find a match or until you reach the end of
the array.

www.pocketmuseum.com 11-2

AN EXAMPLE: CALCULATING THE NUMBER
OF A DAY IN A YEAR

As an example of how to use arrays, here’'s a program to
compute the number of a day in a year. If you gave this
program the input “2 1” (for “February 17), it would display "32”

(“that is the 32nd day of the year”).

118 FEM Corpesrt o date Lo dald-of —dear.
120 REM Ime: month. dod. ® Zero mont b
menrs erd run.e
1268 REM Cut: dad of Hear.
146 REM Vors: MH=month of  Heor.
TH=cio s of  mont h.
1560 REM DE=dod of Hear. the result.
1560 FEM Mli=dods Precediny 1=t ool
of .
178 EEM | |
1260 REM Me=arrod of dods i Hear
e ope s h mont b
PaE OIF Mecllos | . S
gl 5 T P B T T s e - o T A bt s - 1= DC e 1
S MEdd =i Mac S =101 i Med e amliEl s
|"'||::Z||j'l T
s s I DR TR it SO - b P A It - o P 5 DR 5 B -
M 1L =E0 |
20 RFEM FromPt o g=ser For mont b oo,
S THFUT "Mont b odods 7 s ML LI
== IF M= THEM BEMHL
2 BEM Colo M. then LE.
e Mil=MaciiH-1 2
SEE TRE=M1I+1M
S PRIMT "Dod of 4Yeoapr=": 1K
SEE OO e

Let's study what this program does, step by step.

Lines 110 through 180 are remarks that explain the purpose
and use of the program, and the meaning of each variable in
it.

Lines 180 through 220 create and initialize a 12-element

array, MA. MA(0) is assigned the number of days in the year

that precede January; MA(1) is assigned the number of days
that precede February; and so forth.

Line 230 marks the beginning of the main processing part of
the program. Line 240 prompts the user for the input:
month-of- year (a number from 1 to 12) and day-of-month (a
number from 1 to 31). Line 250 tests for a month number of 0.
which is the value the user should enter to end the run.

Lines 260 through 280 calculate day-of-year. Day-of-year is
the number of days in the year that precede this month

11-3

Not for sale



(MA(MN-1)) plus the day-of-month (DM). Line 290 displays

the day-of-year; line 300 loops back to the INPUT statement
for another calculation.

Notice that the program produces an incorrect result for

months 3 through 12 in a leap year. We’'ll see how to correct
that in a later chapter.

ANOTHER EXAMPLE: RECORDING VALUES
IN ORDER

Let's look at another simple program that uses arrays. This
one asks the user for a set of ten values, then displays the
values in ascending order.

18 FEM Efl-i‘-jlii. o 18 waluss & Print them
LFT oFcer,

=B FEM VWalues are stored i

Cooascending ordsr of  wolue,

ok EEM M=sach woluse readd MHH=mUmbe s
of bhis walus (8903

G REEM Eﬂ s oar arrad to hold valuss
FFY e s

o EEM O HF = o Poirter used o st
O Pl v lue T B

=R DI RRoss

12 FHRH=E

128 FEM

148 EEM LooP for soch mumbsr.

ot THPUT "Give a walus: “IH

1ei MF=kMMH-1

178 FEEM Irsert M after highest HE
LihEre HeREACHFY . orF ot MHPs@

L= IF MF<8 COTO 26

198 IF REACMPY M GOTO 26

SHE ERCHF+H ] i=RE 0P s PP s COTO 155

S1E ERCHFP+1 =M =R+ TF HH 1@
LUTO 156

b RER

F
-

FEM Frint the wvoluss,
MH=E:FEINT "The woluss ars:
FEIMT RO s

FH=MH+1 2 IF MHH<S18 GOTO 255
FREIHT

Ve |

AR IR Y
= ST I e

F
eie

Lines 10 through 50 are remarks that describe the program
and the variables in it.

Line 60 creates the array.

Lines 120 through 210 read ten values and store them in the
array. Each loop reads one value and inserts it in the array

www.pocketmuseum.com 11-4

order. The procedure for inserting a value in the array is
described in the next few paragraphs.

NN is the number of the value being inserted: O for the first
value, 1 for the second value . . .9 for the tenth and last. We
assign NP the value NN-1; thus it points to the subscript of the
last element in RA that already contains a value.

Now we examine each value in the array, from element NP
down to element O, to see if it is less than N.

If the element is not less than N, N goes somewhere before
this element; we copy the value of this element up to the next
element and subtract 1 from NP in line 200, then loop back to
examine the preceding element.

If the element is less than N, N goes in the element
immediately after this one; we assign the value of N to that
element. (That element is “free”, since we moved its value up
one element in the preceding loop. If this is the first loop, that
element is free because it hasn’'t been used yet.)

If N is less than every element stored in the array so far, we
continue looping until NP =-1; but a special test in line 180
takes care of that case by going to line 210, which stores the
value of N in RA(0). (This test also takes care of the “insertion”
of the first number we read, when RA is empty and NN=0.)

Once we have collected ten numbers in order, line 210 allows
control to drop down to line 240. The loop in lines 240 through
260 displays the result in this format:

The waluss arsd =, =5, 1. <. =9, 13,

The empty PRINT statement on line 270 ends the line of
output that the loop built up. (Since the PRINT statements in
lines 240 and 250 end with ‘;'s, the line of output would never
be ended otherwise.)

MULTI-DIMENSIONAL ARRAYS

SnapBASIC lets you create arrays that have more than one

dimension, that is, more than one subscript. For example, you
can create a two-dimensional array like this:

DIM E2od.50

You can think of this array as a checkerboard, with each
square representing an element.

We say that R2 has 5 rows, with subscripts from 0 to 4, and 6
columns, with subscripts from 0 to 5. When we display such

11-5

1B}

Not for sale



www.pocketmuseum.com

an array, or draw a diagram of it, we customarily represent it
like this:

R2(4,5): a two-dimensional array

COLUMNS
0 1 2 3 4 5

0 RA(0,0) RA(0,1) RA(0,2) RA(0,3) RA(0,4) RA(0,5)
1 RA(1,0) RA(1,1) RA(1,2) RA(1,3) RA(1,4) RA(1,5)
RA(2,0) RA(2,1) RA(2,2) RA(2,3) RA(2,4) RA(2,5)

NSOD

2
3 RA(3,0) RA(3,1) RA(3,2) RA(3,3) RA(3,4) RA(3,5)
4 RA(4,0) RA(4,1) RA(4,2) RA(4,3) RA(4,4) RA(4,5)

Two-dimensional arrays are useful for many kinds of
programs where it is natural to represent data as a
two-dimensional grid of values. For example, if you were
writing a chess playing program, you might well use a
two-dimensional array to represent the chess board, and store
a value in each element to indicate what piece, if any, was
sitting on the square that element represented.

You can define arrays with more than two dimensions, as well.
Such arrays could use large amounts of memory when they
are run, though. They could easily exceed the memory
capacity of the HHC. For example, if you defined a
five-dimensional array with ten elements per dimension, the
array would contain 100,000 elements, and this is
considerably more than the HHC can manage, even with the
largest-capacity Programmable Memory Peripheral. The HHC
has a limit of 13 dimensions for arrays; any more dimensions
than this will cause a CX (complexity) error.

11-6

CHAPTER 12: SOME EXAMPLES

WHERE DO THE EXAMPLES COME FROM?

Looking at the programs in the preceding chapters, you may
have gotten the feeling that they were created by magic. “How
could | ever have done that?” you may have wondered.

You can develop programs like the ones you have seen, and
more. You don’t have to be a computer genius to do it. All you
need is patience and practice. An intelligent, systematic plan
of attack will make your work go much easier.

To give you a feel for how a program is developed, we’re going
to show the steps involved in writing the two example
programs that we looked at in the chapter on arrays. In the
process, we'll extract some general principles that will make
any kind of SnapBASIC program easier for you to write.

THE DAY-OF-YEAR CALCULATOR

Before we try to write this program, we’'ll develop a general
plan for it. It will be much easier to reach our goal once we
know clearly what the goal is!

Here’s our first try at a plan:

A. Prompt the user for the values of month-of-year and day-of-
month. Store them in variables named MN and DM.

B. Convert the date (MN and DM) to a day of year. Store that
In a variable named DR.

C. Print DR.

This may not look very impressive, but it is a start. We've
reduced the size of the problem; the only part that needs
further attention is step B. We've also identified some
variables we will need, and given them names. As we work on
the program we can refer back to this plan to help keep us on
the right track; we won't have to distract ourselves trying to

remember \f_vhether or how we defined a certain variable, what
we named it, and so on.

Now let’s refine step B further.

B. 'Convert. the date (MN and DM) to a day of year. Store that
In a variable named DR

1. Convert MN to day-of-year for the first day of that month.
(Call the result M1.)

2. DR = M1-1+DM.

The only p:‘ilﬂ of the plan that needs further refinement IS step
B(1). Here's where the array comes in.

12-1

Not for sale



There are several ways we could use an array in this step.
We're going to choose one of them arbitrarily. (You may want
to think of another one, and write a program for it, as an
exercise.)

B(1). Convert MN to day-of-year for the first day of that month.
(Call the result M1.)

We'll define an array with at least 12 elements, each
containing the day-of-year for the first day of a month.
Element O represents January, element 1 represents
February, and so forth. We'll call this array MA. (Note that
DIM MA(12) actually reserves 13 places. Don’t worry about
it.)

a. Use MN as a subscript into the array, to assign to M1 the
day-of-month for the first day of MN. In other words,
M1 =MA(MN).

Now, if we assemble all these pieces into a single outline, our

plan is complete:

A. Prompt the user for the numbers: month of year, day of
month, and year. Store them in variables named MN and
DM.

B. Convert the date (MN and DM) to a day of year. Store that
In a variable named DR.

1. Convert MN to day-of-year for the first day of that month.
(Call the result M1.)

We'll define an array with 12 elements, each containing the
day-of-year for the first day of a month. Element O

represents January, element 1 represents February, and
so forth. We’'ll call this array MA.

a. Use MN as a subscript into the array, to assign to M1 the
day-of-month for the first day of MN. In other words,

M1 =MA(MN-1).
2. DR = M1-1+DM.
C. Print DR.

Having done all this groundwork, we have a very detailed plan
of the program we’re going to write. By developing the
program’s logic first, and then writing the program itself, we
can devote our attention to each aspect of the program
without being distracted by the other. This allows us to
develop the program with less likelihood of making an error,
and usually with less overall effort.

When we first write the program from the outline above, we
might come up with something like this:

118 EEM Comvert o dote to dod—of —4Hear.
12 EEM Ims mont b ood.

12 FREM Dt s odod of Hdsar.

14 FEM Wors: FMH=month of Ysar.

M=oY of mont h.

www.pocketmuseum.com 12-2

158 REM DE=dod of Hedr. the result.
1eA FPEM Ml=dod—of —deor +for 131 dod
ot M.
178 FEM | |
1260 FPEM ME= arrad of dads in dear
busf ore each mont b
198 DIM Meclss - S
SEE A =1ERL L =0 H@f?'m'u:H@53}:31
@ Mgacd =121 MAachi=108 MRdn =188
[ 7 =21 i
SoE MgcEr=Edd i Macd =2y A i MeC LB =R
Mgc 11 =500 |
==l FEM Fr-:m]:’r d=er for monthe ddod,
4@ THFUT "Momt b cdods 7 P T
=53 REM Colec M. then DE.
el M1=MEorH-—-1 0
27E DRE=M1-1+1M
e FRIMT "Dod of Year="a [

Looking over this program, we notice some things about it that
could be improved.

1. In line 270, we could avoid subtracting 1 from M1 by
reducing the value of each element in MA by 1. Then each
element MN-1 of MA would contain “number of days before
the first day of month MN” instead of “day-of-year for the
first day in MN". This would shorten our program slightly.

2. We could combine the calculations of M1 and DR into a
single step. In fact, we could combine them both with the
PRINT statement and eliminate the need to have these
variables at all.

3. We could make the program more useful by looping back
from the end to statement 240, giving the user the option of
doing two or more calculations.

These are things we might not have foreseen before writing
the program. Now, having seen them, we might decide to
revise the program in the light of what we have seen—or we
might decide to leave well enough alone. After all, the
program works. “If it ain’t broke, don't fix it!”

In this case, we decide to revise the program to incorporate
changes #1_ and #3. We forgo change #2; it would make the
program a little shorter, but would also make it harder to read.

The separate steps clarify what is happening when we
calculate the day-of-year.

We end up with the version you saw In the chapter on arrays
(changes from the first version are in boldface):

118 EEM Convert a dote to dod—of —Year.

129 EEM Im: moRt b dod. A Zero month
- means "end run.
128 EEM Out: dad of Yo e

12-3

Not for sale



.
Pt

FEM YVorzd M=month of  Year. DF=cdod
ot ot b

=6 FREM DE=clad of HYear. the resiglt,
= REM Ml=dadzs Preceding 1=t dod
ot MH.
P B 1]

[ e e e feeerte
R
RN

O EEM M= areod of cdods jp Hear
ozt e oo b mort b
1 I R o T T
HE MACEAI=AIMACL =21 MRC 22 =59:
MAC2 =91
2168 MAC4 =128 MACS =151t MACE =181
MAC A =212
2ol MACS =242t MACF =272t MAC 1B =204 .
MAC11 =224
S FEM FromPt d=er For o mont b oo,
St THFUT Mot b odods 7 s ML T
2o IF MH=1 THEH EHI
Sk RHEM Colo M1 then LR,
e M=o ik-—-1 2
okt D=L+ L
ZHE FREIMT "HDod of Hdeaps Lif
-HE GOTO 248

THE VALUE-ORDERING PROGRAM

We'll develop the value-ordering program the same way we
developed the day-of-year program: by writing down an
overall plan for program development, and progressively
refining the plan until we have an outline so detailed that
writing the program is easy.

Here's a first try at a plan for this program:

A. Get 10 values in order.

1. Get a value.

2. Store it in order.

3. Repeat until 10 values are stored.
B. Print the values.

We're going to need an array with at least 10 elements to store
the values. Let’s call that array RA.

We'll also need a variable to read a value and hold it until we
decide where in the array to store it. We’'ll call that variable N.

Finally, we’ll need a variable to use as a counter to tell us
when we've read 10 values. We’'ll call it NN.

Our next version of the plan will incorporate these variable
names, and will add some further refinement to step A(2):

A. Get 10 values in order.
1. Get a value in N.

www.pocketmuseum.com 12-4

2. Store N in order in RA.

When we insert N as the NN'th value, RA already holds
NN-1 values, in order, in RA(0) through RA(NN-2).

We look for the element where we should insert N, working
down from RA(NN-2) to RA(0O). Let’s call that element NP
When we find NP, we move the values in RA(NP) through
RA(NN-1) up to RA(NP + 1) through RA(NN), then store N
into RA(NP).

3. Repeat until 10 values have been inserted.

a. NN=NN + 1 (initially it is 0).

b. If NN<<10, repeat from step 1.

B. Print the values in RA.

Now we have to refine the English description in step A(2) into
a more program-like description that can easily be converted
into a program.

As we contemplate the problem, it occurs to us that looking for
the insertion point NP and moving the following values up are
both element-by-element processes that proceed from
RA(NN) downward. We might as well save ourselves a loop
by doing both at once.

The next stage in refining step A(2) is this:

A(2). Store N in order in RA.

a. NP =NN-1, subscript of the last element of RA used so far.

b. Is RA(NP)<N? If so, N goes in RA(NP + 1). Will it destroy
another value already stored there? No; for RA(NP) is the
last element of RA that has been used so far.

c. If RA(NP)<N is not true, N will be inserted in the array
somewhere before the value now in RA(NP). Copy the
value in RA(NP) up to RA(NP + 1); subtract 1 from NP and
repeat step b. (This won’t destroy another value already at
RA(NP + 1), for the same reason as in step b.)

Note: on a second or later loop, will moving a value into
RA(NP +1) destroy the value already there? No; for

RA(NP +1) was copied to RA(NP +2) the previous time
through the loop.

By working through a couple of examples with real values, we
can confirm that this procedure does what we want. Before we
go on, though, we must consider whether the procedure will
break down when it encounters its boundary conditions.

A boundary condition is a condition that is exceptional in
some way when compared to all the conditions the program
could possibly be in. For example, if a program were written to
calculate the sum of all the integers from 1 to n, its boundary
conditions would be n=1 (for which the answer should be 1)
and n<1 (for which the answer should be something meaning
‘that doesn't make sense”). Boundary conditions very often
cause otherwise problem-free programs to act incorrectly.

12-5

Not for sale



We can think of four boundary conditions for this program:

1. Inserting the first value in the array: NN will be 0, so NP will
be -1. Right off we'll be comparing N to RA(-1), a non-
existent element. This will cause an error, and we'd better
allow for it.

2. Inserting the last value in the array: NN will be 9, so NP will
be 8. We'll be moving some number of values up from
RA(8) to RA(9), RA(7) to RA(8), .... This should work fine.

3. Inserting a value higher than any yet in the array: we’'ll
simply find that RA(NP)<N on the first loop, so we'll store N
iInto RA(NN). This creates no problem.

4. Inserting a value lower than any yet in the array: the loop
will continue until NP is reduced to 0O, then to -1, and we’ll

encounter a problem similar to that in boundary condition
#1.

We can take care of condition #4 by inserting a new step
between A(2)(a) and A(2)(b):

A(2). Store N in order in RA.

a. NP =NN-1, subscript of the last element of RA used so far.

b. If NP=-1, N is lower than any value yet in RA; store N in
RA(0). (RA(0). . .RA(NP) have already been moved out of
the way.)

c. Is RA(NP)<N? If so, N goes in RA(NP + 1). Will it destroy
another value already stored there? No; for RA(NP) is the
last element of RA that has been used so far.

d. If RA(NP)<N is not true, N will be inserted in the array
somewhere before the value now in RA(NP). Copy the
value in RA(NP) up to RA(NP + 1); subtract 1 from NP and
repeat from step b. (This won’'t destroy another value
already at RA(NP + 1), for the same reason as in step b.)

Note: on a second or later loop, will moving a value into
RA(NP +1) destroy the value already there? No; for
RA(NP +1) was copied to RA(NP +2) on the preceding
loop!

What about condition #17? Our first impulse might be to add a

step before step A to get the first value and store it in RA(O).

Then step A would get only the second through tenth values,

and this boundary condition would never come up.

Before we do anything drastic, however, let's take a second
look at condition #4. Condition #1 looks suspiciously like a
special case of condition #4—could it be that the check we
added for condition #4 will also take care of condition #1, or
could easily be made to do so? We work through the plan for
condition #4, and discover that our check will, indeed, handle
condition #1 without change.

Here’'s a complete outline for our value-ordering program:
A. Get 10 values in order.

www.pocketmuseum.com 12-6

RA is an array which accumulates the 10 values, in order.

N holds a value between the time it is input and the time it is

inserted in RA.
NN counts the values as we insert them. RA(NN-1) is the
last element to contain a value so far.

NP is a pointer used to find the place in RA where N will be
inserted: it decreases from NN-1 toward 0 on each loop.

1. Get a value in N.
2. Store N in order in RA.

When we insert N as the NN'th value, RA already holds
NN-1 values, in order, in RA(0) through RA(NN-2).

We look for the point to insert N, working down from
RA(NN-2) to RA(0). Let’s call the subscript of that point NP.
When we find NP we move the values in RA(NP) through
RA(NN-1) up to RA(NP + 1) through RA(NN), then store N
into RA(NP).

a. NP =NN-1, subscript of the last element of RA used so far.

b. If NP=-1, N is lower than any value yet in RA; store N in
RA(0). (RA(0). . .RA(NP) have already been moved out of
the way.) Note, this test also takes care of the case where
NN =0.

c. Is RA(NP)<N? If so, N goes in RA(NP + 1). Will it destroy
another value already stored there? No; for RA(NP) is the
last element of RA that has been used so far.

d. If RA(NP)<N is not true, N will be inserted in the array
somewhere before the value now in RA(NP). Copy the
value in RA(NP) up to RA(NP + 1); subtract 1 from NP and
repeat from step b. (This won't destroy another value
already at RA(NP + 1), for the same reason as in step b.)

Note: on a second or later loop, will moving a value into
RA(NP +1) destroy the value already there? No,; for
RA(NP + 1) was copied to RA(NP +2) on the preceding
loop!

3. Repeat until 10 values have been inserted.

a. NN=NN+1 (initially it is 0)

b. If NN<10, repeat from step 1.

B. Print the values in RA.

Now we're ready to write the program you saw in the chapter
on arrays:

18 FEEM Feoad 10 wvoluss & Priot 1 hem
i order.,
= FEM Values are stored in oscencding
T e 8wl b B I R T
S BEM M=sooh wolus
af this waolus E-90 5
Sl BEM O ES s am orrod
P e

L]
L1
Lo L]

Bt
3

12-7

Not for sale



okt BEEMOMF 2 o0 Poimter uzed to insert
a0 Fesng o buae 1 B

R ODNIM EEd 16

126 Fe=

L2E FEM

P BEEM ool For soch mumbesre,

Pl THFUT "Giwe o walus” i

ekl PHE=ME-1

Lie BEM Inzert M after hivhest HF
e MERESOMFY D o ot BHPF=E,

1= IR MR8 THEM GOTO 216

P=E IR REAckF M GOTO 2168

15 B TS T 0 S ] i D L O ] ST U I T i

Sl R ORFAT b HREeRA L TF O HRHO LS
LT 156

ek REM

akl BHEM O Frint the wolues,

S MM=EIFREIRT "The wolusms aped s

okt FREIMNT BEACRMD

bt PRl TR OFMSLE COTO 255

Sk FREIMT

SOME NOTES ON DEBUGGING

When you first test a program, don’t be astonished if it doesn't
work. Most new programs contain at least a few bugs. Plan to

spend some time debugging each program you write before
you can use it.

A thorough treatment of debugging is beyond the scope of
this book. Experience will be your best teacher. We're just
going to give you a few tips to get you started.

Avoiding Bugs

The best way to debug a program is to write a bug-free
program in the first place. For most of us this is an
unattainable goal, but we can program more efficiently if we
work in a way that minimizes the number of bugs we produce.

The most important key to writing bug-free code is to design

your program before you start to write it. This can’t be
emphasized too much!

It you were building a house, you wouldn't lay the foundation
before deciding where to put the rooms: yet many
programmers do the equivalent by writing code before
developing a detailed plan for a program. For all but the tiniest
programs, you need a plan to avoid a tremendous waste of

effort, or even a complete failure. Don't try to work without
one!

www.pocketmuseum.com 12-8

Avoid writing unnecessary or unwarranted assumptions into
your code. For example, if you need a loop that will end when
A> =B, don't write “IF A=B..."” just because A ought to equal
B when you want the loop to stop. Protect yourself from a
runaway loop by assuming that something will throw A off a
bit. If the program’s logic permits it, write “IF A>=B" even
though you don’t think it's really necessary.

When you have a choice between two ways of writing a
program, favor the simpler one. Simple designs are less likely
to contain bugs in the first place, and when they do, they are

easier to fix.

Keep your program’s design and code “clean”. Often there are
ways to write a program with a little less code, or make it run in
a little less time, that take advantage of some quirk in the way
SnapBASIC works. Resist the temptation to write your
program that way unless it will gain you some benefit that is
really important. Such code is hard to debug, and once
debugged, it is hard to modify. It usually costs you more than it
IS worth.

Eliminating Bugs

When you are faced with a bug, what should you do? First,
don’t panic! Remember that bugs are logical errors, and can
be corrected by the use of logic. Your program is not the victim

of black magic; it is simply doing what you wrote it to do, rather
than what you wanted it to do.

Always debug with your thinking cap on. When your program
behaves in totally outrageous, incomprehensible ways,
iInquire what the cause of its behavior could be. Watch for all
evidence that might bear on that question; the most obvious
symptom may not be the most significant clue.

It helps to work like a scientist. Form a theory about what your
program is doing, then do an experiment that will prove or
disprove your theory. If your program’s behavior just doesn't
make sense, don't guess in the dark; ask yourself what

Information you need then do an experiment that will get it for
yOu.

Above all, don’'t make rash assumptions about what is wrong
with your program. Suspect every statement of harboring a

bug. There’s nothing more frustrating than looking for a bug in
one place when it's really someplace else.

12-9 Not for sale



Execution Tracing Aids

If your program goes into an endless loop, remember that the
BREAK key will stop it. Note what statement your program
stops in; that is one clue to what went wrong.

Inspecting the values of your program’s variables will also
help you figure out what the program was doing when it went
astray.

To help you find where and why a program may have gone
wrong, SnapBASIC has two debugging facilities : the
HISTORY and the Trace facilities.

SnapBASIC's trace facility is a valuable debugging tool. The
trace facility consists of two statements, TRON (“trace on”)
and TROFF (“trace off”).

The TRON statement looks like this:
TR

It makes SnapBASIC start displaying a trace of
deferred-mode execution. The trace shows the line number of
each line of your program when that line is executed,
interspersed with the normal program output. For example, a
portion of a trace showing the execution of lines 60, 70, and
80 would look like this:

#Fo #70 #5250
The TROFF statement looks like this:
THELFF

It makes SnapBASIC stop displaying the trace of started by
TRON.

TRON and TROFF may be used in immediate or deferred
mode. Once used, TRON is effective until the next TROFF or
BYE.

As an example, you might wish to know when a certain branch
IS being executed in your program. So you could do this:

1T TROHN
11 IF A < B THEM Z86
128 TEOFF

When SnapBASIC reaches line 100, tracing will be enabled.
You would know if the branch was taken by the following
display:

#1119 #Z08 L ..
but the display would be different if the branch was not taken:
#1108 #1206

www.pocketmuseum.com 12-10

at which point tracing would be disabled again.

SnapBASIC’s History facility is also a valuable debugging
tool. The trace facility consists of two statements, HISTORY
ON and HISTORY OFF.

The HISTORY ON Statement looks like this:
HISTORY OH

When HISTORY ON is in effect, any error will turn on
SnapBASIC's history reporting facility. When the error occurs,
first SnapBASIC will print out the usual error message. It will
then print out some more numbers, possibly. Try the following

program:

HISTOREY CH
FOR I=1 T 1
FOR J=1 TO 1
FREIMT I
MEST oI

ME=T 1

Of course, there will be an IQ error at line 40, since we are
dividing by 0. But with the history on, the display will show

s L EREREDE in |ine #408 #36 #20

The two other line numbers are the pending FOR/NEXT

loops. Similarly, if there are any pending GOSUBS, the line
number that the GOSUB was called from will be displayed.

The HISTORY OFF statement looks like this:
HISTOREY COFFS

It disables the error-time display enabled by HISTORY ON.

(Note that the OFF is optional; HISTORY by itself will turn the
history OFF)

HISTORY ON and HISTORY OFF may be used in immediate

or deferred mode. Once used, HISTORY ON is effective until
the next BYE or HISTORY OFF

The PRINT statement is a useful debugging aid. By inserting
PRINTSs in your program at appropriate points, you can display
a trace that tells you what parts of your program are executing
and how the values of important variables are changing.

If you have trouble keeping track of what your program is
doing as you debug it, consider Investing in a printer. A printer
wom_:ld enable you to create a pPermanent record of any number
of lines of program Output, and so get a better view of what

your program is doing. (We will discuss the use of peri
such as printers in a later Chapter.) ® 0l perpherals

I O o Pt
N R R e

?
R R g

12-11

1B}

Not for sale



1B}

The CONT Command

You can restart a program after halting it with the BREAK key
by entering the CONT (for “continue”) command. CONT
restarts a program at the next statement after the one where
execution stopped, just as though it had never stopped at all.
Unlike RUN, CONT does not reset the values of variables.

You can use CONT after modifying the values of program
variables, but you cannot use CONT after modifying
statements in your program, nor after a fatal error has
occurred.

You can use CONT after your program executes a STOP
statement, as well as after you press BREAK (STOP is like
END, except that it prints the line number of the statement
your program STOPs in.) STOP is a useful debugging aid,
since you can insert a STOP in your program, and then
examine the contents of your variables in immediate mode,
and the CONT if you want to (after possibly changing some of
the variables’ values.)

Finding All the Bugs

When you are debugging a program, remember to test
whatever boundary conditions you can think of. These are the
conditions that most frequently make a program fail,
particularly after you think it's fully debugged.

Test your programs thoroughly. Don’'t assume a program is
“‘working” as soon as you've made it run once. If you give it a
different set of input it will probably fail again, and you’ll have a
chance to eliminate another bug. Expect your program’s
behavior to improve gradually, until it reaches an apparently
bug free state.

Test your programs systematically. Make a list of every
condition that might conceivably reveal a bug, and test each
one. When you fix a bug, retest any condition that Is
processed by code that the fix might have disturbed.

Don't test a large program all at once. Use the “divide and
conquer” approach to debugging; divide your program into
logically separate units, and debug each unit. For example, if
one part of your program reads input and checks it for validity,
test that part of your program to make sure it works before
trying to test other parts that depend on it.

In this sort of testing, it is useful to use the RUN command like
this:

FLI SR

www.pocketmuseum.com 12-12

where the number after RUN is a line number where you want
execution to begin. (RUN with no line number starts execution
at the first statement in your program.)

Note that RUN clears variables. If you don’t want to reset your
variables, you can type

SOTO e

in immediate mode, and execution will continue.

CONCLUSION

Do you still feel overwhelmed by these programs? You
needn’'t be. Start by writing simple programs that you can
grasp easily. As you gain experience with SnapBASIC, and as
you think of more sophisticated programs that you would like
to write, you willl be able to tackle more and more ambitious
projects.

Don’t be upset if you don’t understand the reasons for some of
the choices we made while designing the programs in the
examples above. There often are many ways a piece of code
can be written. You can develop a sense of judgment about
which way is best by trial and error, and by studying programs
written by more experienced programmers.

Don’t worry about finding the best way to write a given
program. Be content to find a good way, and go forward with
the work of designing and writing a program that works well.
After you have used a program for a while, you will start to
think of all sorts of better ways to make it work. Things that
seem obscure one day will seem obvious the next—and they'll

send you off on a new round of improvements. That’s part of
the excitement of programming.

12-13

Not for sale



www.pocketmuseum.com

CHAPTER 13: THE FOR/NEXT
STATEMENT

Here is a kind of loop that appears quite often in SnapBASIC
programs:

168 1=

ioh I=I+1 ]
19E IF 1416 GOTO 116

SnapBASIC has a pair of statements, the FOR and NEXT

statements, that make this kind of loop easier to write. Using
FOR and NEXT, we could write the loop in the example above

like this:
1A FOR I=@ T

126 HEXT I

SnapBASIC assigns | the value 0, and executes the
statements between FOR and NEXT. Then it assigns | the
value 1, and executes the statements between FOR and
NEXT again. then it assigns | the value 2, and so forth.

SnapBASIC executes the statements between FOR and
NEXT for the last time after assigning | the value 9. Then it
moves on to the statement after NEXT.

This sort of loop is called, logically enough, a FOR/NEXT
loop.

A FOR/NEXT loop has several advantages over an equivalent
loop written with IF's and GOTO's:

1. It is shorter and easier to write.
2. There is less chance that you will make an error writing |t.

3. It makes the beginning and end of the loop more visible
when you read the program.

SOME TERMINOLOGY AND RULES

In a FOR/NEXT loop like this,
FUE I=a TO 16

HEXT 1

HI'II -

s called the index. It may be any numeric variable.

"0, the first value assigned to the index, is called the initial
value. It may be a constant, variable, or expression.

13-1

1B}

Not for sale



“10”, the value where looping stops, is called the limit. It also
may be a constant, variable, or expression.

Every FOR/NEXT loop should be ended by one and only one
NEXT.

To finish executing a loop before you reach the NEXT
statement, GOTO the NEXT statement—not back to the FOR.

You may safely use the value of a loop’s index after you leave
the loop.’

You may terminate a FOR/NEXT loop before it has finished its
last time through the loop, simply by doing a GOTO to some
statement that is outside the loop. But never try to start a
FOR/NEXT loop by doing a GOTO from outside the loop to
inside the loop! If you try this, you will get the message

Mo BEREELDE im0 D ined. .
meaning, “NEXT without FOR”.

Don't try to assign a value to the index of a loop while inside
the loop.?

A FOR/NEXT loop always loops at least once, even if the
iIndex is past the limit the first time through the loop. Therefore,
don't use FOR/NEXT where you might want a loop to be
executed zero times unless you include a test for the
zero-times case before the FOR/NEXT. You can write such a
loop with IFs and GOTOs instead.

AN EXAMPLE

Our program for listing values in ascending order is a good
example of how useful FOR/NEXT loops can be. There are
two places in the program where they can be used:

TR BEM Foeoo 18 o loes 5 Frimh
s g S P ——
PP e .
S REM Vo bues orps
USSR Y Do

4
EM H=soaoh wolus

.,
SRR

=

=1
e I
IO LY Rl

e oo b e - :
L= Wil
M RN 1=

wiEx =1ak

' - The value of the index will be the value it had the last time through the
loop, plus the step that is added to the index each time through.

% - This works in SnapBASIC but not in some other versions of Basic. Itis
bad practice because it invalidates the information that you get about the
index by looking at the FOR statement. Also, note that the above
procedure will not change the number of times the loop is executed.

13-2

www.pocketmuseum.com

M HF i= o Pointer used Lo inEsert

Y]
“ ! 1l
e {1

Tl [T
-_'.I
i
—

= REM |

FEM LooP For edulh Pdmber.

FOR HH=8 TO <

IHFUT "“Give o walues: "sH
HFP=HH-1 |

REM Insert H atter highest HF
where HrRACHFPY, or at HF=H,
IF HF<@ GOTO 211

IF RACHFP><H GOTO 216

RACHP+1 )=RACHF 2t NF=HF-1:G0T0O 1326
FACHF+1 2=H

HE#T HH

FE T

FEM Frimt the woluss.

FRTHT "The woluss ars: s

FOR HH=8 TO 2

268 PRIMNT RACHH s &

265 MEXT HH

STE OFRIMT

I—""I'-"'I_T'l
ot L b1

-P
e

RO O

L] F
-

LGl @000 OO A

PO PP PRI e s
X3

N
=)

ABOUT THE INITIAL VALUE AND THE LIMIT

You can start a FOR/NEXT loop at any initial value you wish,
and end it at any limit you wish. For example, the FOR
statement

FOR TEs-12 TOO17

loops 30 times, assigning J3 the values -12, -11, -10, ... 15,

16, 17.

THE STEP WORD

You can make a FOR/NEXT loop increment the index by any
value you wish.

In the FOR statements we have looked at so far, the index is
always incremented by 1: fromOto1to2 ... or from-17to-16

to -15 ... To increment the index by a different value, use the

STEP word like this:
FOR O=1 TO 9 STER =

Lllll

This FOR.stgtement Increments the index by 2. It loops 5
times, assigning Q the values 1, 3, 5, 7, and 9.

The value after the word STEP is called the step or the
increment. It may be a constant, variable, or expression.

13-3

Not for sale



A FOR/NEXT loop’s step may be negative. That gives you the
ability to count backwards:

FOF =42 T 1 STEF —Z

This FOR statement loops 5 times, assigning Q the values 9,
7,5, 3, and 1.

The initial value, the limit, and the step need not be whole
numbers. For example:

FORE @F=.1 TO 2.1 =TEF .5

This FOR statement loops 5 times, assigning AF the values
1, .6, 1.1, 1.6, and 2.1.

The index need never take on a value exactly equal to the
limit. A FOR/NEXT loop stops looping when the index goes
past the limit. For example:

FOR I=1 TO 18 STER 2

This FOR statement loops for I=1, 3, 5, 7, and 9. The next
value, |=11, would be past the limit; therefore FOR stops
looping after |=9.

Similarly,
FOR I=18 TO 1 STER -5

This FOR statement loops for |=10, 8, 6, 4, and 2. The next

value, | =0, would be past the limit, so FOR stops looping after
|=2.

If you “mix” forward and backward instructions in a
FOR/NEXT loop, like this,

FioRE I=1 ToO 16 STeEF —1
or like this,
FiOR I=1d T0F 1

SnapBASIC will execute the loop once, and then terminate it.
This is because the increment is past the limit before the loop

even starts, and in such a case SnapBASIC executes the loop
one time.

NESTED FOR/NEXT LOOPS

One FOR/NEXT loop can be nested inside another. A nested
loop looks like this:

www.pocketmuseum.com 13-4

IF I=2-J THEH =YC1.Ji=1

1 HEAT J

4 HEAT 1

In this example, the outer loop in lines 100 through 1350 Is
executed 10 times, for1=0, 1, 2, ... 9. Each time the outer loop
is executed, the inner loop in lines 110 through 140 is
executed 10 times, for J=0, 1, 2, ... 9. Thus the statements

inside the inner loop, lines 120 and 130, are executed 100
times, for all possible combinations of I=0to9and J=010 9.

When you nest FOR/NEXT loops, one loop must always be
contained completely within the other. That is, the following

loop is valid,

1St I;_-T-_I

4
=

froete foeecke fueche
-F-

2oE OIF =Y Old. el
TEE FOR I=a T 1
1@ FOR J=8 TU &
et & AT A N I 5
S2E HEST J
SdE HEST |

but the following loop is invalid,
=9 DIM =4Ol e
ZEE FOR I=8 T 18
218 FOR J=0 TO &
S 5 B A Y I
SoE MEST I
=48 HEST Jd

because the inner loop is not contained completely within the
outer loop.

If you tried to run this piece of code, SnapBASIC would
execute the two nested loops properly, since “NEXT I” ends
both the “FOR I” loop and the “FOR J” loop. (However, the
value of J would stay J=0). Then SnapBASIC would try to
execute line 340, and would display the message

Mo EREEORE im0 §ine #3246

because the NEXT statement in line 340 does not match any

FOR/NEXT loop currently being executed. (‘NX’ stands for
“NEXT without FOR.”)

THE VALUE ORDERING PROGRAM,
REVISITED

Now that we know we can nest loops, and have
backward-rur_mmg loops, we can change another IF/THEN ...
GOTO loop in the value ordering program to a FOR/NEXT
loop. Study the result to see how all the loops work. Once you

13-5

Not for sale



1B}

understand FOR/NEXT loops, is this version of the program
clearer than the one we saw in the chapter on arrays?

at LU
R
T
L1 b
S
et
Tl
R
i1

L] l L]

1L

FEM Feod 18 woluss
L o,

FEM Voluez are stored 10

gascerpd i hy order bdowa e,

FEM H=each wolue reads MHH=mumber
ot this s o

2 FPrint tohem

S

A FEM FHA o122 an o r i oto hobdd wa e

h‘ﬂ -
AERRE RN
il
-
i
Rl S B
—t I 1
=
I—I..

Cot e e 1 et el

b Ea 8 ol b
AR
ﬁﬁ_._._
o] e o

SOME DETAILS

The variable name following the NEXT may be omitted. If
there is no variable name, then the NEXT applies to the most
recent FOR. But be careful. Look at the following example:

iE FOR I=1 TO 1

SE FOR J=1 T 1

TFE J=5 G0OTO 5E
HE&T

FEIMT J

HET

This will work just fine, until the branch in line 30 is taken. At
this point, the most recent FOR is in line 20, so the NEXT in
line 60 is actually NEXT J, not NEXT | as seems logical.

Another oddity is the relationship between FOR/NEXT loops
and GOSUBS (which are introduced in Chapter 17). NEXT
and RETURN are processed about the same way. If
SnapBASIC is working on a GOSUB and sees a NEXT, it has
the smarts to execute a RETURN and treat it as if it were a

wd Bt Lt B

F
——

T 0

e
seets

4
LF1 e s

okl BEEMOMF 12 a0 Pointer dzed Lo
P et a0 reEn o wo e 1 B

= TIH BEciis

1=6 REM

14 FHEM LooP for each rumber,

145 FUORE M= T %

1o THFUT "imrws o oo e 5 [

122 EEM Hondle =Pecial coze of HH=H.

154 IF HH=8 GOTO 246

126 EEM For HH:B oFenn 4P 1hzert ion
Foint.

16 FOR HF=HH-1 TO B8 STEF -1

1969 IF RACHFP2<H GOTO 216

A8 FACHF+1 =FACHF>

202 HEAT HF

A4 REM SPeciol cose of |owest
voluye =o far.

2 RPARACAX=H:GOTO 212

B2 EEM FPut H at 1hzert ion FPoint.

=18 ERoHP41 =M

21 MEsT M

—=0 RBEM

SoE FHEM Frimt the wolidss,

Sl FEIMT "The woluss gred Vs

Sol FOR MHM=0 T o

sk FREIMNT BRI ©

s HEST MM

e FPRIMT

SPEEDING UP LOOPS

If you need to speed up a loop, you can in some cases use the
integer loop facility that is available in SnapBASIC. By using
integer variables and integer loop indices, it is possible to gain
speed because the integer arithmetic is much faster than the
general (i.e. floating point) numeric arithmetic. An example of
the earlier mentioned loop program is given here to show what
you can do to speed up a loop. However, integer values can
only be used when their range (0-32767) is sufficient for the
program you want to use. Example:

www.pocketmuseum.com 13-6

NEXT. It is singularly bad programming to write a program that
works this way; but if your program is acting strangely, this
could be the reason.

You may use FOR/NEXT in immediate mode, but only if you
type in one line containing the FOR and the NEXT (with
colons in between). For example, this line is quite valid in
immediate mode:

FURE I=1 To iogesPEINT IihEsT |

Yet another oddity is what happens when you BREAK from a

loop and then execute a CLEAR, followed by CONTINUE. Try
this:

18 FUORE I=1
S FREIMNT I
S HEST T

Enter this program, then RUN it. Press BREAK after 4

numbers have been printed. Now execute the CLEAR
command (which sets all variables to 0). Then execute the
CONT command. See what happens? The numbers O

through 5 are printed! Why? Well, the number of times the

T 1

- T
o d il sl

——
f_—

F

13-7

1B}

Not for sale



loop is going to execute is determined when the loop is
started, and cannot be altered. So even though you have

changed the value of | with the CLEAR, the loop is still going
to executed a total of 10 times. Thus, the result.

www.pocketmuseum.com

13-8

CHAPTER 14: MORE ABOUT /O

THE READ AND DATA STATEMENTS

| et's return to the date conversion program that we used In
the chapter on arrays:

11k FE” Lorpreert O Ao te 1o ' (I et W G s =L R

126 FEM In: mont b cdod. B oZero mort f
means erwd Fun.

R IRN

123@ FEM CQut: dod of Hear.
{46 FEM Yars: MH=month o HeEdr.
THM=ciod of mont b
150 REM DRE=dod ot Hear. fohe resuli.
ieE REM Ml=dods Precedind 1st oo
ot .
178 FEM |
12R REM MA= arrod of dods in dedr
LII--"I'III'I—-' B h i in'l' h
12@ DI MEeclss | S
SEE MACE =S HH'l'"_l Pl o 2 et d Ml 5=
=1 Maddr=1mRs MadSr=151 s Macelr=1211
MEe V=21 -
A M S =md e e =27 MR TE =g s
Mg 11 =304

P
i1l

FEM FI‘HH’I]:'I' dzer For mont b o
THFUT “"Mornt b closs s I

IF MH=B THEH EML

FEM ComPuts M1 fhen DE.

M1i=MEo k-1 3

DFE=M1+1M

FREIMT "Iod of dHSear="3LE

LOTO 2

The 12 statements in lines 200 through 220 initialize the
elements of the array, MA. Suppose we wrote a program that
needed to initialize an array with a hundred elements? This

would be a very inconvenient way to initialize such a large
array!

RE RO U N
[

o= O U e
Dt sy

wad L b B0

il
ERR]

Ll KR KR KRR i

r
]
F
N

In situations like this, SnapBASIC’'s READ and DATA
statements are useful. READ inputs data to a program, as
INPUT does. While INPUT gets data from the HHC's
keyboard, READ gets data from values that you put in DATA
statements, which are stored with the program itself.

Here is how our day-of-year program would look if we wrote it
with DATA statements: e

1 l _1 FEM O e rrt o odote to oo Hend - Hen
128 FEM Irm: mont ke P e e | I:! -E!::-;r“'i:!m T
mont h means "end run,

14-1
Not for sale



1560 BEM Dyt : dod of Henr.

1468 EEM Yors: MH=month of Y0,
H=cdo e of momt b

158 HEM DE=cao4d of HY=oar, the resgglt,

1k BEEM Ml=do4dzs Precedimy 1zt oo
of .

178 FEM

Pkt HEM MAa= arrad of olods im0 Hear
st e aach mont b,

I I O O T

20 FOR I=a T0O 11

218 FREAD MACT 2

2o HEST 1

Aok BEEM FromPt odzer for omont be clod,

S4B THFUT "Mont b casds *5HHEL D

okt IR M= THER BRI

Stk BREM Comfoate ML 6 hen DR,

Pl S B = T T O B

ok D= T

S FREIMT "Hod o ofF  dHeaps=Ti TR

Sk LOTO 2

218 DATA B.21.59.,94, 128,151,121,
212,242

Sl IATA 2732, 284, 23354

Now lines 200 through 220 contain a FOR/NEXT loop that
executes ‘READ MA(Il)’ 12 times, for I1=0, 1, 2, ... 11. Each
time READ is executed, it reads one value from a DATA
statement. Thus MA(O) is assigned the value 0, MA(1) is
assigned the value 31, and so forth. When READ runs out of
values in the first data statement, it starts on the second one.

READ and DATA have two advantages over assignment for
initializing variables and arrays:

® For initializing arrays, they document easier and are more
compact.

® They collect all the data in one place, making the data easy
to modify if necessary.

Some Rules For Using READ and DATA

You can use any number of READ statements in your
program. Each READ statement reads data each time it is
executed, just as an INPUT statement would.

A READ statement may read data into any number of

variables and/or array elements. For example, this statement
reads data into three variables:

FEAll I.00E

A DATA statement may be used anywhere in your program. If
It appears in the middle of the program, flow of control simply

www.pocketmuseum.com 14-2

goes around it. (But for your own convenience, it is sensible to
put all the DATA statements in one place, at the beginning of

the program or the end.)

The data items in DATA statements are read left-to-right and

then from the beginning of your program to the end, just as
you would read the words on a page. If a READ statement
runs out of data items in one DATA statement, it goes on to the

next one. If a READ statement has data items left over, it
leaves them for the next READ statement to read.

If you try to read past the last data item in the last DATA
statement, you will get

I ERELCE

for “Out of DAta error.” On the other hand, no error will occur if
your program fails to read all the data items available to it.

The RESTORE Statement

The RESTORE statement “rewinds” your program’s DATA
statements, so that the next READ statement will read the first
item in the first DATA statement. The RESTORE statement

looks like this:
FESTORE

You can execute RESTORE anywhere in your program, and
you can execute it any number of times.

USING PERIPHERALS

In the chapter on file management you learned to use one
kind of peripheral device: the RAM expander, which can act
as a substitute for your HHC’s internal memory. Now we will
learn about another kind of peripheral, which can serve as a
substitute for your HHC’s keyboard or LCD display.

The HHC’s micro printer is a typical peripheral of this kind. If
you own a micro printer, you can plug it into the HHC's bus
socket (or into an I/0O adaptor) and use it to make printed hard
copy of the HHC's output.

We're going to discuss the use of peripherals using the micro
printer as an example. If you have a different kind of printer,
such as an 80-column printer connected to the HHC through
the serial-interface peripheral, some of the following
Instructions won't apply to you. See your peripheral device’s

users manual for information, or seek assistance from the
distributor of your HHC.

14-3

{H}{B}

Not for sale



tH}

{H}H{B}

Getting Ready

Before starting to use the printer, load a roll of paper into it.
Instructions for loading the printer are in the user's manual
that comes with it.

Connecting the Micro Printer

When you connect the micro printer to your HHC, you should
follow the same procedure as when you connect a
Programmable Memory Peripheral. To repeat:

1. Save your program by entering BYE, and return to the
HHC’s primary menu by pressing CLEAR.

2. Turn the HHC off.

3. Connect the micro printer.

4. Turn the HHC on again. Press CLEAR, if necessary, to
make the HHC resume displaying the primary menu.

Writing Information To the Printer

You write information to the printer from a SnapBASIC
program by using the PRINT statement. PRINT needs a way
of telling whether you want any given PRINT to write to the
printer, the LCD, or some other output device. It does this with
a “logical unit number.”

A logical unit number (LUN for short) is a number that
appears between the word PRINT and the first data item to be
printed, like this:

FEIMNT #2.Ma0Is

In the PRINT statement above, the LUN is #2. It is preceded

by a ‘#’ sign, and is separated from the following data item by
a comma.

Before you can execute such a PRINT statement, you must
attach the printer to LUN #2 with the ATTACH statement.
The ATTACH statement looks like this:

ATTACH &2 TO #=

68" is a value that means you want to attach the micro printer.
Each peripheral device has its own attach code; see Chapter
7 In the Reference Guide. (It doesn’t matter where the micro
printer is plugged in; ATTACH will find it, so long as it's
plugged in somewhere. ATTACH will take care of turning the
printer on for you. It does not matter whether the I/O key
showed the device to be ON or OFF before you entered
SnapBASIC. When you exit SnapBASIC, the 1/O key will
reflect the most recent setting from within SnapBASIC.)

14-4

www.pocketmuseum.com

| lue 2 to the
“2" to LUN #2. (You could assign the val
v2ari;etjleers;(Y, and then say ATTACH 68 TO #XY'. You could

also say ‘PRINT #XY,...".)

Attaching the Printer {H}{B}

Enter SnapBASIC now and create a new program file.
Attach the micro printer to LUN #2 by entering

GTTECH &2 T #
Now let's try using PRINT to write some information to the
micro printer. Enter

FRINT #2.17
SnapBASIC should print “17” on the micro printer.

Try executing some more complex PRINT statements that

address LUN #2.

| | | it. Notice
te a little program that prints on LU_N #2, anc_i run it. _
r:gt the ATEI'A%H you performed in immediate mode_ IS
effective for a program run in deferred mode. Device

attachments are not reset when you run a program, as
variable values are.

Enter BYE; select the same program file and run it again.
Observe that the ATTACH you did is no longer in effect.

| -enter
Enter BYE to return to the primary menu. Re-en
SnapBASIC, re-select the program, and run it. Observe that
your PRINT #2,17 is not effective now. You get the error

message:
10 ERERECE

This is an 10 error, which means (among other possible
things) that you tried to do I/O on a LUN that nothing is
ATTACHed to. All the ATTACHes that you do are cancelled
whenever you return to the primary menu.

Detaching Devices

What goes up must come down. We have learned how to
ATTACH a device to a logical unit number, and how to do I/O
to that LUN. Suppose we are through with that device and we
would like to use that LUN for something else now. Well, all we
have to do to break the association of the peripheral from the
LUN is to DETACH it. Suppose we had ATTACHed the printer

to LUN #2. To DETACH it we would type:
DETRCH #:=

145 Not for sale



{H} {B}

H} {B}

1B}

This will leave the device turned on, but remove the
association of the printer to LUN #2. If we now PRINT to LUN
#2 we will get an |/O error, since no device is currently
attached to LUN #2. However we are free at this point to
ATTACH another device to LUN #2 and continue.

Input From Peripherals

You can read data from peripherals with INPUT, just as you
can write data to peripherals with PRINT. For example, you
can read data from LUN #3 with a statement like:

THFLIT #5, my
or
PHFUT #2 "Enter 2

The only difference between preparing to do input and output

on a peripheral is that for input, the 1/0 key menu says “IN”
Instead of “OUT.”

Note that any LUN may be used for input or output, but not
both at once. If you plug in a device that is capable of both
input and output, such as the Serial Interface Adaptor, the 1/0
Key menu represents it as two devices, one for input and one

for output. If you want to use the device for both input and
output, you must ATTACH both in SnapBASIC.

=:-'= LA ! i-i bt ..:.E' : . IR ST W

GETting from Peripherals

Just as you can INPUT from peripherals, you can use the GET

command to fetch single character input from peripherals. The

command format is similar:

BT . s

All of the considerations for GETting from the keyboard also

apply to GETting from an arbitrary LUN; for example, the
character is not echoed, and some special keys are not
decoded (such as BREAK).

More About LUNs

SnapBASIC recognizes LUNs from #0 through #15. The
keyboard is normally attached to #0, and the LCD is normally
attached to #1. #2 through #15 have no “normal”
attachments, and are reset to “unattached” status by BYE.

www.pocketmuseum.com 14-6

Once a device is attached to a LUN, it remains attached until
you return to the primary menu, or until you attach another
device. Only one device at a time can be attached to a LUN.

If you use PRINT with no LUN, SnapBASIC assumes you are
referring to LUN #1. Thus, PRINT with no LUN normally

writes to the LCD, as you would expect.

Similarly, if you use INPUT or GET with no LUN, SnapBASIC
assumes that you are referring to LUN #0. Thus, INPUT or
GET with no LUN normally reads data from the keyboard, as

you would expect.

Device Independence

Although ATTACH is an extra step that you must perform
before using a peripheral, it gives you a valuable kind of
freedom: you can write a program that uses a peripheral,
without saying what peripheral it is to use. You can defer that
choice until you run the program. We say that ATTACH makes
your program device independent, since the way you write
the program is independent of the kind of device you run it
with.

For example, you could make a program write output to a
micro printer one time you run it; the next time, simply by
attaching a different device, you can make the program write
output to a serial-interface printer connected to the HHC
through a Serial Interface Adaptor.

You can also put ATTACH statements in your program, and let
the program decide what to attach.

LISTing On the Printer

One very useful application of a printer is printing listings of a
SnapBASIC program.’

To print a listing, plug in the micro printer, turn it on, and
ATTACH it as above. Then enter the statement

LIZT #:
to send a listing of your program to the printer.

' - The micro printer is not well suited to this application because of its
15-character line length. Many SnapBASIC statements are longer than
15 characters, and the micro printer must print such statements on two or
more lines, reducing the readability of a program.

You can get more readable program listings by using a serial printer with
a line length of 80 characters or more, connected to the HHC through a

peripheral called a serial interface adaptor. See the literature that came
With your HHC for more information about this device.

14-7

{H}{B}

H} {B]

Not for sale



After entering ‘LIST #2' and pressing ENTER, the printer will
list your program, exactly as you would have expected.

If you want to start printing a list at some point after the first
line of your program, you may specify a beginning and an
ending line number with LIST:

LI=T #2208, 109
In the same way you can list only one line of your program as:
LIST #2. 5

But remember: this also enters the edit mode. To get out:
press ‘RETURN’ key.

This, however, will put you in edit mode, so press ENTER to
get back to the SnapBASIC prompt.

/0 ANOMALIES

The whole area of Peripheral I/0 and logical unit numbers has
several subtleties associated with it. For example, we told you
that the HHC keyboard is attached to logical unit number 0.
Suppose you used the RS-232 peripheral and attached the
RS-232 input to LUN #0. Now all of the input for BASIC would
have to come from the RS-232, even the BREAK character.
The HHC keyboard is more or less out of commission.

Even worse than that, suppose we mistakenly attached the
printer to LUN #0. If we then start printing (i.e. writing to the
keyboard), we will really mess things up, and the only way we
can recover Is to press the CLEAR key and re-enter the file.
This is always dangerous.

This phenomenon is not unique to the printer. In fact,
attaching any output device to LUN #0, and then performing
output to LUN #0 will cause this to happen. Fortunately there

Isn't really any legitimate reason for doing output to the
keyboard, is there?

www.pocketmuseum.com 14-8

ATTACH CODES FOR VARIOUS DEVICES

Here is a list of some of the devices you can attach to the
HHC, and their corresponding ATTACH codes. (Note that the
ATTACH codes may actually correspond to the capsules, not
to the hardware; hence, if the Telecomputing 2 capsule is
installed in the RS-232 adaptor, the ATTACH codes are 130

and 66.)

Device Input code  Output code
Keyboard 129 N/A
LCD N/A 65
Telecomputing series 130 66
TV Adaptor N/A 67
Micro Printer N/A 68
RS-232 Capsule 134 70
Plotter N/A 76

(N/A means this device is not available for input or output.)

14-9

{H}{B;}

Not for sale



CHAPTER 15: FUNCTIONS

Consider the following problem: you are writing a program,
and at one point, you need to truncate a numeric variable to
the next lower integer value.

Here is a statement that does the desired truncation:
A= THT O

The expression
TRT

is called a function. It operates on the value inside the
parentheses, which is called the function’s argument, and
returns a value.

The purpose of the function INT is to return the largest integer
value that is equal to or less than the argument. For example,

if X is INT (X) is

19 -2
1.1 -2
-1 -1
0 0
1 1
1.1 1
1.9 1

9876543.2 9876543

The argument of a function may be any constant, variable, or
expression. Most functions may be used anywhere a numeric
value may be used:

FRIMT IHToH
FOR I=1 TO 18883 STEF IHTOH
W=THT ] 35

AN EXAMPLE

Let's look at a program where INT is useful. We're going to

return to our day-of-year program, and modify it to make
allowances for leap years.

We're going to add another variable for the year; let's call it
YR. We'll prompt the user for a year value. Then, if MN>2

(representing a month after February) and the year is a leap
year, we'll add 1 to DR.

The rules for determining whether any given year is a leap
year are:

1. If the year is evenly divisible by 400, it is a leap year.

15 Not for sal
www.pocketmuseum.com ot for sale



2. Otherwise, if the year is evenly divisible by 100, it is not a
leap year.

3. Otherwise, if the year is evenly divisible by 4, it is a leap
year.

4. Otherwise, the year is not a leap year.

How can we test for “A is evenly divisible by B?” That's where
INT comes in. If YR is evenly divisible by 4, for example, then
the logical expression

PR d=THT VR4

IS true. If not, YR/4 is not an ihteger value, and the assertion is
false.

Now we can write a version of the program that allows for leap
years:

1149 FEM Corvert o dote to
A Aot —-Hea .,

12 EEM Im: month: oad, % Year.
HoFero month oneans Tendd run.

128 FEM Dt s ood of HYear,

1 REM Vaors: MH=month of Y=o,
HM=claod of mont h. YE=4Year.

1o EEM DE=do4d of Y9sar. the result,

16 EEM Mi=dodz Precediny 1zt oo
ot .

1768 FEM

Lz BHEM MAa= arrod of dods im0 Hear
et ore aoch mont b,

19 DIM MAdclas

SEE FORE I=a TO 11

216 BEEAD MACIs

Sol HEST T

SoE BEEM FromPt user for month. ood,

S4B THRFUT "Mont b cdod, Year" s
M T YR

=l IF MH=8 THEH EHD

ek BEEM ComPute Ml then DR,

e Ml=PAaoHH-10

ekt DR =M1 +T

298 EEM Al low for leaP Years.

388 IF MH<=z GOTO 35/

=218 IF YRA488=INT(YR-48302G0OTO 246

28 IF YRA188=INT(YR-180XGOTO 256

338 IF YRA4<INTYRA40CG0TO 256

348 DR=IF+1

okl FEIMNT "Iod of Hsar="30F
2EE GOTO 245

e DETe B.21,.59,908, 128151, 181 . 218
ok DRTA 242,273, 3604, 35

www.pocketmuseum.com 15-2

SOME OTHER USEFUL FUNCTIONS

Here are several useful functions that SnapBASIC supports.
Each of them requires a numeric argument. If one of these
functions is given an integer argument, it automatically
converts the argument to real form.

e ABS(X) returns the absolute value of its argument: X if
X>=0, -1*X if X < 0. Example: To determine the
magnitude of the difference between two numbers X and Y,
use ABS(X-Y).

e EXP(X) returns the constant E (approximated -in
SnapBASIC by the value 2.71828182846) raised to the
power X. The maximum value of X that will not produce an
overflow error is approximately 2357.7.

e FREE(0) returns the number of free bytes of memory
available for storing and running programs. This is the size
of the current file space, minus the amount of space
already occupied by programs and data. FREE(X) opens
up memory space; for details see the Reference manual.

® INT(X) returns the largest integer less than or equal to X.

® LN(X) returns the the natural (base E) log of X. To obtain
the base Y log of X, use the formula LN(X)/LN(Y).
Example: the base 2 log of 7 is LN(7)/LN(2).

® LOG(X) returns the the common (base 10) log of X.

® RND(X) returns a “random” number in the range
O0<RND(X)<=1. This function is more fully described in
the Reference Guide, Chapter 2.

® SQRT(X) returns the square root of X. Equivalent to X-.5.
Causes an “AE ERROR” (“arithmetic error”) if X<O.

SQRT(X) produces the same result as X-.5, but executes
more quickly.

® SQR(X) returns the square of X. Equivalent to X~2. SQR(X)
produces the same result as X~2, but executes more
quickly.

The following trigonometric functions are also supported in
SnapBASIC. For details, see the Reference Manual.

® SIN(X)

® COS(X)

® TAN(X)

Also, the constant Pl (3.14159265359) is defined. Pl can be

Inserted into your program as if you had defined a variable

named Pl with the value of pi assigned to it. This is the only
such value defined in SnapBASIC

15-3

{B}

BHH;

1Bj

Not for sale



1B}

INTEGER FUNCTIONS

SnapBASIC supports a number of functions that operate upon
Integer arguments and return integer values as results. Thus,

their operation is considerably faster than their corresponding
real functions.

If an integer function is given a real argument, that value will

be truncated to an integer before the function is evaluated.
Note that this causes a loss in speed.

The following integer functions are identical to their real
counterparts:

® ABS%(n%)
® MAX%(N%,m%)
® MIN%(n%,m%)

The function MOD%(n%,m%) is identical to MOD(n,m) for
positive values of m and n. However, while MOD(n,m) will
return a negative result if and only if m is negative,

MOD%(n%,m%) will return a negative result if and only if n%
IS negative.

SnapBASIC also supports four functions that perform bitwise
logical operations upon integers. These functions are useful
for creating specific bit patterns (for example, to toggle certain
bit flags within HHC memory, or to optimize memory usage by
using bit flags within SnapBASIC). These operations are:

® BAND(mM%,n%) returns the bitwise “AND” of m% and n%.
For example, BAND(5,3) is 1, since the binary
representation of 5 is 0101, while that of 3 is 0011.

® BOR(M%,n%) returns the bitwise “OR” of m% and n%.
Example: BOR(5,3) is 7.

® BXOR(m%,n%) returns the bitwise exclusive “OR” of m%
and n%. Example: BXOR(5,3) is 6.

CONVERSION BETWEEN INTEGERS AND
FLOATING POINT NUMBERS

There are several functions in SnapBASIC that are similar, but
different. Understanding the relationship between these

functions can help you to write effective and efficient
programs.

First, look at the definition of INT. You will see that INT(X)
always returns the largest integer that is less than or equal to
X. (This is called the FLOOR function.) For positive numbers,
this does about what you would expect. But INT does
something not as nice for negative numbers—note that
INT(-1.1) is -2. Makes sense, though: -2 is indeed the largest

www.pocketmuseum.com 15-4

integer less than or equal to -1.1. This may well not be what

u are looking for. What if you really want the integer part of
%,t?e number, bgfore the decimal point? There are a few ways

to do this. You could always put statements in your program
like

A6 REM Coloulote ir“;t.:-:_.fz'éi'ger
mlosest Lo Zerd Of
Aoy = IHTOs .
%};E TF Cpmtd s OR CHEE Y THERM 14
120 o= IHTO=+12
146 FEM orncd 200 0

But this is messy. Inelegant. Inefficient. There is a way to do it
more efficiently:

15 @ o= F IO

Whoa! What is FIX? Simple: FIX(X) deletes the fractional part
of X. Some BASICs do not automatically convert between real

and integers.

Another function that does the same thing, as it turns out, is
FLOAT(X%). FLOAT, by definition, converts the integer X% 1o
a floating point number. But! Remember that if a function
requires an integer argument, a real argument will be
converted first to an integer: implicitly,
FLOAT(X) = FLOAT(INT(X)) if X is real.

Now, there are some interesting tricks you can do with FLOAT
and its friends. It is sometimes annoying that SnapBASIC
prints numbers to so many decimal places. If you are dealing
with currency, you really don’t want more than two places after
the decimal place. Look at this statement:

FEIMT FIads#lns e

Neat! Multiply X by 100 to get the cents in front of the decimal
point. Truncate by FIX, and divide by 100 to get the cents after
the decimal point. But: this is not quite precise. You will lose
fractions of cents. Doing this to 100.009 will leave
100.00—and a penny is gone. What do we do? Another trick!

FRIMT FEUURNDE S TR e

ROUND is like FIX, but is rounds to the nearest integer rather
than truncating the fractional part. |

These methods can be use to shorten the precision of a
number to whatever you want. Another way to do the same
thing, but much more flexibly, is with the STRF$ function,

which will be described in the chapter in this volume on
strings.

15-5

Not for sale



1B}

www.pocketmuseum.com

AN IMPORTANT NOTE ABOUT FUNCTION
CALLS

There is a strict limit as to the depth of function calls.
Specifically, you may not nest function calls more than three
deep, or a CX (complexity) error will occur. For example, this
IS illegal:

FEIMT FLACRUUMNDICSEET CRB= 00 )
because the nesting is too many levels deep.

USER DEFINED FUNCTIONS

SnapBASIC has facilities that let you define your own
functions.

You define a function by including a DEF statement in your
program. You must execute the DEF statement that defines
your function before you execute any statement that calls the
function.

Here is an example of a DEF statement:
DEF FHREBOS y=mE s+ 10

“FN" is a reserved word meaning “function.” It must always be
present in a DEF statement. ‘DEF’ is a reserved word
meaning DEFine, and only occurs in this context.

“AB” Is the name of the function being defined. The name
must obey the rules that govern a numeric variable name. (But
you may use the same name for a function and a variable, if
you are willing to risk confusing yourself!)

The “X” in parentheses is called a formal parameter. It
stands for the value you will use in a call to the function. It may
have any name that is valid for a numeric variable. (It is not a
numeric variable, however; it has no relation to any variable
with the same name that may be used elsewhere in the
program.)

The expression on the right side of the ‘=" is the body of the
function definition. When you call the function, the value that it
returns is the value of the body, calculated after the value of
the argument in the call is substituted for the formal parameter
wherever the formal parameter appears in the body.

The Formal Parameter: Some Examples

The formal parameter is an elusive concept. Many people find
It confusing the first time they encounter it. A few examples
may help to make it clearer.

15-6

First, let's consider the sample definition above. Suppose we
executed the following piece of code in a program that

contains this definition:

=163 DEF FHREfﬁ}:H¥{H+1}
med o= o
1% FFIHT Ma " e FMEEC
o A B o
ok FFIHT YA FHARC E—-E

Line 310 defines the function.
In line 320, variable M is assigned the value 5.

Line 330 calls FNAB with the argument M. The value of M is 5;
therefore, SnapBASIC substitutes 5 for X, the formal
parameter of FNAB, wherever X appears in the body of FNAB.

Then it evaluates FNAB:

FREEC S a1 0
evaluates to |

CRGRECS =Tl S ]
which evaluates to

B D =5

Thus the call to FNAB returns the value 30, and line 330
displays “5 30.”

Line 340 assigns X the value 9. Line 350 calls FNAB with the
argument X-2. The value of X-2 is 7; therefore, SnapBASIC
substitutes 7 for X, the formal parameter of FNAB, wherever X
appears in the body of FNAB. Then it evaluates FNAB:

HR = Ut TR o
evaluates to
FrABG T =707+ 10
which evaluates to
FHHEB G 1=5

Thus the call to FNAB returns the value 56, and line 330
displays “9 56.”

Notice that calling the function had no effect on the value of
the variable X. We repeat: the formal parameter X in the
definition of FNAB is not a variable, and has no relation to the
variable named X which is used elsewhere in the program.

15-7

Not for sale



1B

Some Benefits Of Using Defined Functions

When a program must perform a certain calculation many

times, taking one value and producing one result, you can

gain the several benefits by defining a function to perform the
calculation:

® Your program becomes shorter and easier to write, since
you only have to code the function definition once.

® Your risk of making an error is reduced, for the same
reason.

® Your program becomes more readable. When you see a
use of the function, it is instantly clear that you are
performing exactly that calculation, and not another that is
almost the same but not quite, nor is entirely different but
happens to look the same.

Some Limitations On User Defined Functions

SnapBASIC imposes the following restrictions on a user-
defined function:

® A user-defined function can have more than one formal
parameter, and each call to it must have exactly the right
number of arguments. (The formal parameter need not be

used in the bodys; if it is not, the value of the argument in the
call is ignored.)

® The formal parameter must be numeric.
® The function must return a numeric result.

® The body of the function must be an expression: multiple-

statement function definitions are not allowed, as they are
In some other versions of Basic.

® A DEF statement may be executed only in deferred mode,
not in immediate mode. (Once a function has been defined
by DEF, however, the function may be called in immediate
mode.)

Warning:

® Redefining a function is allowed in the program. You can
start off with FNA(y) = Y * Y, and later on in the same
program rename it as FNA(y) = 3 * Y. Though this is legal,
the old definition will no longer be accessible. It is always

best to use new names (unless space is at an absolute
premium).

www.pocketmuseum.com 15-8

CHAPTER 16: STRINGS

Some of the most interesting programs you can write with
SnapBASIC manipulate not numbers, but strings of
characters. You've already encountered string constants in

statements like this one:

FRIMT "Fusl stfficiencd="sF: "mPy,. "
In this statement,

"Frge ] efficiemoid=s
and

B

are string constants. Each has a value that consists not of a
number, but of a sequence (that is, a string) of characters.

STRING VALUES

A string value may be anything from 0 to 255 positions long.’
Each of the positions may have any of 128 distinct characters.
The 128 characters include all the characters you can enter
through the HHC keyboard and see on the LCD in
SnapBASIC. (Note that the Reference Guide refers to
character codes greater than 127. Though these exist on the
HHC, they cannot be included in strings, printed, or input.
However, GET can indeed sometimes fetch characters with
values greater than 127, but the “garbage collector” (a
SnapBASIC subsystem that conserves memory) will lose the
most significant bits. Hence, do not expect to be able to input
characters greater than 127 with any reliability.

The idea of a string value that is zero characters long
deserves a bit of explanation. We call such a string a nulli
string. You might think a null string would be useless;
actually, it is an indispensible concept in string processing,

just as the concept of the number zero is indispensible in
arithmetic. |

You can represent the null string by a pair of quotation marks
with nothing between them:

Note that upper and lower case characters are distinct in
strings. For example, ‘S’ and ‘s’ are two different characters,

— = —_— e

1 - { ” 1 143 "
- Sometimes we loosely use “character” to mean position,” as when we

say that a string is “three characters long.” We will avoid this usage in
places where it might cause confusion.

16-1

1B}

Not for sale



just as ‘S’ and ‘Q" are. This makes string values (and ASSignment
particularly string constants) an exception to the general rule
of SnapBASIC that everything is stored in upper case.

Note that strings are of variable length; operations you do on

You assign a string value to a string variable the same way
you assign a numeric value to a numeric variable:

strings can increase or decrease the size of the strings. This is LE = '_fl!-_*;!it'__"ﬂ- =haPer
called “dynamic string allocation”, and differs from some other '.-::E'—'f*: . !g:;:ri £0100
versions of BASIC (which require strings to be of fixed length). ATF = orlas i

The INPUT Statement

INPUT and READ work the same way with string values as
they do with numeric values. For example, if SnapBASIC

STRING VARIABLES

SnapBASIC recognizes string variables, just as it recognizes

numeric variables. These two kinds of variables are distinct: a i
| _ | _ : nt:

string variable may not have a numeric value, or vice versa. executes the following stateme

A string variable may be assigned any string value. There is IHFUT "What =hoPey ©soHE

No need for you to state somewhere in the program how long SnapBASIC displays
the string’s value may be. What = hoE
ELE T A T =

You form the name of a string variable i -
9 variable Just as you form the on the LCD, and waits for your reply. Whatever string you type

name of a numeric variable, except th - -
symbol ‘$’ to the end. cept fhat you must add the in (and end with ENTER) is made the value of the variable
SH$.

For example, the followin | ' |
variables: p. 9 are all valid names for string Strings may be INPUTted with or without surrounding quotes.
y - . e There are certain considerations you must understand when
MR alE 0F QUE DUESTHE deciding how to enter a string. If the string to be inputted does
LETTERS$ would be an invalid name for a string variable, not contain any commas, and does not have leading spaces,
because it starts with a SnapBASIC reserved word, LET.

the string may be entered without quotes.
As with integer and numeric variables, you can give string and

If the string Is to be entered with leading spaces, it must be
numeric variables similar names like NA and NA$ without contained Iin quotes; otherwise, SnapBASIC will strip the

leading blanks. Embedded blanks may be entered with or
without quotes, however.

If a string is entered enclosed in quotes, and it is to contain
quotes, two quotes must be entered where each quote is
wanted. For example:

confusing SnapBASIC; but you should generally avoid doing
so, to keep from confusing yourself.

SOME SIMPLE STRING OPERATIONS

You can perform many of the same operations with string
values that you can do with numeric values. You can PRINT

them, INPUT them, and assign them. You can also use string
arrays.

SnapBASIC does not allow a user-defined function to have a
string value as the argument, or to return a string value.

16-2

www.pocketmuseum.com

"This iz one Juotst"" and this is

T.Lie 'ror 1z or o

There is one other character that you have to be careful with
when using a string variable this way. That is the comma.
Comma, remember, is the character that separates two
values in a reply to an INPUT statement. For example, if we
execute this statement:

IMFUT "ShaPe,. color: inchss U
=HF.COF, IH
and respond to its prompt like this:
=haPe., color, inches o re . bhlus 5
16-3

Not for sale



INPUT assigns SH$ the value ‘square’, CO$ the value ‘blue’,
and IN the value 5.

Similarly, if we execute this statement:
PHFUT kot shoPe™ Vi SHE

and respond to its prompt like this (‘#’ stands for “space”):
bihot shaPe "sduore s ot b rourceci

oS rs

INPUT would assign SH$ the value:
'square, #with#rounded#corners’,

In the above example we see that you can give INPUT a

comma as part of a string value by enclosing the whole string
value in quotation marks.

However, if we execute this statement:
PHFUT "bhot shoPey U 1SHE

and respond to its prompt like this (‘#’ stands for “space”):

: “ii -“.I :HIE -i'i‘
I o B § i R

IR I T - P T TS

ey L™ I-Hi

I LI - [ ] R LI [ ] .
FLEwTo 0 A= T
LT

INPUT would assign SH$ the value ‘square’.

#with#rounded#corners’, the second value in our response,
would simply be discarded with message ‘Rest Ignored’, since
there is no second variable to assign it to. SnapBASIC would

display the message ‘Rest Ignored‘ to indicate that the extra
data has been ignored.

Note that the prompt that begins an INPUT statement must
be a string constant:

Tl OByl i LRI T I v By wmee o ute, TIOR 2w e
if '1. Pl LR T A B S < B -’;“--

If you try to use a string variable here, SnapBASIC will simply
read a value into the variable, even though the variable is
followed by a semicolon rather than a comma.

The READ Statement

Everything we just said about INPUT applies equally to
READ. Only the source of the data—a DATA statement rather
than the keyboard—is different.

Note that SnapBASIC treats letters in a DATA statement the

same way that it treats letters in an INPUT statement. For
example,

FEEEE ‘-'-1-

- L] [ ] ]
L“ w8 . Hl . - : I & @ [ s 1]
[ [ ] ™ ] - : l= l‘---= L--_: = LT [T ] - e I-I-- i ae m . - e |.| =8 Ew EwE H-.", ._.
L o B 3 I A I IR I iy T o 3 o o O T e SO S P B

will be stored like this,

www.pocketmuseum.com 16-4

seE DETA donuo e Pebrao e morch

but

EEE oot o oo e s Februo e s moro b

will be stored like this:
=Ec DETadaMUAREY s Yebruo e ds moroh

because the first string is not seperated from the DATA
statement, just as with the REM statement.

String Values vs. Numeric Values in INPUT
and READ

What happens if you give INPUT or READ a string value for a
numeric variable, or a numeric value for a string variable?

The “numeric value for a string variable” question is really no
question at all. As far as INPUT and READ are concerned,
any numeric input is also string input. When INPUT sees
“523,” for example, it doesn’'t know or care whether you think
you are typing in the numeric value 523, or the string value
'623’. It just looks at the type of variable that is to receive the
next value, and acts accordingly.

If you give INPUT a string value such as ‘square’, and the next
variable that should receive a value is a numeric variable,
SnapBASIC gives you the prompt

o, Bt S e

and repeats the INPUT prompt. It won't let you get past the
INPUT statement until you enter valid numeric input.

If you give READ a string value, and the next variable is a
numeric variable, SnapBASIC gives you the error message

HDE EERUE 15 s #hmm

where “nnn” is the line number of the READ statement that
was trying to read from a data statement.

CONCATENATION

Concatenation is the operation of fusing two string values to

make one. For example, if we concatenate the string values
abc’ and ‘DEF’, we get the string value ‘abcDEF .

SnapBASIC lets you concatenate two string values with the

+' operator. For example, you could assign the value
abcDEF’ to the variable S$ like this:

AE="ake "+ " IEF"

16-5

Not for sale



1B}

1B}

www.pocketmuseum.com

You could concatenate the string ***’ to the beginning and end
of another string like this:

e U EE T R
or like this:

SOk T $ 2

R ] e o8 S o ] S
In the example above, AK$ + X$ + AK$' is an expression with
a string value, just as ‘5*(X+ 1) is an expression with a

numeric value. It may be used any place a string value may be
used, for example:

FREIMT AR F+EFraklE

STRING SUBTRACTION

String subtraction is the operation of deleting one string from
another string. For example, if we string subtract ABC’ from
ABCDEF’, we get the string value ‘DEF’.

SnapBASIC lets you subtract one string from another with the
- operator. Just like concatenation, string subtraction may be
used anywhere a string value may appear. Note that only the
first instance of the second string is deleted. For example,

“E = URECIEFSBCT - USROS
results in
A = CDEFHECS

If the first string does not include the string to be deleted, then

no deletion happens, and the first string is unchanged. For
example,

"GECT - “TIEF"

leaves the result ABC".

THE INSERT$ FUNCTION

Concatenation is fine if you want to join two strings end to end.
But what if you want to stick one string in the middle of

another? The function INSERT does this for you. It looks like
this:

e . — T L {2 e ah . o I
HE o= TREERTECRES. O M

where B is the original string, C$ is the string to be inserted,
and N is the position where the inserted string is to go.

16-6

For example,
FREIHT IMSERTC"mBCT "D 10
results in ADBC'.

If N is less than zero, it is forced to O (that is, the characters
are inserted at the beginning of the string). If N is greater than
the length of the original string, the characters are inserted at

the end of the string.

THE ERASE$ FUNCTION {B}
Another thing you can do with a string is to delete characters
from it. Use the ERASES$ function for this. It looks like this:

HF o= ERAREFCEFHMD
where B$ is the original string, N is the position from which to
delete characters, and M is the number of characters to
delete. For example,

FEIMT ERASEFC ABUDET 2,20
results in

HEE
If N is greater than the length of the string, no characters are
deleted. Obviously, if you try to delete past the end of the
string, you only delete to the end of the string.
Comparison
You can compare two string values, just as you can compare
two numeric values. For example,

Lk smF="FUTHEMN S$F="frrad j= fullen
It the value of X$ is ‘F’, this statement assigns X$ the new
value Array#is#full!’. .
Here is another example:

Lo smF=""THEM Hf="0R,
If the value of X$ is null, this statement assigns X$ the new
value ‘OK’.
AN EXAMPLE: THE FUEL EFFICIENCY
CALCULATOR
ste lc-m ft?_xgmple of simple string processing, let’s return to the

eiiciency calculator that we developed in an earlier
16-7 Not for sale



chapter. Here’s a version that asks the user whether he wants
to do another calculation, and lets him answer 'y’ (for “yes”) or
'n’ (for “no”) instead of entering a number. As an additional
refinement, it gives the user an error message and reprompts
him if he responds with anything except 'y’ or 'n'.

18 REM Fusl sfficiencd caloulator,
=8 EEM Im: =ztoart & erd odomster
Ao FEE. tue ] used,

4 Dt : mi leso9a] | o,
M W=t =E=ztaort ocdom. . BERE=esso

D

-I-i
L
PN

LML R

BN

o e
i
Aty A A

=5 REM GR=dalloms, Sll=sum of resgglhs,
= BEM CO=count of resigits.,
YHE="more"™" resPonze.
O THFUT "=tart reacdipad Us R
S THFUT "Ermgd reachisy this timss TaER
HOITHFUT "Gal loms wdsedd s bR
HOFEIMT "Fusl etfficismcd ="
= MR o= CERE-SE
i FREIMNT M=
L FREIMT T mPd
R et T
! |

|

-k = ER
MFUT "HMore 1nPut (4127 " s YHE

IF YH¥f="43" LGOTO &2

IF YH¥="n" GOTO 15@A _

FEIMT "Thaot 1=n't walid."s

LUOTU 1488

HOIFR Dl THE
e 1t B I“"'- . i"'- e

e L L LR RN LRl

fuanets e e ke e fooecte fronele foeecde fonecke £ FE 3 E B4 G F e fE i 0

L

EXAMPLE: THE DAY-OF-YEAR PROGRAM

Here's a slightly more ambitious example. We've modified the
day-of-year to read a three-character abbreviation of a
month’s name (‘jan’, ‘feb’, ... ‘dec’) instead of a month number
(1,2, ... 12). Also, we've changed our variables to integers, for
time and space; similarly, we are using MOD% for the leap

year test.
11w FEM Comwesrt o dote o dod—of —Y3a0 .
128 BEM It s mont b odod: % Heor.

'ernd ! means 1.

P2 BEEM Ut Pyt dod of  Heor,

Pt FEM Voriabliesz: MHF=mont h of Hear
(3 charsar.

142 REM If%=ciod of mont h. YES=dHeor.

5EOREM DEZ=dod of dHesar. the resuil.

178 KEM

www.pocketmuseum.com 16-8

FEM MA%“= oarrad of dao4d=s in Year
before each month.

p—
Q0
G

125 REM MOFCIX2=rname of month IX+1.
12 DI MOFC120 Moz

SEE FOR == T 12

=1id READ MOFCIXMAXCIXD

ol HMEST Is

258 FEM FromPt user Yor mont b cod,

Heal .

ITHFUT "Mont h.dod, Y9ear: "3

FOR 1= TO 12

IF MHF=MOFCIX2C0TO 226

HEAT 1%

FEINT "Month name inwalic®":

COTO 2498

FEM Coloculote TR,

IF Ix=12 THEH EHI
A=MAXC T 2+TIM%

REM M low For el Hosars,

IF I=<=2 GAaTo 256

IF MODXCYRX,4883=3 GOTO =245
IF MOD=CNYR%1868=A GOTO 255
IF M

L

-

|

r'IJ r'l_l
(b
N I

MMM
cnonen
nnlnp Lt

L P = 0 00 Q0
G G GO S CNCED
=

'F
ssals

ODXCYREX,. 42 GOTO 256
=R+
LT TDod of Heo st TR
ST 2
-.'iﬂ.l"l.lEl.ﬁ'l:'E'tl.!El.lml:l.l".ISEI
228 DATA aPr.98.ma4. 128, jun. 151
39'3 IATA JU'JIEIJD.L-IEI'.-EIEJE-E'PJE":"E
48068 DATA oct ., 2732, nov. 284, der. .
Sad Tal= M5

We have added a string array, MOS$, which is initialized to
contain three-character abbreviations for the names of the
months. To do each date conversion, we read a month name
abbreviation into a string variable, MN$ (line 240), and search
MO$ for a matching element (lines 252 through 256). If we find
one, the subscript of that element is 1 less than the month
number; the corresponding element of MA contains the num-

ber_ of days in the year preceding that month. From there on, the
logic of the program is the same as before.

Notice what happens at line 258. If we reach the end of the loop,
our month name must be invalid, since it didn’'t match any
element of MO$. We give the user a message telling him what

went wrong, and go back to the INPUT statement to give him
another try.

What would happen if line 258 were not included? The program
would give the user no warning if he entered invalid data: it
would simply give him an invalid answer. This program hép-
Pens to be written so that it would assume the same month that

Lt et L D QO QD PO

R )

L)
—..J
=
=
I
—
I

16-9
Not for sale



was entered on the previous loop (January on the first loop).
Some otherwise correct variations of the program could re-
spond in ways even more absurd.

There’s alesson in this: unless you intend to use your program
once and throw it away, try to make it do something reasonable
with every conceivable kind of invalid input, as well as with valid
input. In most cases you'll save more time using a program with
good error checking than you'll spend writing it. Every time you
make a mistake in entering data, you'll be glad you did this. (Or,
at least, you'll be sorry if you didn't do it!)

GETTING THE LENGTH OF A STRING

You can get the length of a string value (i.e., the number of
characters in the value) with the LEN function. For example:

M=LEMHL=F 2

assigns the length in characters of the string X$ to the numeric
variable N.

COMBINING STRINGS AND NUMBERS

It is often useful to convert values back and forth between
numeric and string form. For example, suppose you want to
display a number in “dollars and cents” format. You can convert
the number to a string and then use string operations to putitin
the proper form.

SnapBASIC does not let you assign a numeric value directly to
a string variable, or vice versa. If you try, you will get the error
message:

Fm o kLR
meaning, “ASignment error.”

Converting a Number To a String

To convert a number to a string, use the STR$ function. (Every
SnapBASIC function that returns a string value has a name that
ends with ‘$’.) For example:

MLFE=STREC S

This statement converts the value of the numeric variable Xto a
string value, then assigns it to the variable NUS$.

When STR$ converts a numeric value to a string, it uses the
same conversion rules that the PRINT statement uses when it
displays a numeric value.

www.pocketmuseum.com 16-10

For example, to convert a number of cents into a string, and
then convert it into dollars and cents, with a dollar sign in front:

16 a% = STRECCEMTS —", " _
& IF CEHTS < 18 THEM @f = "8"+af

%G IF CEMTS < 168 THEM a% = "8"+a3
16 (% = IMSERTECAE. ", " LEMCaE -2

@ (F = CFC A

Note that line 10 removes the trailing decimal point; line 20
inserts a 0 in front if we have less than 10 cents; line 30 does it
again if we have less than a dollar; line 40 inserts a decimal
point two from the end; and line 50 puts in the leading dollar

sign.

See below for the STRF$ function, a more flexible version of
STRS.

Converting a String To a Number

To convert a string to a number, use the VAL function. For
example:

=Ll HUE

This statement converts the value of the string variable NU$ to
a numeric value, which it assigns to the variable X.

When VAL converts a string value to a number, it uses the same
conversion rules that the INPUT statement uses when it reads
a numeric value. If the string value is something like ‘5X’, which
cannot be interpreted as a number, VAL simply ignores
everything from the first invalid character to the end. Thus
VAL(“5X”) returns the value 5; VAL("FGHRTY”) returns the
value 0.

If A is the null string, VAL(A$) causes an |IQ error.

EXTRACTING PIECES OF STRINGS

One interesting characteristic of a string is that you can deal
with pieces of it. You can talk about the first five characters, or
the last five, or the five characters beginning with the 18th
character. Such a piece of a string is called a substring.

SnapBASIC has a complete set of functions for extracting
substrings from strings.

The LEFT$ Function

IéESTr-:;? extracts a substring from the leftmost (beginning) part of
g.

16-11

Not for sale

1B}



www.pocketmuseum.com

MHE = LEFTFCO=F, M

In this example, LEFT$ returns a string consisting of the N

leftmost characters of X$. X$ must be a string; N must be a
number.

For example, consider this statement:
FEIMT LEFTFCO"ABCDEFCY o945

This statement displays ABCD’, the leftmost four characters of
ABCDEFG'.

N, the second parameter of LEFT$, may be zero. In this case,
LEFTS$ returns the null string as its value.

If N is not an integer value, LEFT$ truncates it to the next

smaller integer. If N's value is larger than the length of the
string, LEFT$ returns the whole string.

If N is less than zero, LEFTS$ returns the entire string except for

the rightmost ABS(N) characters. Example: LEFT$(“abc”,-1)
returns ‘ab’.

If N is greater than 255, it is forced to 255.

The RIGHTS$ Function

The RIGHTS function is used like this:

MLIF=RTGHTFOSE M
RIGHTS returns—you guessed it—the rightmost N characters
of X$. X$ must be a string value; N must be a numeric value.
For example, this statement:

FRINT RIGHTSC "GECIEFD . 47

displays ‘DEFG’, the rightmost 4 characters of ABCDEFG'.

Again, N may be zero, making RIGHTS return the null string as
its value.

It N is negative, RIGHTS$ returns the entire string except for the
leftmost -N characters.

If N is greater than 255, it is forced to 255.

The MID$ Function

MID$ returns a substring taken out of the middle of a string. Itis
used like this:

MUE=MIDFECSF . F L HD

16-12

P is the position of the substring in X$. If P is 1, the substring
begins at the first position in X§; if P is 2, the substring begins at
the second position in X$; and so forth.

N, again, is the length of the substring.
For example, this statement:
ERIMT MIDEC"ABCIEFGT . 2. 30

displays ‘BCD’, a substring of ABCDEFG’ that begins at the
second character and is three characters long.

If P>=LEN (X$), MID$ returns the null string. If P is not an
integer value, MID$ truncates it.

If P is negative, MID$ converts it to O.

If N =0, MID$ returns the null string. If N is greater than number
of characters remaining in the string from the P'th character to
the end, MID$ returns the entire part of the string from the P’th

character to the end.

If N < 0, MID$ returns the entire string except for the -N
characters starting at position P. For example,

FREINT MIDFEC"RBCDERT 2 -2

displays ABEF’. Note that MID$(S$,N1,-N2) is the same as
ERASES$(S$,N1,N2).

EXAMPLE: DAY-OF-YEAR CONVERSION
USING SUBSTRINGS

The following program is a variation on our day-of-year
program. This version takes a completely different approach to
converting a month name to a number: it keeps all the possible
month name abbreviations in a single string, and compares the
Input name to 3-character substrings that begin at character
#1, #4, #7, ... until it finds a match.

Notice also that we start by taking a 3-character substring of the

input name with LEFTS$, so that the user can enter a month’s
whole name if he wants to.

119 FEM Cormpvert o ddote o cod—of —42ar.

12 BFEM ImPut: monthe ciod. & Henr.
‘e omeEans 1t

128 BEM OutPut s ddod of  Hsar.

148 EEM Eariqu95= MHF=mont b of  Hear
R o o T I =

142 BEEM IM¥S=dad of month, YESsdHsor,

128 FEM DEX=dod of Hsor. the result,

178 REM

16-13

Not for sale



1B}

128 EEM MAX= arra4d of daYdz in Yeor

—
Q0 Q0

F

RN
KA TR TN
EEERE ..

bt yand
senle

£ r'l_:l i r'l_:f — P

KRR el
T
snsde

e L
Srd
Ci={%
236
JHE

HLE N

before each month.

FEM MO%f=orray of month nome abbr. =

MOF="JanfebmaoraPrmodiuniul ougsap
octnovdec

ODIM HMAXC12>

FURE Tw=8 TO 11

FEED MAXCIX)

MEsT T

FEM FromPt user for morth, oo,
dJedr.

LHFUT "Mont h. dod, Jeqr: " s FiHE
DM* ., YR

IF MHE="ard" THEH EMHD
FHE=LEFTEOMME, =5

FOR IX=G TO 11

IF MWNE=MIDECHDE, {+2m T, o
COTO 286

ME=T I%
FEIMT "Month rname inwvaljcd?":
COTO 246
REM ComPute M1, then DIRY.
DE%=MACI%2+DIM>
FEM Al low for |leaP Years.
[<=1 GOTO 325G
MODXCYREX, 488=0 GOTO 245
MODXCYRY, 1880=0 COTO 255
HHPEi?EHJ4} COTO 256
Ry =
PRT "Dod of  dHenrs="i TR
LT 2

ATA d,21.59
DATA 98,128,151
DATA 181.212,24:=
DATA 273,284,334

MORE EXACT FORMATTING: THE STRF$
FUNCTION

SnapBASIC provides a more flexible method of converting real
numbers to strings: the STRF$ function. This function (the most

complicated in SnapBASIC) allows you to specify the format of
the output string quite exactly.

The format of the STRF$ function is:
HE = STREFOMGBL L HUPLURLGFLED

That's right, eight parameters. Look at the function description
In the Reference Manual for the definition of these parameters.

What sort of formatting can we do with this? Let's try a few
examples.

16-14

www.pocketmuseum.com

First, an example dealing with money. Say we want to print out
cash values in the usual format (that is, with only two digits
representing ‘cents’ following the decimal point). Thus, we
don’t want any exponential notation, ever (this will limit us to
$9,999,999,999.99—if you have a net worth of greater than ten
billion dollars, you can probably afford a much fancier computer
than the HHC, anyway). We want the result to the closest cent.
Just for this example, lets assume we aren’t going to print out
anything greater than $9,999,999.99.

So: first of all, the total width of the field. With the ten million
dollar limit, the field (include the decimal point!) is 10 places.
Thus, W=10. (We aren’t going to get any commas,

incidentally.)
The length of the fraction is two digits. So, F=2.

We never want exponential notation. So set H and L to extreme
values: H = 99, L = -99. Set E to 0: it won’t matter, anyway,
since L is so low. Same with P

We want to round the cents place: this is the 102 position, so
R=-2.

With all these values, try this program:
el TRHFLIT M

Sk FREIMT STRRFECM, 18, 99,99, 8, -2, 2, 805
SR OO 1w

Now enter a few values. Note that the output is what you would
expect for values like 50, 100, 20.01, and so on. See what
happens when you enter .0001:

1. L

This means that the number was to small to represent with any
precision at all (due to the rounding factor). To make sure this
does not happen, add the line

12 IF ABE=zdMy < .81l THEM H = &

Now enter a big number: 99E99. See that the result is a bunch

of asterisks? This means that the number was too large to fit
into the field.

Now let's make it a bit more complicated. Say we want to print a
dollar sign before the value. What happens when we do this?

18 ITHPUT H

S B o= STREFECH, 16, 99, 99, 5, -2, 2 68
Sk FREINT "0
S COTO 16

Try it. Notice there are a bunch of blanks between the dollar

sign and the value. Not too good: this could be especially
Painful if the program were printing checks (someone could

16-15

Not for sale



enter some numbers in between the dollar sign and the real
value, and you could be out a million bucks!)

So we need a way to get a “floating” dollar sign, that will occur
before the first digit. How can we do this?

Another function to the rescue! The SEARCH functionis able to
search for the n-th occurrance of a character within a string. So
first, count the number of blanks like this:

G T I N |

it

46 IF SEARCHOSE. " .13 THEH I =
[+1:G0OTO 46

We are being a bit sneaky here. The SEARCH function returns
the position of the i-th occurrance of a blank within A$. We don'’t
have to say ‘<> 0’, since the IF test will return TRUE for any
non-zero value, anyway.

56 EF = THSERTEOAE, "

Al P I, T o
bt BRSO R

l.‘ J‘-
beeed 3.
e

When we get to line 50, | contains the position of the first non-
blank. This is why we subtract 1. The INSERTS$ function puts
the second string into the first at the indicated position.

Try it!

Oh—one more thing. We want to maintain the length of A$ as
10 spaces, so the decimal points will be lined up when we print
out several numbers. Do that like this:

which deletes one blank (the one we replaced with a “$”).

What else can we do? What if we want commas inserted where
the number is large? There are a few ways to do this. We know
that position 8 contains the decimal point, so we might try this:

(again, the subtractions are to get rid of superfluous blanks).

But we want a more general solution to the problem. Try this,
then:

L (2 1]
b --l-l 1l i
L] !?: L i RS ----:E--
ey L] #EEF & @ FrEE® WEE B 444400 240000 EEE AW Ew - EEE EEEE
Ll -l. - .Hl ------- -:-
E#!E Etl.l * =I-- = = = = : E!.
- Ew - - L] _l-. LY -ll. .=
e i‘! .llll . ann H - LI =
LI S i i AR e B
------ (YT T TR
- T - = i
I : L) L ] .: . r.
- Wil H H = =l-lll : W .
l -
- LR ] T
i 3 3.0
L ] = = L ] L}
=::= :: ------- H 'n- ‘J. EEEEE R ATy PRI pERR BRA
= s ! ----- - . R omTroRERE mEERS e
= e : "aes® ! fenee B

www.pocketmuseum.com 16-16

G IF @EBESHOCHARE CaE . T r-mnldmE T 0l
= THER 12 |
A0 pF=IHSEETERE. 7, 7 L2
%1@ HE=T 1
Pl 5 S

Line 90 is a nice sneaky way to test if a character in a string is
within a range of characters, as long as the range is of even
length. In this case, the middle of the range is “5”. That s to say,
line 90 tests if the i-th character in S$ is a digit.

This routine will work for absolutely any string! Line 80 returns if
the string is too short to have any commas at all. If there is stuff
in the string besides digits, they will (maybe) be caught by line
90, if they are in the right place.

Here, then, is the final program, which accepts a number as
input, and prints out the result with leading dollar sign and

commas inserted in the right places. We've inserted a few
comments for clarity.

e THFUT M

- > AR " ..r. r
= FAFE o= STERS LB JE P
i S
e REM D
A TP T e R Py
g L U ) ol o | RO | N A B i
T
IH:I I“_l ! I“ : ..
e SN R I Pl SO 0 B B
-“-i r--i i...; “i::' en Ii E-- -::= -:- ri:l i -:i:. ! E
r '''''' .I- - -l J.
S E X S
E::' i“.: I-... : --i I. B EE ---
S R o it B T T oo e VO w3143 P =R
e 71 ]
'- I-. I“'l i"-i r.-.- I-I r-- ¥ l.l- .I=‘l
o TR | R
"""'_"I--"'"- ™ e ='"". '.' . - '! E
rRY OB L. P
o et s 1.
L] -: rl.i I-- r..= - — I-I'I iiiiiiiiiiiiiiiiii
ekl bl o : - 11
S0 IF EESNOCHE
E::: H!Il I E !III! !.. ! IIIIII
H I el 1.2
e i i - — wln  Ewems mEs"
ﬂ. -I-. .-I.. . I.- I ] L] J
I 1 W 2 I 2 R ]
o4 RMTLATOT
1168 KMk,
= I e W iy e I 1 - -
| 2 Bt ol I of i
[RCIS IR

Time for another example of STRF$. Let's say that we are
engineers, and thus are really partial to our results looking like
nanoseconds, and picofermies, and things like that. This is a

good place to use the power-increment field of STRF$. Try the
following example:

18 THPUT K
SE FREIMNT STRFE - . o S
SE GOTO 13

Now enter a bunch of numbers. Note that they are all printed in

eXxponential notation, with one digit to the left of the decimal
point. (Exception: EQO is never displayed.)

16-17

Not for sale



1B}

Now change line 20 to
S FREIMT STEFEOH le B8, 2, 128,50

and run the program. You will see that the exponents are

always multiples of 3, the number we have specified for the
power increment.

MORE ABOUT CHARACTERS

Inside your HHC, each character is actually stored as a number
between 0 and 127. SnapBASIC string values are represented

by sequences of such numbers.

For example, the character ‘G’ is represented by the number
71. The string value ‘Glop’ is represented by the sequence of

numbers:

——— length of the string

—— G

I

4 V1 1@z 111 11

Note that string values are represented by numbers between 0O
and 127, yet we all know that a byte can represent numbers
between 0 and 255. It is important not to store values greater
than 127 inside of string variables and arrays. Doing so will
cause the “garbage collection process” in SnapBASIC to fail.

Thus remember, only store ASCII characters inside of string
variable and arrays.

Comparing Characters

Because of this property of strings, we can say not only whether
one character is “equal to” another, but also whether one
character is “greater than” or “less than” another. One
character is greater than or less than another if the value that

the HHC uses to represent it is less than or greater than the
other.

For example,
‘0 < 'p’ (because 111 < 112).

‘0 > I (because 111 = 108).

Every lower case letter >  Every upper case letter
(values 97 through 122) (values 65 through 90)

www.pocketmuseum.com 16-18

Comparing Strings

By extension, we can say whether any string is greater than,
equal to, or less than any other string. We do this by applying

the following rules:

1. Iftwo strings are the same length, and every character of one
string is equal to the corresponding character of the other
string, the strings are equal.

2. |f two strings are not the same length, but are equal up to the
point where the shorter one ends, the shorter string is “less
than” the longer string. | - |

3. In any other case, let position X be the first position in which
the two strings differ; then the string with the lesser character
in position X is “less than” the other string.

For example:
‘Glop’ = ‘Glop’ (rule 1)
‘Glop’ < ‘Gloph’ (rule 2)
‘Glop’ > ‘GLOP’ (rule 3, second character)
‘Glop’ < ‘glop’ (rule 3, first character)
the null < every other (rule 2)
string string

ASCIl Code

The HHC’s system of representing characters by numbers is
based on the American Standard Code for Information
Interchange (ASCII), a system used on the vast majority of
computers that are manufactured today. ASCII is an official
standard adopted by the American National Standards Institute
(ANSI), a division of the United States Department of
Commerce.

The HHC’s version of ASCIIl is shown in the table below.

Standard ASCII characters are unshaded; characters unique
to the HHC are shaded.

This table shows the characters that the HHC can display.
Except for characters #0 through #31, these are all standard
ASCII characters. You can enter each standard character on

the keyboard by pressing the key that is labelled with the
character that is displayed.

A following table shows how to enter some of the non-standard

characters through the keyboard. (Not all of the HHC's
displayable characters can be entered in this way.)

16-19

Not for sale



A more detailed version of this table is shown in the Reference
Guide, Chapter 9.

numeric LCD

value display

W N =0

~No s

@ o)

9
10
1

12

13
14

15

16 BN
17 B
18 B
1 =

22

24

25
26
27

28
29
30
31

23 K&

none'?

none'?!

numeric LCD
value display

32 =P
33
34
35

37 =
38 .
39 '

#
36

40 I
41
42 &
43

44
45 -
46 .
47

T-
——

48
49
50
o1

Lot [t bt

52
53
o4
95

IS IR | g

56
57
58
59

LU ]
s bl
.

HH umn :_£:

60
61
62
63

> - This character has a special function when written to the LCD. See the

following table.

www.pocketmuseum.com

16-20

numeric LCD
value display

64
65
66
67

68
69
70
71

72
73
74
75

76
77
/8
79

80
81
82
83

84
85
86
87

88
89
90
91

92
93
94
95

Pt T

BEE R R - ot

- T

- |:_!

Il
[
i

EREEN NN

2T

g =

d

96
97
98
99

100
101
102
103

104
105
106
107

108
109
110
111

v
8

13
27

numeric LCD
value display

LCD
function

numeric LCD
value display

numeric LCD
value display

112
113
114
115

116
117
118
119

120
121
122
123

124
125
126
127

Makes HHC to “beep.”

Backspaces cursor.

128
129
130
131

132
133
134
135

136
137
138
139

140

141
142

Clears LCD (as when ENTER is pressed).

Begins an escape control sequence (see the

chapter on “Advanced I/O Techniques”)

16-21

= 4 b -

I3ITID

-lI'h-

ou bl

-
¥
'l

The following characters have special functions when written to
the LCD:

numeric
value

Not for sale



: saE REM InPut: strind in ITHE.

Converting Characters To Numbers... =13 REM IZ_I‘ILIH.. ]Tu’r..: olFE = IHE foroced

fo 0 CdEr COEE.

The ASC function converts a character (more precisely, a one- SoE FEN blorks wit T O SR

character string) to the number that represents it in ASCI| Silg IflﬁfEH L IHEF

notation. Here is an example of ASC: okl LU= i

o vt .,p...., . >C =5@ FOR I=1 TO L .
MEASLC T =ASL L 558 CH=MIDS(ING, 1,10 THEH
i B A0~ D 1 2 ) L I - '

This statement converts two one-character strings, “g” and “G”, Sl |1'F$:::':-ITIF’$ ; Ef'_";r;l;:l}-:j$ (R S

to numeric form, subtracts one from the other, and assigns the som OLE=0UE+0E

difference to N.3 =aE HE=T I

If the argument of ASC is more than one character long, ASC

converts the first character. If the argument of ASC is the null

string, ASC gives an “IQ error.” VAL and ASC

VAL and ASC are both conversion functions that expect a string

...And Back argument and return a numeric value; yet they have quite

different uses. One of the most common errors made by

The CHRS$ function converts a number to the character that the beginning SnapBASIC programmers Is to confuse these two

number presents in ASCIl notation. Here is an example of functions.

CHRS: VAL converts a string representing a number to the
A number. ASC converts a character to the number that
AF=UHEF ORDDCRE -0 represents the character in ASCII notation.

The first statement assigns X$ a value which consists of a For example, consider the following two statements:

lower-case letter. The second statement converts the M=l bl o EEET

character in X$ to numeric form, subtracts 32 from it, converts it P Rt R

back, and assigns it back to X$. The total effect is to convert the e

lower- case Ie?ter in X$, whatever it may be, to upper case. In the first statement, VAL converts the ASCI| string 235’ to the

. numeric value 235, and so the statement assigns M the value

The argument to CHRS is taken mod 256. 235
In the second statement, ASC pays attention only to the first
Example: Forcing Characters To Lower Case character of its value, which is ‘2'. The numeric representation
b g of the ASCII character 2’ is 50, so the statement assigns N the

A sophisticated program often asks its user for string input, and value 50.

then searches a string array for the string he entered. Such a

program generally should translate the input to all-upper-case

or all-lower-case, so that the string array doesn't have to STR$ and CHR$

Include every possible combination of cases, like ‘square’, o | |

‘Square’, ‘S(r]inFiE’, etc. - Similarly, STR$ and CHR$ are both conversion functions that

_ _ | | take a numeric argument and return a string value; yet they

Here is a piece of code that forces all the characters in a string have quite different uses.

to lower case:
STR$ converts a number to a string that represents the

number. CHR$ converts a number to the character that the
number represents in ASCII notation.

> - The number that represents any lower case letter is 32 greater than the

number that represents the corresponding upper-case letter. We'll make
use of this fact in a moment.

16-23

www.pocketmuseum.com 16-22 Not for sale



1B}

For example, consider the following two statements:
MEF="mThF o
R I | 1 B
In the first statement, STR$ converts the number 50 to the
string value '50’, and so the statement assigns to M$ the string
150!.
In the second statement, CHR$ converts the number 50 to the

ASCI| character represented by the number 50. That is ‘2’: so
the statement assigns the string 2’ to N$.

THE GET STATEMENT

SnapBASIC has one more statement for reading data that can

be extremely useful when you are processing strings. This is
the GET statement. It looks like this:

LET =F

wher X$ is a string variable, and N is a numeric value specifying
a logical unit number (LUN).

GET reads data from the keyboard or from a peripheral, as
INPUT does. It differs from INPUT is two important ways.

GET Reads One Character

First, GET reads a single character rather than a string of
characters ended by ENTER. It assigns its string variable a one
character string containing the character that is entered.

GET considers ENTER to be a character like any other. For
example, if you give GET the character ‘p’, it assigns a ‘p’
(numeric value 112) to the string variable. If you give GET the

character ENTER, it assigns an ENTER (numeric value 13) to
the string variable.

There are several special keys that SnapBASIC considers
equivalent to ENTER in most contexts, such as the SEARCH
key. GET reads these keys as distinct characters. That can be
very useful if you need a key that you can assign some meaning
of your own without risking a conflict with other meanings that
SnapBASIC might have for it.

16-24

www.pocketmuseum.com

GET Does Not Echo

Unlike INPUT, GET does not automatically echo characters on
the LCD as you type them. If you want the characters you type
to appear on the LCD, you must display them yourself. If you
want something else to appear on the LCD as you type—the
characters that you type, forced into upper case, for
example—you are free to do so instead.

GET's lack of echoing gives you complete control over the way
your program treats its input. For example, you can afsk the user
to type a command code and then you can display the
command’s name, rather than the code, if the code is valid. You
can display an error message if the code is not valid. Or, you
can ask the user for a password before giving him certain
information, and avoid echoing the password so that another
person watching what the user does cannot read it and steal it.

One useful application of GET is in reading the four keys
labelled C1 through C4, which are located in the lower left
corner of the keyboard. You can use these keys to command
your program to perform commonly used operations, much as
the HHC itself uses keys like CLEAR, 1/0, and SHIFT.*

SOME IDEAS FOR PRACTICE

Here are some small projects you can use for practice if you
want to become more familiar with string processing:

® Write a program that tells you how many times a given
substring appears in a given string.

® Write a program that displays the mirror image of a string
(placing the first character last, and so on).

® Write a program that reads a number into a string variable
and converts it to a numeric value, checking for every
possible error so that the user can get a nice message like

‘Invalid; please try again’ instead of INPUT’s brusque
‘Reenter’.

® Write a program like the preceding one, with this addition: as
soon as the user enters a character that makes the input
invalid, the program refuses to echo the character, and waits
for a valid character. Let ENTER or “space” end the number.

* - But be careful; the C1 key is your tool for halting tle execution of a
malfunctioning program, and GET pre-empts that use by reading C1 as an
ordinary character. You can usually get around this difficulty by pressing
C1 several times in rapid succession. If your program grabs the C1's as
fast as you can enter them, you will have to press CLEAR once.

16-25

Not for sale



You'll have to use GET to write this program. Can you write it CH APTER 17: SU BRO UTIN ES

by modifying your previous one, or do you have to start

over? If you have to start over, do you see a way you could As you write Basic programs, you will develop many pieces of

have written the previous program that would have made it code that you want to use over and over. Often you will need

adaptable to this purpose ... if you'd only known? ... to incorporate the same piece of code in several places in a
program.

It would be nice if you could include such a piece of code in
your program just once, and GOTO it wherever you need the
function it performs. This would create a problem: how could
the code return control to the part of your program that did the
GOTO, when that could be in any of several places?

With Basic’'s GOSUB and RETURN statements, your program
can do this.

Whenever you need to execute a frequently-used piece of
code, execute a GOSUB to the code:

LUE=LTE 1 E-0

GOSUB is like GOTO, except that when Basic executes a
GOSUB, it saves a pointer to the next statement after the
GOSUB. The code that you GOSUBed to can pass control
back to the statement after the GOSUB, wherever that
statement may be, by executing a RETURN statement:

e TR

Thus, you can GOSUB to the same piece of code from any
number of places in your program, and when the piece of
code Is done executing, it can RETURN to the proper place,
without knowing what statement called it.

The code that you GOSUB to is called a subroutine. We say
that a calling routine uses GOSUB to call a subroutine.

A SIMPLE EXAMPLE

Here is a simple program that illustrates how GOSUB and
RETURN are used:

o DI moSs

FE=EE RE=S C0SUE 1006

FEREIMT RC

AR=150 gE=-31 COSUE {505

FEIMT A

AL =Rl =g sl g0 g =00
AL =G COSUE 2006

FEINT AC

_ENI

O REM Add 2 numbersd Al=00+0E.
18 AC=AR+4E

PF

o -
P d L B o0 i

IR N
o et e .

F
wd Lo Lo

oo frote Josste 2 | 17Ty
=
Y
Ll
-
e
o

16-26 17-1

www.pocketmuseum.com Not for sale



1L ol i B T o B I T 11 T o= T = I = D AR
LR

F =0

LR I=1 T ACE?

HE=HC L 28 AR=AL

A I

MEsT ]

FE TLIRH

The program consists of a main routine from lines 5 through
70, and two subroutines, beginning at lines 1000 and 2000.

The subroutine at line 1000 expects input in the variables AA
and AB. In lines 10 and 20, we set up input to the subroutine in
these variables, call the subroutine, and display the result that
it returns in AC. In lines 30 and 40 we do the same thing a
second time, and in lines 50 and 60 we do it a third time.

Of course, this subroutine is so simple that it is hardly worth
using except to illustrate how to do a GOSUB. But it could just
as well perform a task that required dozens of statements. If it

did, then having the subroutine would shorten our program by
about 2/3.

Now look at line 50, where we set up and execute a call to the
other subroutine, beginning at line 2000. That subroutine is a
more complex one. It adds a variable number of values,
which it gets from array elements A(1), A(2), A(3),! .| .| . The
number of elements to add is found in A(0).

Look at the way this subroutine performs the addition. It calls
the other subroutine.

F
.

-i'-

PR
TN N

wote! Voucls

Wi BBl
T—
RN

1“*
=aae

ERRERE AR RRENRETE
*— Tnl
senne’  “mssde

AXERIFE SRR
1—1

|1

1"-.
-
T, T
s 1§

Basic lets you write a subroutine that calls another subroutine.
We call this kind of call a nested call, and say that the call to
the subroutine at line 1000 is nested within the call to the
subroutine at line 2000. Basic lets you execute nested
subroutine calls (to a depth dependent on the HHC and the

number and type of the FOR/NEXT loops in actual use when
the GOSUB is activated).

ANOTHER EXAMPLE: THE DIFFERENCE
BETWEEN TWO DATES

To illustrate the usefulness of subroutines, we're going to
make another extension to our day-of-year calculator. We're
going to make it perform a completely new task: calculating
the difference, in days, between two dates in the same year.
For example, we will make it tell us that the difference
between March 8 and March 15 is 7 days, and the difference
between April 8 and March 15 is -24 days.

www.pocketmuseum.com 17-2

When we develop a plan for this program, we immediately see
that the day-of-year calculator will do most of the work for us:

1. Get the first date and convert it to a day of year.
2 Get the second date and convert it to a day of year.
3. Subtract the first date from the second date, giving the

difference in days.
4. Print the result. |
We can easily turn the day-of-year calculator into a subroutine
and write a very short main routine to call it:

1@ REM Dote difference calculator.

>3 REM In: user is= FPromPted tor Headr
a2 ddotes=s,

26 REM Out: number of dods from 1=t
dote to Z2nd dote.

o FOR Th=E TO 1

TAE READ MOSOIN Mesc LR

Sl oMEST OIS

PR DETE dorns B febs Dlomor o
TEE TETE aFrs S8 mods 188, Jums 121
ZoE DETa duls 1o R e
AFE TETE oot S5 moes s SEES s cled s 205
4168 FEN | |

1368 FEM Moin rout 1ne.

iA1E FEM YEX=4e=ars MHF=mont hs
IM*=cod of months _

1A28 FEM Dl¥=1=t daod—of-—Heor:
?H?=$esaﬂa FEEPGQE%:vP.

ia=2Aa IHPUT "What Hears sk _

iAd4E IMPUT "1=t mont h.dad:s “sFMH$E DM

1858 GOSUE 2884

16e@ Di1x=DEFEx

1378 IMFUT "2nd mont h.daod: "sHMHE DM
1358 GOSUE 2866 o
1898 PRIMT "Difference is "iDREZ-D1-s
" doys.t )
1188 IHFUT "ASain™ s YMNT
1116 IF YNT GOTO 1834
1128 END
1158 KEM
SEEE FEM =ubeodtoime Lo S0P POt e
e o ey |
=Eie EEM In: YREN=dHear. PMHE=montn.

DM =cla 9—of —mont h.

SEFE REM Ound DEXS=ood-of - Hearr,

SEEE REM Usedd IE=looP incder.
Ml=daod=—hefors

A8 FOR I==Em TO i1

Aok IR MMNFE=MOEC IS 20070 S0

— i e

17-3
Not for sale



SEeE HEST I
SEVE FEIMT "Momt b omomes frpeen ] joft e
FETLUREH
SEEE BEEM ComPute M1, hen DR,
SEEE RS =MEAsC T v+ T
S1ee BEEM Allow for leaP 4H4sars
11 IF I%<=z THEW ERETURH
1z IF MODECYEY . 406=0 CO0TO 2156
128 IF MODECYES . 188:=8
THEM FETLIEH
21468 IF MOD*(YRE*.4» THEW FETURH
2158 DES=TF%+1
2168 RETURH

Note On Errors In Subroutines

If the user enters an invalid month name, the date difference
calculator shown here gives an error message, then goes
ahead and calculates a meaningless result. To avoid
calculating a meaningless result, we would have to modify the
subroutine to return an “invalid input” indicator. The indicator
might be an otherwise impossible value of DR, or a value in a
new variable added to the program for that purpose. We would
also have to modify the main routine to check the “invalid
iInput” indicator, and avoid calculating any result when that
indicator was found.

When you write a subroutine, you will usually have to give
some additional thought to such error conditions. To make a

program handle an error when a subroutine is involved, you
must

1. Make the subroutine recognize the error and note it by
setting some variable to an appropriate value, and

2. Make the calling routine act appropriately when the
subroutine indicates that an error has occurred.

Planning Ahead

There are ways we could have planned this program that
would have made the day-of-year calculator useless. By
seeing the day- of-year calculator's potential usefulness,
though, we were able to plan our program to take maximum
advantage of work we had already done.

This is an important principal in program design. When you
write programs, build on your past work. Design your
programs so that you can re-use code you have already

written. Write your programs so that you can re-use their parts
In the future.

www.pocketmuseum.com 17-4

GENERALITY VS. EFFICIENCY

Notice that the subroutine in the date-difference calculator
does the “leap year?” calculation each time it is called,
because we chose not to modify the heart of the day-of-year
calculator at all. There were some good reasons for making

that choice:

® \We saved ourselves some work.

® We saved ourselves the risk of introducing a bug in the
subroutine, which we would then have had to fix.

e We preserved the subroutine’s usefulness for its original
purpose.

Now, if we want to go back and make the day-of-year
calculator work by calling the subroutine, we can easily do so.
And if we should later find a bug in the subroutine, we can fix it
in both programs without having to deal with two different
versions of the code.

Thus, there are a number of advantages to keeping the
day-of- year subroutine’s code as it is. But there are some
disadvantages, too. When we run the date difference
calculator, it will do the “leap year?” calculation twice, even
though it is logically necessary to do that calculation only
once. Thus, the program is dong more work than it has to, and
IS running more slowly than it has to.

In this case, our decision not to change the day-of-year code
has gained us generality at the expense of efficiency. The
program runs less efficiently than it could, but the subroutine
IS more generally useful than it would otherwise be.

This sort of trade-off is common. When we design a program,
we often must choose among conflicting virtues like efficiency,
generality, compactness, reliability, and accuracy.

Should a program be small or should it be accurate? Should it
be efficient, or should it be generalized? Those are questions
we have to face each time we design a program. We answer
them in the light of the program’s purpose.

In the case of the date-difference calculator, the additional
processing time that the “inefficient” program takes is so slight
that the program still appears to run instantaneously. Thus the
real cost of our design choice is nil. Generality wins.

About Line Numbers and Subroutines

Not_icg the line numbers in our first sample program. They take
a big jump at the start of each subroutine. This is intentional.
First, it emphasizes the fact that each subroutine is a unit

17-5

Not for sale



distinct from the code that precedes and follows it. Second, it
makes each subroutine easy to expand without disturbing the
line numbers around it. For example, we could change the
function of the subroutine at line 1000, and expand it to
several dozen statements, without having to re-number the
lines that follow it. The freedom to do this can be invaluable
when we want to make extensive changes to a program.

If we have to make extensive additions to a long piece of
code, we can (and usually should) write the additions as a
new subroutine. Then we can add the subroutine at the end of
the program, and add little more than GOSUBs to the existing
code.

What Should Go Into a Subroutine?

As you design programs, you must often ask yourself two
related questions: first, “When should | write a subroutine?”
and second, “when | write a subroutine, exactly what part of
my program’s function should | include in it?”

In deciding when to write a subroutine, consider:

® |s there a sensible way to design your program so that a
subroutine is useful in two or more places?

e If a certain part of the program can be written as a
subroutine, is the subroutine likely to be useful in future
programs? A subroutine is easier to “transplant” to a new
program than a piece of ordinary code, since its
relationship to the code that surrounds it is easier to
understand.

® Are you adding a lot of code to an existing program? If so,
the addition will be easier to make if you make it in the form
of a subroutine.

In deciding just what to include in a subroutine, consider:

® What will maximize the usefulness of the subroutine? If you
Include too little of your program’s function, the
subroutine’s usefulness is reduced because it does less
than it could. If you include too much, the subroutine’s
usefulness is reduced because it is harder to utilize in many
different contexts.

® What will simplify the subroutine’s interface—the things
you have to know about the subroutine in order to call it? A
simple interface makes a subroutine easy to use, and tends
to increase its generality. If your subroutine’s interface is
complex, look for a different way to define the subroutine
that would simplify it.

For example, consider our date-difference calculator. We
could have shortened the program by making the subroutine

www.pocketmuseum.com 17-6

display a prompt, as well as inputting and analyzing data. We
could pass a word like “1st” or “next” to the subroutine in a
string variable named W$, and start off the subroutine like
this:

P of el BRI id u

EIFNT "Enmter tThe TablE:s T ocoted U5
Sy

- T
THFLIT PE LI

F
cnnme

KN
JR] AN
Tl

wn mm P

If we did this, we would add another variable, W$, to the
subroutine’s linkage. We would have to note the meaning of
W$ in the comments; and we would restrict the prompt to the
formats that line 2040 (above) could display. Instead, we
chose to keep the linkage simple and generalized by letting
the calling routine display the prompt and get the input values.

ERRORS THAT GOSUBS CAN CAUSE

Remember that every GOSUB to a subroutine must be
matched by a RETURN from the subroutine to the calling
routine. Failure to observe this rule is one of the most common
errors associated with the use of GOSUBs.

If you try to do a RETURN without having done a matching
GOSUB, you will get the message:

FT ERRELR
meaning “Return without Gosub error.”

If you try to nest GOSUBs more deeply than Basic allows, you
will get the message

L EBFFOr

meaning, “Complexity error.”

THE ON/GOSUB STATEMENT

The ON/GOSUB statement is like the ON/GOTO statement,
except that it does a GOSUB instead of a GOTO. It is useful
when you want to call one of several subroutines, and can

choose one depending on whether the value of a variable is 1.
2, 3, etc.

Here is an example of an ON/GOSUB statement:
UM e GOSUE 1800, S558 . S5mmm

It XX (truncated to the next lower Integer value, if necessary) is
1, this ON/GOSUB calls a subroutine at line 1000. If XX is 2, the
ON/GOSUB calls a subroutine at line 6000:; if XX is 3, it calls a

Subroutine atline 5000. If XX is less than 1 or greater than 3, the
ON/GOSUB does nothing; that is, it calls no subroutine.

17-7

Not for sale



CHAPTER 18: PEEKS AND POKES

INTRODUCING THE PEEK FUNCTION (B)

In normal use, SnapBASIC only allows you to examine parts
of memory that you have established through variables, and
there is no way you can control exactly where in memory a
variable is located. However, there are times that you might
want to look directly at specific locations in memory. For this,
you can use the PEEK function.

The PEEK function looks like this:
A=FEEK CAL
AD represents the address of a byte in the HHC’s memory.

PEEK returns an integer value between 0 and 255, giving the
contents of the memory location at address AD.

Note On PEEKing Two-Byte Fields

The HHC stores an integer value or an address in a two-byte
field. The first byte is the least significant, and the second
byte is the most significant.

You may think of such a value as a two-digit base 256 number

in which the 1’s place is on the left, and the 256's place is on
the right.

For example, if the integer value 300 were stored in locations
1000 and 1001, it would look like this:

location 1000 1001
contents 44 1
You could PEEK and reconstruct the value like this:
VL=RFEER CLIO08 )+ 255 FEER © 1RE]

Example: Is a Device Attached To a LUN? {H}{B}

You can use PEEK to determine whether a device is attached
to a particular LUN. This could be useful to determine whether
your program should or should not try to do I/0 on that LUN.

If no device is attached to a particular LUN. the SDT entry
representing that LUN has the value 255. If a device is

attached to the LUN, the SDT entry representing that LUN has
SOome other (lower) vaiue.

18-1
www.pocketmuseum.com Not for sale



1B}

www.pocketmuseum.com

The following code shows how you could PEEK at the SCT
entry for LUN #4 and write information to that LUN if anything
Is attached to the LUN:

=R BEEM Frimt ddebay jefFo 0F UM #4
at toos Fesd

ol IR FEEE C/PBYH =205 THEH EETUREH

ook FREIMT #4, . . .

so0 RETURH

INTRODUCING POKE

The HHC has a number of features that Basic cannot enable
you to use directly. You can use many of these features by
manipulating parts of the HHC’s memory where data about
the status of the HHC and the SnapBASIC interpreter are
stored.

SnapBASIC has a very powerful statement, POKE, that lets
you manipulate the HHC’s memory in this way.

Say, for example, you have a program that will run unattended
for a long time. Problem is, the HHC has an auto-off timer that
will power down the HHC after 10 minutes.

You can disable the auto-off timer by POKEing a number into
a location that tells the HHC not to turn itself off.

How POKE Works

The POKE statement Looks like this:
FikE A CH

AD is the address of a byte in the HHC’s memory. That is,
AD, is a value between -32767 and 32767 that identifies a
particular byte. Addresses in the HHC actually go from 0 to
65535; but because of the way integers are handled, it is
necessary to use negative numbers for values greater than or
equal to 32768. Specifically, -1 corresponds to absolute
address 65535; -2 is 65534, and so on.

CN is an integer value between 0 and 255. (This is the range
of values a byte can hold.)

POKE stores the value of CN at the address given by AD.

18-2

An Example: Disabling the Auto-Off Timer

The HHC controls the Auto-Off Timer by a byte at location
101. You may disable the Auto-Off Timer by changing one of
the bits in this byte; you may also periodically make the HHC
think that a key has been pressed by setting one of the bits in
this byte.

To completely disable the Auto-Off Timer, execute this POKE:
FOEE 181, BAMDCFEEECIGL 127

To turn it back on,
FOFE 18l BUOECFEERE LG 2, 1250

And to make the HHC think a key has been hit,
FURE 1B BURCFEERECIS] b, &dn

The BAND and BOR's are necessary to keep from changing
any of the other bits in address 101, which should really be left
alone.

CAUTION!!!

POKE works great as long as you POKE the right thing into
the right place at the right time. If you make a mistake with
POKE there is no danger that you will do physical harm to

your HHC, but you may do serious damage to your program or
to the files in your HHC's storage.

Here are some of the nasty things you can do to your HHC
with incorrect POKE statements:

1. You can change the contents of storage occupied by a file
In the HHC’s memory. This could change the the contents
of a file, or it could turn the file into nonsense, so that the
HHC can'’t even list it.

2. You can destroy the integrity of the file system, forcing the
_HHC to erase all the files that are stored in its memory. This
IS what has happened if the message “RESTART” shows
up on the LCD...a catastrophe, since every RAM file in the
system is gone.

3. You can change data that the HHC needs to perform basic
functjons like detecting data entered on the keyboard or
forming characters on the LCD. Then your HHC will not do
anything until you return to the primary menu with the
CLEAR key.

4. You can change certain critical data that the HHC needs to
respond properly to the CLEAR key. If this happens, you
must restart your HHC by turning it off and back on with the
ALL OFF switch on the back of the case.

18-3

1B}

1B}

Not for sale



5. You can change the contents of an area where the HHC
maintains a record of the current time and date, so that you
must reset the time and date when you are done POKEIng.

For safety’s sake, we recommend taking the following
precautions when you use POKE:

1. Pause and ask yourself if you really need to do a POKE.

2. Very carefully define the operation of the code that does the
POKE. Keep it short and simple; put it all in one part of your
program, and use remarks to document it thoroughly.

3. Before testing the program, copy all your files (including the
program) to a Programmable Memory Peripheral or other
storage medium. Ensure that if the file system is erased by
an error, you won't lose anything that is hard to replace!

4. Pause and ask yourself again if you really need to do a
POKE. If the answer is still “yes” ... go ahead.

OTHER PEEKS AND POKES

For a list of useful PEEKs and POKEs on the HHC, see the
Reference Guide, Chapter 8.

www.pocketmuseum.com 18-4

CHAPTER 19: USING THE
FUNCTION KEYS

The HHC has three special keys, called function keys, that
are labelled f1, 12, and 3.

You can define each of the function keys to represent a string
of up to 15 keystrokes. Then, whenever you press one of the
function keys, the HHC will respond just as if you had entered
the string of keystrokes that the function key represents.

Function key definitions are not erased by the CLEAR key.
Barring accidents (e.g., with POKE), they stay around until
you change them, or until you turn the HHC off with the ALL
OFF switch.

DEFINING A FUNCTION KEY

To define a function key,

1. Press the HELP key (above the « key). The HHC displays
the message ‘PRESS KEY FOR DEFINITION'.

2. Press the function key you want to define. The HHC
displays ‘DEFINE FUNCTION’, and then displays the
current definition (if any) of the function key you pressed. It
leaves a non- blinking underscore cursor to the right of the
definition.

3. Enter the string of keystrokes you want this function key to
represent. This string may include any key except ON, OFF,
a function key, and CLEAR. For example, it may include the
ENTER key.

The HHC erases the function key’s previous definition and
displays the keystrokes you enter, beginning at the left
edge of the LCD.

4. When you are done, press the same function key you are
defining (or the CLEAR key). This completes the function
key definition and returns the HHC to whatever it was doing
when you pressed HELP |

Note: since a function key definition may include » and < |
you can't use those keys to edit a definition! If you make a
mistake, you must finish the definition and start over.

EXAMPLE: A FUNCTION KEY FOR LIST

Let's define the f1 key to represent the LIST command.

Press the HELP key, then the f1 key. Now enter the five
keystrokes | i s t and ENTER. Press CLEAR.

19-1

{H}

{H}

Not for sale



iH}

{H}

Now enter Basic and select one of your programs from Basic's
menu. Press the f1 key and watch Basic begin listing your
program.

Suppose you had included L, |, S, and T, but not ENTER, in
the definition of f1? Then pressing f1 would make the HHC
respond as if you had pressed L, |, S, and T, but not ENTER.
You would have to press ENTER after f1 to make the HHC
begin listing your program.

DISPLAYING A FUNCTION KEY’S DEFINITION

To display the definition of a function key, press HELP and
then the function key. The LCD displays DEFINE FUNCTION
again, and then the definition of the function key.

When you are done looking at the definition, press CLEAR.

For example, to display the definition of F1, press HELP then
CLEAR. When you are done, press CLEAR.

Note that pressing CLEAR will return you to the SnapBASIC
menu! Re-enter the same file you were editing previously.

SPECIAL KEYS IN A FUNCTION KEY
DEFINITION

Did you notice the odd symbol that the LCD displayed for the
ENTER key in the definition of f1? That symbol is an inverse-
video ‘M'—an ‘M’ formed from clear dots on background of
black. The HHC displays it because the ASCII code for the
ENTER key (it is 13) places an inverse-image ‘M’ on the LCD
when it is displayed.

You can put most of the HHC's special keys in a function key
definition. Each of these keys will have its usual effect when
you call up the function by pressing the function key, not when
you place the keystroke in the function definition by pressing
the key.

Every one of the special keys you can put in a function
definition displays its own unique symbol on the LCD:

key symbol key symbol key symbol  key symbol
- HELP rotare |9 C1 i
- ] /0 INSERT ) C2 =
‘ - STP/SPD DELETE £, C3 i
¢+ =+ searcH B ener B ca I

19-2

www.pocketmuseum.com

You cannot put the following special keys into a function key
definition: another function key, ON, OFF LOCK, CLEAR,
SHIFT, and 2nd SFT. (But SHIFT and 2nd SFT have their
usual effects on other keys.)

HOW TO CORRECT A FUNCTION DEFINITION

Notice that pressing « stores a ' ® " into a function definition. If
you make a mistake while entering a function definition, then,
how can you correct it?

To correct a mistake in a function definition you must re- enter
the entire definition. To do this,

1. End the definition by pressing the original function key.

2. Press HELP, then the appropriate function key, as though
you are reviewing the definition.

3. Start entering the correct definition. When you enter the first
keystroke, the old definition disappears from the LCD, to be
replaced by the one you are entering.

4. To end the new definition, press the same function key.

HOW TO ERASE A FUNCTION DEFINITION

You can erase a function definition by pressing HELP, then the
appropriate function key, then the same function key again.

LIKELY USES FOR FUNCTION KEYS

Here are some function key definitions that you may find
valuable:

® The LIST command, possibly followed by ENTER, as in
our example above.

® The RUN command.
® The BYE command.

® Frequently used Basic reserved words such as GOTO,
INPUT, etc.; or frequently used phrases, such as ‘IF
A(0)=-1".

® A sequence of keystrokes that you must enter over and
over again at a particular point in your work; for example, a
sequence of keystrokes to perform an editing operation
that you must apply to many lines in your program.

® Frequently used responses to INPUT or GET statements.
You can use the function keys at run time as well.

A hint: It is possible that a function key definition can be
convenient, but dangerous. As we were preparing this book,
we had one function key for RUN, and another for the

19-3

1H}

iH}

Not for sale



commands NEW:AUTO 10,10. Well, great: the first time we
pressed the wrong button, the entire example we were
working on got erased. So a word of caution: dangerous
sequences probably should not end with ENTER.

www.pocketmuseum.com 19-4

CHAPTER 20: ADVANCED 1/0
TECHNIQUES

In this chapter we will cover some ways of doing sophisticated
/0 operations with SnapBASIC.

CONTROL CHARACTERS

The ASCII codes that represent normal, “displayable”
characters begin with code 32, which represents “space.”
(See the Reference Guide, Chapter 9.)

The ASCII “characters” with codes 0 through 31 have no
standard character representations. They are control
characters that are used to control I/O devices. Each control
character has a standard name and meaning, although its
exact function varies from one device to another.

For example, code 13 is “carriage return.” It customarily
makes a device begin writing a new line of output. This code is
input by the HHC’s ENTER key. PRINTing it on the LCD
erases the LCD and moves the cursor to the left edge.
PRINTing it on a micro printer advances the printer's paper
one line and moves the print head to the paper’s left margin.’

You can send a control character to the LCD like this:
FEIMT CHEFOR

where N is the number of the control character you want to
send. You will find it convenient to create string variables for
the control characters you use frequently, for example:
LEF=CHEF 1D |
FEIMT "bBEoch Pire dizPloded”sCRES " (=

s Leest presgit. s

For another example, ASCII code 7, “bell,” traditionally is used
10 make a peripheral device emit an audible alarm. On the
LCD, it creates the beep that you hear when you make an

error. You can make the HHC beep by sending an 7 to the
LCD like this:

EFf=CHRE S
FEIMT EF#s

Notice the semi-colon after BP$. This prevents SnapBASIC
from writing a carriage return to the LCD after executing the
PRINT statement. A carriage return at that point would be

m_

1 .

' - The MICro printer actually accumulates enough characters to print two

rmtes' and prints both lines at once. If the first line is ended by a carriage

| it: urn, however (as opposed to being ended by overflow onto the second
e), the micro printer prints the line immediately.

1B}

20-1 Not for sale



superfluous, and might be unwelcome, because the PRINT

statement was only intended to make the HHC beep; it didn't
display anything!

{H} Displaying Control Characters On the LCD

Althou_gh control characters normally perform control
operations on the LCD, they also have displayable
representations. For example, code 13, “carriage return,”
which clears the LCD, is represented by an Inverse-image ‘M’
(Recall that the ENTER key displayed an Inverse-image ‘M’
when you pressed it while defining a function key.)

If a particular control character has no control function on the

LCD, it displays its inverse-image representation. If it has a
control function on the LCD, it will perform that function.

You can display any control character, instead of performing

its control function, by sending the following sequence of
characters to the LCD:

1. ASCII character 27, “escape.”
2. ASCII character 73, ‘I’

3. The control character you want to display.

For example, you can display a ‘carriage return” on the LCD

(as an inverse-image ‘M’) by executing the following
Sstatement:

FREIMNT CHESOEP 3+ T+ 0HREC 130
Note that this technique works on some peripheral devices,

but not all! See the Reference Guide, Chapter 7, for details
on each peripheral.

{H ESCAPE CONTROL SEQUENCES

The sequence ‘escape | enter” to put the displayable
representation of ‘enter' on the LCD is called an escape
control sequence. Many of the HHC's peripherals recognize

escape control_sequences as commands to perform various
kinds of operations.

Every escape control sequence consists of three characters:

1. ASCII character 27, “escape.”

2. A character called the operation code. or opcode for

short, which specifies the operation this escape control
sequence Is to perform.

3. A Character called the data byte which gives additional
Information about the operation. The meaning of the data
byte depends on the value of the opcode. With some

www.pocketmuseum.com 20-2

opcodes the data byte Is ignored, but it always must be

present.
Like control characters, escape control sequences have
standardized meanings, but their functions differ on different

devices.

Unlike control characters, which are used by almost all
computers that use ASCII, escape control sequences have
meaning only on the HHC. (They may have meanings on
other computers, but those meanings aren't likely to have
anything to do with the meaning on the HHC.)

Here are some further examples of escape control sequences
that work with the LCD, and on many of the HHC's

peripherals:

e Set inverse mode: subsequent characters are displayed in
inverse-image form. Sequence is “escape C x” where “x,”
the data byte, is ignored.

e Set uninverse mode: subsequent characters are
displayed in ordinary form (not inverse-image). Sequence
is “escape D x” where “x,” the data byte, is ignored.

e Set flash mode: subsequent characters are displayed
flashing on and off. Sequence is “escape E x” where “x,”
the data byte, is ignored.

® Set unflash mode: subsequent characters are displayed
without flashing. Sequence is “escape F x” where “x,” the
data byte, is ignored.

The tables in the Reference Guide, Chapter 7, list all of the
escape control sequences recognized by the HHC. Chapter 7
also describes the effect that the sequences have on each
device.

If a given sequence is not recognized by a given device, the
device will ignore it; that is, the device will behave as though
no part of the sequence had been sent.

SQUEAK COMMAND

One of the more HHC-specific features of SnapBASIC is the
SQUEAK command. This command allows you to play music
(of a sort) on the HHC “beeper”. The format of the SQUEAK
command is

=EESE Pitoha b imes

Pitch is converted into an integer. 36 gives the highest note; 0
gives the sound of silence. 32 is approximately a middle C. A
difference of 1 is approximately 1 semitone.

Time Is converted to an integer. The time unit is
approximately 5.88 msec. There are 170 counts/second.

20-3 Not for sale



Note that a very long value for the time will cause a very long
squeak, and you cannot use the BREAK key to get out of it.

SQUEAK behaves interestingly for pitch values outside the
range 0 to 36. If the pitch is greater than 36, the following

formula applies:
SOUEAE @t ime = SRUEAE MODNH. 120+
S T
In other words, for large values, thee scale starts again at F
below middie C.

For negative values of pitch, an interesting assortment of
ticks, clicks, and squeaks are generated. (What you actually
get are octaves below the normal range; of course, the beeper
is not an ideal musical instrument, so mostly you get noise).

Example: To make the HHC play a chromatic scale,
18 FOR I=24 TO =25
SE =RUERE T 1
= HEST I

www.pocketmuseum.com 20-4

CHAPTER 21: ADVANCED FILE
TECHNIQUES

In this chapter we will cover some ways of doing sophisticated
file operations with SnapBASIC.

VARIOUS FILE TYPES {H}
In this tutorial you have already encountered two different file
types:
The first is used by the HHC general file system. It consists of
lines of ASCII characters. These lines are called records, and
can be displayed using the HHC system Editor.
The second file type you have encountered is the SnapBASIC
program file. This type of file can be transferred through the
use of the HHC File System, but it can only be examined and
displayed via SnapBASIC itself.
We will now discuss the file types that can be used with your
SnapBASIC programs:
1. The binary file.
2. The general ASCII file.
The structure of any file is shown below:
The “file information” field contains the following data:

Byte 0,1: Length of this file in bytes (including this field).

Byte 2: File type code. See the Reference Guide for an

explanation of the file types.

Byte 3: Length of the file name.
The file name part contains the name of the file as a sequence
of ASCII characters. The file name is limited to 255
Characters. “
The file contents part contains the information that the user
thinks of as being the ‘file’, i.e. the information that can be
used by the programs, or the program itself.
BINARY FILES {H}{B}
The structure of a binary file is as follows:
oo | o

1-1 Not for sale



The contents of the file is a sequence of arbitrary bytes. This
last is in contrast to text files, which are limited in content to

ASCII| characters.

Accessing and manipulating binary files is facilitated by the
following commands:

FOPEN sc

Opens a file with name sec. If the named file already exists,
it is made available for use with other file commands. If
there is no file with this name, then a new file is created. (If
it is necessary to test whether the file is already present,
the EXIST function should be used; see below.)

FPUT place, value

Put the byte value at position place in the file. File positions
are numbered from O to n-1, where n is the number of bytes
in the file.

FREVISE position,length

Modify the size of the file by length bytes. If length is
positive, then the file is extended; if length is negative, then
the file is shortened. Bytes are deleted or added at
position. Note that the contents of the new part of the file
are undefined.

Example: Create the file BINARY.EXAMPLE, make it 256
bytes long, and fill each position in the file with the number of
that position.

The following functions are available to obtain information
about the file and its contents:

EXIST(sv)

Tests for the existance of the file sv. Returns TRUE if the
file exists, and returns FALSE otherwise.

FADR(0)

Returns the address of the start of the File information of
the currently open file at the time the call is made. Returns
0 if no file is open.

Note: This address may change! Files “float” in HHC
memory, and many operations (both explicit and implicit)
may change this address. The function FADR(0) should be

www.pocketmuseum.com 21-2

called immediately preceding any operation that depends
upon the information.

Note also that the 0 is a dummy parameter.

FGET(place)
Fetches the byte at position place in the currently open file.

FLEN(O)

Returns the number of data bytes in the currently open file.

Example: We will modify the previous example so that no new
file is created if there is already one present, and we will print
out the contents of the resulting file.

5 e = FREECFREECEY — S0E:

18 MAMES = "BIMAEY. EXfMFL

28 IF EXISTOHAMESY THEH FOPEM HaMES
COTO 56

1@ HEST T

Note line 80. FLEN(0) returns the number of bytes in the file:
the bytes are numbered from 0 to FLEN(O) - 1.

Line 5 is included to allocate space for the new file, since
SnapBASIC eats up all available memory when it is entered,
and an OM (out of memory) error is likely to occur otherwise.

TEXT FILES {H}{B)

Text files are a special kind of binary file, where the contents
consist of a number of records, each specified by the number of
Characters followed by a string of characters. The maximum
number of characters in a record is 255: the minimum is zero.

The structure of a text file is as follows:

This type of file is identical to that used by the HHC File
System and Editor, so that it is possible to exchange
Information between SnapBASIC and the File System.

21-3 Not for sale



manipulate the sequence of characters within any file. This

T “ 1" f' T " . .
he “len” fields are bytes containing the length of the following opens up possibilities for many applications.

strings. The strings are “len” bytes long. Note that unlike some
file systems, records are not terminated by any explicit
character (such as carriage return): instead, the length byte is

the sole consideration in determining the end of the string. EXAMPLES

A string file is a subset of the binary file, in that the byte
sequence follows specific rules and the contents of the bytes
are (theoretically) limited to character representations.

The following examples show some possibilities for the use of
the file handling commands and functions.

To generate a file of any desired file type:
The SnapBASIC commands and functions for use with binary _—

fles may be used with string files. In addition, there are a FLIFE
number of specific operations designed for use with string

0 lenanes |
POKE FRDRECBI+2,  <f | et dpas

files. To read the thirteenth line (record) of the file into the string
variable A$:
FWRITE recnr, sv FOFEH <f i leromes
Writes the string sv to record number recnr in the currently FEEAD 12 A%
opened file. " (Note that this will read record number 12; since the first

record is number 0, this will be the thirteenth.)

FREAD recnr,sv
To write string B$ into record number 14 of a file:

Reads record number recnr from the currently opened file,

putting the result in sv. ECEER <F | | ermmes
FDEL FETITE 14, B#
o Note that any information that was originally in the record will

Deletes record number recnr from the currently opened
file. Moves any higher numbered records down to fill the
space of the deleted one.

be overwritten. If the length of the string B$ is greater than the
length of the original record, then the file will expand (get
longer). If B$ is shorter than the original record, then the file

will shrink.

FINS recnr,s . .
. . | To insert the string C$ at the second line of the file:
I_nsert_s the string s at position recnr, moving any existing CBEN | e
line with number recnr and higher upwards to make space Elfﬁgh"“ R

for the new one.
Note that all lines with record numbers 2 and higher will shift to

FREC(0) make room for the new line.

Returns the number of records in the currently opened file.
The (0) is a dummy parameter.

(Warning: Though it is generally safe to use the binary file
commands with text files, it is dangerous to attempt to alter
certain information—specifically, altering the length bytes will
destroy the integrity of your file. What's more, if you FPUT a
value greater than 127 into a text record, it will be accepted by
the system, but SnapBASIC will be unable to interpret the
resulting string appropriately.)

With these commands, you can manipulate any line (record)
of any text file. Together with the HHC file edit commands, you
can change, edit and string (up to 255 characters long, HHC
file editor=80) and use it with a SnapBASIC program to

FILE ERRORS

The following file errors can occur as FI ERROR:

1. File not opened.
2. Attempting to read or write a non-existant record number.

3. No room in opened file.

SPECIAL FILE TECHNIQUES {H}{B;

Here are some useful techniques for dealing with files:

21-5
www.pocketmuseum.com 21-4 Not for sale



www.pocketmuseum.com

To insert string A$ as the last record of a file:

FUFEM 1 erome s
FIM= FRECCEY  AF

Note that FREC needs a dummy argument, and returns the
number of records in the file.

To obtain information on the amount of available memory for
SnapBASIC and files, use FREE(0). This function frees as
much space as possible.

To obtain 300 bytes for your SnapBASIC program, use the
following method:

After all your arrays have been dimensioned, and if you only
have a small number of strings:

co= PRRERCEEEDD

To obtain 500 free bytes for your files, use

A = PREECFREERECED - Sk

=m L] . ]

Note that the value that FREE returns is the number of bytes
actually allocated to free space. SnapBASIC constantly
contends with the file system for space. Since strings are
dynamically allocated, as well as arrays (that is, the space is
allocated on the fly, when necessary), SnapBASIC tries to
grab as much space for its own use as it can. Thus, no room is
left for file creation unless explicitly done so with the FREE
command.

SUGGESTIONS FOR USE OF FILES IN
SnapBASIC

Here follow some suggestions for possible use of the file
system in SnapBASIC. The possibilities are only limited by
your imagination.

1. You can create a file and fill it with information using the
HHC File System Editor. For example, create a personal
file with:

name
address

city

ZIip code
phone number

where the entries have fixed positions within a line.

2. You can then create and use a SnapBASIC program to
access the above file, to read it, to sort it. For instance, you
could sort the information based on city names, and obtain
a list following the alphabetical order of the cities. A
program to do this is at the end of this chapter.

21-6

3. Another use is to create an input file for SnapBASIC using
the editor. You can now correct any mistakes before the
SnapBASIC program runs.

4. A SnapBASIC program can then use the entries in the file
as input to the program with little chance of typing errors.

In general, the Editor allows you to generate your own data
base, whereas SnapBASIC allows you to manipulate the data
in the data base using the powerful SnapBASIC commands.

EXAMPLE: A TEXT FILE SORTER

This is a program that will sort a text file. The file may be
sorted on any column. This program is useful, for example,
when you have a file with information in fixed fields: say, last
name in column 1, first name in column 10, and so on. This is
an example of a “bubble sort”, which is about the smallest (in
size) and slowest (in speed) among the many sort techniques.

P EEM Text file bubble sort
S BEM This =ort con B cdorme on
crE e oLy
S THFLIT TR "Ly MeME
Gkl IR BEel=TOoMAMEE Akt ]
okt PREIMT T Foie odoess medh @it
mED GUITOD S
SRR o FREE
LI
IF F

FE Bk L

okt FOFER FHAMES

S TR OFERECCED THER 126

LRt FRIFNT "That Fi R0k A, B

Lig CoOTo =6

Pl MUIROTS = FREOOSE -

Ladd THFLUT "Sort o TR P LTI
DL

Labidr IR OO0 b1 ] i m ek
THEM 175

28 FEINT "Columm must be 1 fo 255

R I e

I I I T ~ L

PaE IF OO W=0 THEH OOl SmbeEs

Pe REM OCOLY 1= oo LA e oF ohors Lo
e ri9nth

195 BEM of the zort ool
AT N =Ty

SR SLHRPY = FolsE

BT EEM SHAPY = amd sar Mis Poss’

S1id FREAD 8,0

=B FOR IM = 1 TO HUROT

o FREAD 1%, Bf

=20 FEM Ses (§ zorted

S TF RIGHTE S, mrl s
RIGHTE B, COL%y THEH =0

21-7

Not for sale



www.pocketmuseum.com

Sokt TR ORTGHTECSE, COLY
FIGHTECE., COL% Y THEH 236

o FEEM The ridht Ports ore eSyols
ot on lef .

Sl IR AF <= BfF THEH 2365

o BEM Get hers (F Poairs ars Pot
LT Srcde

SoE FUREITE IX.A#F

Sl FLUREITE I5-1.FB%

SO ST

Sk SWERY = TRLUE

S1E GOTO =S4

Sokl FEM Get herse (F fthe Paolrs ore
Ol e sort e

1 I R o >

Akl MEST T

Ao HURDT = 1]

sk IR ST aHD CHUBOT: > o1
LT SR

okl THFUT "Sort comPlete? 59000
R B e

smk TRONRY COTO 26

A FREIMT "SP dormes

This program shows many special aspects of SnapBASIC.

a) Integers are used everywhere to speed up the process.
b) The file commands are easy to use.

c) The powerful string functions allow negative arguments (as
In lines 240 and 250).

d) Logical variables are used.

e) Usually, a bubble sort requires an array. But because the
HHC stores files in memory, there are no arrays; instead,
the sort is done directly on the file. However, that is also
why the routine is fairly slow. It might be faster to read the

file into an array; but then twice as much space would be
needed.

This program also demonstrates effective validation of user
input, always a good idea in an application program..po 0

21-8

CHAPTER 22: THE FINAL
STAGE—PREPARING A CAPSULE

The final stage in the preparation of a SnapBASIC program for
permanent storage consists of executing the BURN
command. This command has the effect of converting the
SnapBASIC program into a “capsule image” that can later be
transferred into an EPROM capsule via the HHC’'s PROM
burning facility. Of course, BURNing is completely optional:
you are quite free to keep your program in the usual
SnapBASIC form for as long as you like.

What are the advantages of an encapsulated program over a
normal RAM file? The most obvious one is permamence:
RAM files, no matter how carefully you protect them, run the
risk of being accidentally or maliciously deleted. Another
advantage is portability: it is quite a nuisance to distribute a
RAM file for the HHC. Certainly, RAM files can be passed
about with Programmable Memory Peripherals; they can also
be transferred through the Telecomputing interface to the
HHC. But these methods are tedious, at best: what's more,
there is still no guarantee that the files, once transferred, will
not be lost, necessitating retransferring the files once again.

There are some more advantages specific to the SnapBASIC
system. A capsule prepared via the BURN command differs
significantly from the SnapBASIC file in several ways:

a) The capsule does not require the SnapBASIC system to
execute. It appears to the HHC as just another capsule, no
different from any other HHC capsule. This means that the
users of the capsule do not need any familiarity with the
SnapBASIC system.

b) The encapsulated program executes considerably faster
than it would under the control of SnapBASIC.

c) The program cannot be used with the SnapBASIC system
at all. Users do not have the ability to examine or alter the
program, giving a good level of security and protection to
the program. (This is either an advantage or a
disadvantage, depending upon your own desires for how
the program is to be used.)

tH}{B}

HOW TO PREPARE A SnapBASIC PROGRAM (H! (B!

FOR BURNING

There are certain things you have to do to prepare a
SnapBASIC program for BURNing. There are several things

YOu can do in a SnapBASIC program that you must change if
YOu intend to burn the program.

22-1

Not for sale



Most important, there are a number of constructs in
SnapBASIC that cannot be BURNed at all. These are:

a) The following statements may not be included in your
program: HISTORY ON, HISTORY OFF, BYE, NEW, RUN,
TRON, TROFF, LIST, DEL, and PAREN.

b) Obviously, only statements in deferred mode can be
burned, since only the numbered lines in the program are
burned.

c) GOTO <expression> and GOSUB <expression> are not
allowed. GOTOs and GOSUBs must refer to line numbers.
(At any rate, GOTO <expression> and its kin are not good
programming practice.) Such statements must be replaced
by ON...GOTO or ON...GOSUB.

d) REM statements must be the first and only statements on
their lines. You may not use the construct

Pt M=l REEM Dot oo thist

or you will get a BURN error.

e) Every line number referenced by a GOTO or a GOSUB
must be present. Remember, your program might seem to
run quite well—but that is no guarantee that every GOTO
or GOSUB is being executed. For example, this line:

e IR D GOTOD 1200

will never attempt to branch to 1200, and so will never
cause any problems when you RUN the program; but it is
not BURNable if line 1200 does not exist. The only way to
really make sure that all of your line numbers are present is
RESEQuence the program; non-existant line references
will be replaced by -1 in the resulting program.

These constructs must be removed from your program before
a BURN is possible.

You must have sufficient RAM available to execute the BURN
and to store the BURNed file. The BURNed file is going to be
larger than the SnapBASIC source file, unless the source file

has loads and loads of very long remarks and a lot of very long
variable names.

~The very smallest program, that consists of nothing but
remarks (quite useless!) takes something on the order of 1300
bytes in BURNed form. The largest program requires on the
order of 6500 bytes just for the run-time support: this would be
a program with every function called and every construct
used.

More RAM is also required during the BURN process—the
amount varies depending upon your program; at any rate,
figure at least 25% more memory than the program is going to
take.

22-2

www.pocketmuseum.com

A BURNed program functions somewhat differently from the
way it would function in SnapBASIC. First of all, and most
obviously, the BREAK key no longer functions. Type-ahead is
still possible, but the amount of acceptable type-ahead is
reduced by fifteen characters. (For example, on the keyboard,
it is reduced from 24 to nine.)

Since the BREAK key does not exist as such, the CLEAR key
can be used to accomplish the same purpose. This is
consistant with the operation of other HHC capsules. Be
careful, though: it you press CLEAR twice, very quickly, you
will end up with a scratch file lying around with the same name
as the capsule. You will want to get rid of this file as soon as
possible.

The capsule will use a scratch file of the same name as the
capsule name, during running of that capsule.

HOW TO BURN

To BURN a program, proceed as follows:

a) First and foremost, make a copy of the file using the File
System utility. The BURN command destroys the old file,
even if the BURN command is unsuccessful, and you
certainly don’t want to lose all of your work. You should put
the copy to be BURNed in a RAM bank that has plenty of
free space.

b) Next, look over your program and make sure that you are
not using any of the aforementioned unBURNable
statements.

c) RUN your program, and make sure it still works.

d) Decide on what name you want your program to have when
it appears on the HHC menu. For example, le’s call it “My
program”.

e) (This step is optional.) Execute the following command:

HORE SE5, 6

This will speed up the display considerably (and thus the
BURN).

f) (This step is optional, and is only really necessary for very
long BURNSs.) Execute the following command:

FOKE 181, BAMDCFEEK (1813, 1275

This disables the Auto-Off timer. BURNing sometimes
takes quite a while, and you don’t want the HHC going to
sleep on you. (Not that it hurts anything: you can always
press ON to continue. But it is a nuisance.)

g) If you want to, attach your micro printer (or whatever hard

Copy device you have). A permanent record of the BURN
Process could be helpful.

22-3

Not for sale



h) Now you can execute the BURN command. Say
BLUEMH "M4 Progrom”

It will take a little while for anything to start happening. This
Is because it takes SnapBASIC some time to get its own

A SAMPLE BURN

| | ' e
ample of BURNing a working program: Try the examp
f‘g: g){'RF% in the chapter on strings. That program looked like

this:

{H}{B}

affairs in order before the actual BURNing can happen.
Watch what happens:

The LCD will display the first line of your program.

Then there is a wait, while SnapBASIC processes the lines.
Notice that only the line numbers of REM and DATA
statements are listed. SnapBASIC is busy merging DATA
statements, eliminating variable names, and converting
GOTOs and GOSUBs to absolute jumps and calls;
SnapBASIC is also determining what parts of the runtime

system need to be loaded for this statement.

After all this has happened, the second line is displayed,

and there is yet another small wait .

Towards the end of your program, you may notice that the
process is faster. This is because the run-time support for
these lines has already been included due to the earlier

lines.

You can let the process work unattended: If a BURN error

occurs, SnapBASIC will display the line with the error.
beep, and display the error message (which will be BU,
OM, or GO) over and over again. You can get out of this by
pressing any kep (except CLEAR), at which point you will
be returned to the primary menu. Your program is lost and
unsalvagable. Aren’t you glad you backed it up?

If no error occured, the message

LT ]
=“.I H "It gttty R !'H: E.ﬂi E".-l i'-'l
"eeat  § aleas Pene T 88 §: f@ @

will be displayed, where nnnn is the number of bytes in the
new capsule. Press any key, and you will be returned to the
primary menu. Note that the SnapBASIC menu no longer
shows the file you burned (though you can see it in the File
System menu). This is because it is no longer a
'SnapBASIC file; rather, it is a capsule Image file.

) You can now transfer your file into EPROM, using whatever
method you have available for burning EPROMSs. If you
have a Memory Extender with a RAM/ROM switch. you
canb test your final program in simulated ROM space. Due
to addressing conventions in the HHC, however, you
cannot test your program in RAM space.

Of course, you should never press CLEAR from SnapBASIC.
But if you press CLEAR twice (out of reflex. or whatever) in the
middle of a BURN, there will be a capsule image file with the
same name as the SnapBASIC file, but it will be full of

garbage. You must go into the file system and delete that file,
unless you want a booby trap lying around.

22-4

www.pocketmuseum.com

3 THFUT H o
E PIEF ;T STREFEOMIE,, 55, 99 b - k)
a4 I=1

EM Insert leadiny dollar 29 .
I'E”EiEHFTEZP-IimE.: oty Ty THEM I=I+1s
LT S

o U o
1y T
R

T "
anale

50 AE=IHEERTECA. g, I-1
= E=gE-T
%lé- EET“l Trises . COOiiin s, T= there O

cec imal Poimty

C=SERRECHORE, "o 7.1 o
IF o< 4 THEM 128:REM MHooodecimdl
Poivth s or oo short

FOR I=C-4 TO 1 SikR -

F
meein

s R R K

1t

IF @EShoCHERAE, Tr—aS0o S b
THEH 128

G0 GE=THEERTSRE, "L " 10
{16 HEST I

{26 PRIMT @

{58 cOTo 18

irst of all, the program needs to be checked out for ||_Iegal
Egg;tructs. It Io%ksg OK: but try to b.urn it: Line 70 will be
displayed, with a beep and a BU. Oh, right—itis illegal to,have
a REM statement unless it stands alone on a line. Aren't you
glad you made a copy of the file? Press a key to return to the
primary menu. Re-enter SnapBASIC, and select the copy of

the file. Edit the line:

FEOIF C o4 4 THEH 128

Just get rid of the REM. Now make a new file, and try the
BURN again. You get the following display (after a wait):

Ter TR B

L 0 T il t' ! .i .“:. =::E =::' =::' =:.|:E i:::i I -‘:=
SR OME om T RREOM, DR T T

e ™ s 3 g™l § " ‘I.ll .-' = . - -E- '--= ‘-E“ E-u% E:- L-!.

SR IR S e o I o R i PR AR |
IR
- .- Fewn "suw

okl FESIMNSERETE A

:-E::. l-'-l 11.:-—'- il':'1“

N DO B R S

m.l--‘

et 8

Not for sale



Another blank line.

Bkt L= EEUHORE T T L 1

Gt DR O D 4 THEM 128

okl FUORE I=C-4 T 1 STER -3

A IR REBDEOUHARCRE T -mnil OS5
o THEM 1EE

LRI = MSERETECRE, " " T

Vi MEST ]

Lkl FEIMT MEs
1

GOTO_ 16

and now SnapBASIC is waiting for you to hit a key. When you
do, the HHC main menu is displayed. You are done! Notice
that the file no longer appears on the SnapBASIC menu. You
are now ready to actually transfer to EPROM. This program

will fit into a 4K byte EPROM capsule (with 313 bytes to
spare).

www.pocketmuseum.com 22-6

CHAPTER 23: EXCEPTION
HANDLING—THE ONERR
STATEMENT

Suppose you have written a Basic program designed for the
most naive user. This person knows nothing about
programming, nothing about computers—all this person
wants to do is use the program you have provided to do some
very important task. Now, midway through the program,
suddenly a message pops up on the LCD saying

T E O U S v e ]

“What an insult! What's wrong with my intelligence?” What's
worse, all the work that had gone on is wiped out, deleted, and
there is really nothing the user can do but start all over again.
Most unpleasant. Result: one very irritated user. (Also, maybe
one lost customer.)

Of course, we know what has happened. We have used
BASIC, and know that the IQ error probably happened
because a really big number was entered, or something like
that. But there should be a way to catch problems like this
before a message is displayed.

Certainly, it would make more sense for the program to check
all of the numbers entered by the user, to make sure that they
are in the proper range: Good programming practice
mandates that all input be validated, and as such numeric
problems can usually be avoided. But not always.

SnapBASIC provides a statement called ONERR, which
causes control to pass to a particular line in the program when
an error condition occurs, or when the BREAK key is pressed.
This statement looks as follows:

ke RE OGOITO o mermbee e

Certain information is lost when an error occurs, even if there
Is an ONERR in a program. Most important, any subroutines,
FOR/NEXT loops, and functions are terminated. Hence, there
IS no simple, automatic way to get back to the place in the
program where the error occurred.

There is one piece of information available from the system,
and one only. Specifically, the error code can be determined
by PEEKSs at locations 852 and 853. Stored here will be two
Characters: either the two-letter error code (like IQ) or the
letters ‘Br’ if the break key had been pressed.

Any ONERR statement remains effective until the program
ends, or until the BREAK key is pressed. The first time the
BREAK key is pressed, any pending ONERR is disabled: the

23-1 Not for sale



next time, therefore, BREAK will interrupt the program, as

usual (unless another ONERR is encountered in the
meantime.)

It is possible to seed your programs with flags (variables) that
can tell the error-handling routine what was happening when
the error occurred. For example:

188 FEM A FProgram Lo do zomsthi;d wit b

Files,

=SB FEEM FLAG tells what we wers oojnd.
S CMERRE GOTO ZSHRE

G FLAL = 1

=R THFUT "File romes "aFRHE

=kt FUFEM FHFE

v FLAG = &

5‘:.‘@ L ERE=UHEECREREE CBEE 0 0+
LHEFCFERR CoDEy )

U FLAG GUTOD SEEE, G Eee
FRIFT TUnkmows error. 8o

?
.-

RN

F

—-_—
REERE
L I L
sbiniin

SEEE IR ERFECETOMT O GOTO 2E2.
Sl EEM Fres P zoms memnord
G T M X I o 1 o N o S S R B 1 I
0 T S 1

GEEE EEM Hondlese other srrors. . .

This code then will free room for the file, but only if the system
first complains that there was not enough room in the first
place. Other errors can be handled similarly.

ANOTHER USEFUL TRICK

Another useful thing to do with ONERR is to wipe out
information that just should not be accessible to the
user—passwords, in particular. Say the user presses BREAK
In the middle of the program. Then there is nothing to stop the
user (assuming the user knows how) from examining memory
till he finds something that looks like a password, and poof!
there goes your security. Deal with that problem like this:

18 DHERRE GUTO 18

16808 OHERE GOTO 106AS
TRILE L EME S BRI
Why are there two ONERR statements? Simply because a

y
BREAK disables any previous ONERR—and if there were

www.pocketmuseum.com 23-2

only one ONERR, a second quick BREAK would stop things
before the CLEAR was executed.

It should be pointed out again and again that the use of
ONERR to control errors caused by mathematical problems
and the like should really be eliminated ahead of time, by
validating input and not trying to operate on invalid
parameters. Most of the time, there will be nothing salvagable
after an error: all you can really do well is to start all over
again. This works nicely:

i@ OHERE GUOTO 1TERE
iAER GOTO 16

@S  mEE S

There is one oddity in the operation of ONERR that you
should be aware of. If you have the statement

16 OHERE GOTO 18

and line 1000 does not exist, SnapBASIC will go into an
infinite loop! Why? Think for a second. When the first error
occurs, SnapBASIC tries a GOTO 1000. But this causes
another error, since line 1000 can’t be found. So SnapBASIC
does what it is supposed to: it tries to GOTO 1000
again—causing the same problem. Ad infinitum. Moral: Make
sure ONERR really has a place to go.

23-3

Not for sale



www.pocketmuseum.com

CHAPTER 24: LOADING
PROGRAMS FROM FILES AND
PERIPHERALS

There are certain situations in which you might want to get
programs into SnapBASIC in some other way than by typing
them in.

Chief among these is the fact that if you make a single mistake
on a line, you have to type the entire line in from scratch (since
none of it is recoverable). If you are a sloppy typist, this can be
aggravating.

Compatability is another factor. If you have a program that is
in some other version of BASIC, it might contain statements
that are not proper SnapBASIC statements, and will cause
errors if sent directly to the compiler. However, you could
change these statements very slightly to make them
SnapBASIC statements.

Another reason is that some programs are long, and you
might want to be able to get the program automatically loaded
into the HHC. But SnapBASIC only understands files created
by SnapBASIC. So what do you do?

THE LOAD COMMAND

You are free to create and edit your file using the Portawriter
capsule, or the HHC File System Editor. Once you have done
this, the LOAD command is quite useful. This command looks
like this:

O 7 F 1 i emames

The LOAD command expects a text file as input, and turns it
into a SnapBASIC program. When it is executing, it prints out
a number for each line it is reading in. LOAD will generate
error messages, just as if you typed the lines yourself. The
erroneous lines will not be in the program—but you can go
back to the File System Editor (or Portawriter), correct them,

and reLOAD; or you can just type the missing lines in
SnapBASIC.

A file that is to be LOADed may not contain any commands.
Only line-numbered statements are allowable. Some
Immediate commands are executable through LOAD, but this
IS not reliable and should not be counted upon.

The file that is to be LOADed must reside in the same RAM
bank that you are running SnapBASIC from; you cannot
eXxecute from internal RAM and load from external RAM, for

24-1

iH}{B}

1B}

Not for sale



{H}

example. Use the File System COPY command to get around
this problem.

You can only LOAD text files; you may not LOAD other
SnapBASIC files.

The LOAD command is only available in immediate mode,
and cannot be executed from within a program.

DOWNLOADING PROGRAMS FROM OTHER
COMPUTERS

Another thing you can do is download your program from
another computer, as text files to be LOADed, or directly to the
SnapBASIC compiler. As a matter of fact, when we were
writing this book, we downloaded all of the example programs
from the word processing system we were using to HHC, so
that they could be tested. (That's how we know they all work!)
You can also transfer programs from one HHC to another.

You have several options, depending upon what computer
you are trying to download from, and what HHC peripherals
you have available. Probably the easiest method is via the
Serial Interface Adaptor with the RS-232C Capsule. This
requires direct access to the “host” computer. (For the sake of
brevity and clarity, we will refer to the computer from which
programs are being obtained as the “host”.) This host
computer might be a personal computer, a word processing
system, or another HHC.

One of the primary advantages of this method is that it
compiles “on the fly”: in other words, the actual source text is
not preserved, only the compiled SnapBASIC code. Here’s
what happens: SnapBASIC accepts characters (about thirty at
a time), and compiles them directly into SnapBASIC's internal
form. As such, the actual source text is never permanently
stored in the HHC. This represents a considerable space
savings (at the expense of compilation time).

This method is not suitable for downloading programs that are
not SnapBASIC. See the following section for ways to
download other types of files.

The host computer, of course, must have the ability to transfer
ASCII files over an RS-232C cable. Set up the host computer
telecommunications capability in whatever fashion is most
fitting for the host. The only absolute requirement is that the
host computer support some sort of protocol: as a bare
minimum, the host should be able to receive XON/XOFF and
suspend transmission accordingly. Alternately, the host could
support the ACK/ETX protocol also available to the RS-232C
peripheral, or DTS hardware handshaking. (If your host

www.pocketmuseum.com 24-2

computer can not handle this, another method is required.
See the next section.)

The source file must be prepared in a somewhat special way
so that SnapBASIC can process the file properly. First. and
most important: all line feed characters (and other form
controls, with the sole exception of carriage return) must be
stripped from the file. SnapBASIC does not understand
linefeeds, and will produce error messages (usually CH for
illegal character) if they are encountered in the file. Also, other
control characters should be removed. (Some word
processors insert control characters into the file). This file
preparation can either be done before the file is transmitted, or
by the file transmission program itself.

Append the following statement to the end of the source file:
ATTACH 129 T #6

This will return control of the HHC to the keyboard once the
transmission iIs complete. (Note that command lines can be
included in the source file!)

Set up the RS-232C Adaptor on the HHC to correspond to the
requirements of the host computer. See the RS-232C manual
for this procedure. You should ignore the data parity bit: you

must select some sort of handshaking protocol (SEND
XON/XOFF will suffice).

Now, get into SnapBASIC. Take the following step to speed up
the process:

FORE 53558

All the text that is transmitted will be displayed on the LCD;
this poke sets the display rate so that it is considerably faster
than what you would get from pressing STP/SPD 0.

Make the RS-232C Adaptor the input device by executing the
following command:

HTTHRCH 1324 TO #6

Note that none of the keys-on the HHC (except the dangerous
CLEAR key) work any more.

Now, tell the host computer to start the file transmission. Note
that the lines of the source program are displayed on the LCD,
Just as if you were typing them in yourself. If there are any
errors in the source code, the error messages will be
displayed on the LCD. Program transmission will continue
after the error; you might have to re-enter the lines by hand. (If

there are a lot of very strange errors, something is probably
wrong with your transmission setup.)

24-3

Not for sale



{H}

Because you appended the ATTACH line to the source file,
once the source file is completely transmitted, the keyboard
will once again be active. This would be a good place to
examine the file (using LIST) to make sure that it was
transmitted properly.

If CLEAR is pressed during the file transmission, the contents
of your file will be unreliable, and inaccessable. You must
press CLEAR twice, to be able to get back into the file at
all—and then the only thing you can really do is delete the file.

There is no easy way to stop the transmission process in mid-
stream. Because you have lost control of the keyboard, the
BREAK key no longer functions. What you have to do is:

a) Stop the host computer from transmitting.
b) Make the host computer send the line

ATTECH 129 TO #8

to give control back to the keyboard. (It is wise to preceed
this line with a carriage return to clear any partially-
transmitted lines from the buffer).

c) Now you have full control of the HHC again. Use LIST to
see what has happened.

If you can’t get the host computer to return control, drastic
measures are necessary. Press CLEAR twice. Immediately
select SnapBASIC again, and select the file you were working
on. If you are lucky, you will be able to salvage some of what
was transmitted...but you might be better off to start from
scratch all over again.

OTHER WAYS TO DOWNLOAD

Suppose one of the following considerations applies:

a) Your host computer cannot handle any handshaking
protocoils.

b) The BASIC program you want to download is not in
SnapBASIC.

c) You cannot remove control characters (like linefeed) on the
host computer side.

d) You want to download from a computer over the phone
lines.

In these cases, downloading directly into SnapBASIC will not
be appropriate. In this case, you will need one of the
Telecomputing series capsules. These capsules have the
ability to save text into files for you. (They can also save binary
files, which makes it possible to transfer SnapBASIC
programs in object form from one HHC to another).

24-4

www.pocketmuseum.com

If your host computer cannot handle any handshaking, the
Telecomputing 2 capsule can load files with no handshaking
at speeds of 300 baud or less. This is quite slow, certainly; but
it is one way to work. (Of course, if you are transferring over
the phone lines, 300 baud is about as fast as you can go with

the HHC modem.)

Follow the directions in the Telecomputing manual to establish
communications with the host computer. Save the BASIC file
with the RCVE key. You then have a way to edit the non-
SnapBASIC statements with the File System Editor (or
Portawriter) into the proper format. You can then use the
SnapBASIC LOAD command to get the file into SnapBASIC.

If you need to massage the text file to remove line feeds and
control characters, here is a SnapBASIC program that will do

it for you:

16 IHFUT "File to mossoss: TR LLEF
A IF ExlsToRFILESFY LT S

2E PRIMT "That File doss ot exist.’
AF GOTO 18

=9 FOFEM FILEFE

= IF FEEECFADRECEISZ Y = & GUOTL H
TEHOPEIMT "Thot iz ot o ftexh 11,
e LT 1H

aF FOR I=0 TO FREECOEI-]

188 FREEALD L.LF

116 FOR J=LEMCLEY TO 1 =5TEF —1

126 IF CHeaRECLE, T2 = o@=oo™ 7 GUTH 146
1260 LF = ERaSEFOLE. .10

146 HEST J

1568 FUEITE L.LE

1= HE=T I

If you want to transfer a SnapBASIC file from one HHC to
another, just use the Telecomputing 2 binary file transfer
capability to get the file into your HHC.

24-5

Not for sale



¢ key, 4-5, 6-5

LIST and, 4-4, 4-6
ABS function, 15-3
AC Adaptor, 2-1
Adaptor

/0O, 2-3, 7-7
Address, 18-2
ALL OFF switch, 2-1, 19-1
American National Standards Institute, 16-19
AND, 9-9
ANSI, 16-19
Argument, 15-1
Array, 11-1

dimension, 11-2
Arrays

Boolean, 10-6

integer, 10-5

limits, 11-6

multi-dimensional, 11-5
ASC function

compared with VAL, 16-23
ASCII, 20-1
ASCI| representation, 16-19
Assignment

Strings, 16-3
Assignment statement, 3-1
Attach codes, 14-9
ATTACH statement, 14-4, 14-8
AUTO command, 4-8
Auto-off timer

disabling, 18-3
Auto-repeat

Speed of, 5-8
Auto-repeat feature, 4-8
Auto-shutoff feature, 2-13

B

Back-up, 7-4
BAND function, 10- 4, 15-4

Batteries, recharglng 2-1
Binary flle structure, 21-1

www.pocketmuseum.com Not for sale



Blip, 2-2

DELETE, 6-3

INSERT, 6-1

LOCK, 6-6
Body of a function definition, 15-6
Boolean

arrays, 10-6

mixing, 10-5

operations, 10-5

values, 10-6
Boolean variable, 10-5

name, 10-5
BOR function, 10-4, 15-4
Boundary condition, 12-5
BREAK key, 4-6, 9-2, 12-10

disables ONERR, 23-1
Breaking execution, 9-2
Bug, 12-8
BURN command, 1-2, 22-1

preparing for, 22-1

REM statements, 8-2
BXOR function, 10-4, 15-4
BYE command, 2-2, 4-9, 7-3
BYE key, 7-2

C

. statement separator, 9-10
C1 key, 9-2
Call to a subroutine, 17-1

Capsule
advantages of, 22-1

differences from SnapBASIC file, 22-1
Character, 16-18, see also String

Case translation of, 16-22
Conversion to number, 16-22

CHR$ function
compared with STR$, 16-23

CLEAR key, 2-2, 7-2, 14-6, 18-3, 19-3

avoid!, 9-2

Code, 4-3

Coding, 4-3

Column, 11-5

Command, 4-2
AUTO, 4-8
BURN, 22-1

REM statements, 8-2

BYE, 2-2, 4-9, 7-3
CONT, 12-12
LIST, 4-4, 14-7

www.pocketmuseum.com

LOAD, 24-1

RESEQ, 4-9

RUN, 4-2, 4-10, 12-12
Commands

BURN, 1-2

Communications protocols, 24-2

Comparison
String, 16-7
Computer program, 1-1
Concatenation, 16-5
Constant, 2-6
CONT command, 12-12
Control character, 20-1
Copying files, 7-3, 7-4
Current memory area, 7-6
Cursor, 2-4
checkerboard, 6-1
Empty box, 6-3
Left movement, 4-6
Right movement, 4-6

D
Data base, 1-2

Data byte in escape control sequence, 20-2

DATA statement, 14-1, 16-4
Debugging, 12-8
DEF statement, 15-6
Deferred mode, 4-2
DELETE Key, 6-3
Deleting a line, 4-7
DETACH statement, 14-5
Device
peripheral, 2-3
Device independence, 14-7
DIM statement, 11-2
required, 11-2
Dimension, 11-2
Division
by zero, 5-2
Documentation, 8-1
Downloading, 24-2
preparing program for, 24-3

E

E (mathematical constant), 15-3
Echo

GET suppresses, 16-25
Efficiency 1-2, 17-5
Element, 11-1

Not for sale



END statement, 9-12, 12-12 Irilrgsitt}n193-$3_4
ENTER key, 2-3, 19-1, 19-2, 20-1 Formal parameter of a function definition, 15-6

EPROM, 4-1, 22-1 .
» 2 FPUT function, 21-2
Erasable PROM, see EPROM FREE function, 15-3

E:::Qrsg?sfunctlon, 16-7 Freezing the HHC's activity, 5-8
Cﬁecking for. 16-10 FREVISE function, 21-2
5 . ' Function, 15-1
ebugging, 12-8 ABS. 15-3
Deferred mode, 5-1 BAND. 10-4. 15-4
NEXT without FOR, 13-2 bitwisé 10-4
Return without GOSUB, 17-7 BOR 10-4. 15-4
Subroutines and error conditions, 17-4 BXOR. 10-4. 15-4
Syntax, 2-5 RASES, 16-7
Undefined statement, 9-2 EXP 1 5_:'3
Error message, 2-5 FREE 15-3
Escape control sequence, 20-2 INSER’T$ 16-6
Execution, 2-6 INT 15-3
Halting, 9-2 integer, 10-4, 15-4
EXIST function, 21-2 LEFgI'$! 16-11
EXP function, 15-3 ’
Exponent, 5-3 jmt to depth, 15-¢
Extrinsic RAM, 7-5 LN 15-3
= LOG, 15-3
MAX%, 10-4
FADR function, 21-2 MID$, 16-12
False value, 9-4 MIN%, 10-4
FGET function, 21-3 MOD%, 10-4
File PEEK, 18-1
text structure, 21-3 POS(0), 5-7
File names, 2-4 RIGHTS, 16-12
File system, 1-2, 2-4 RND, 15-3
copying, 7-3, 7-4 SPC$(N), 5-7
deletion, 7-1 SQR, 15-3
POKE and, 18-3 SQRT, 15-3
renaming, 7-3 STRY, 16-10
File type, 4-10 STRF9, 16-14
FLEN function, 21-3 trigonometric, 15-3
Floating point number, see Real number VAL, 16-11
Flow of control, 9-1 Function key
FOPEN function, 21-2 defining, 19-1
FOR statement, 13-1 Function keys, 19-1
FOR/NEXT G
In Immediate mode, 13-7
relationship with GOSUB, 13-7 Generality, 17-5
STEP 13-3 GET command, 14-6
with BREAK. 13-7 GET statement, 16-24
FOR/NEXT loop, 13-1 GOSUB statement, 17-1
index, 13-1 Error, 17-7
initial value, 13-1 GOTO statement, 9-1

www.pocketmuseum.com Not for sale



" Inverse video, 7-2, 19-2

Hard copy, 14-3 Inverse video display, 4-3
HELP key, 19-1, 19-2

HHC capsule, 1-1, 2-1 K

TN 128;F 12-11 Key

HISTORY statement, 12-

HISTORY ON statement, 12-11 ind48_l6=T,6?2-3, 19-3
Host computer, 24-2 g 4-6’ o

| Auto-repeat, 4-8
BREAK, 4-6, 9-2, 12-10

/0, 4-11 BYE, 7-2
/O adaptor, 7-7 C1, 9-2
/0 key, 7-1 CLEAR, 2-2, 7-2, 14-6, 18-3, 19-3
Copying files, 7-6 avoid!, 9-2
IF Statement DELETE, 6-3
IF/GOTO, 9-3 ENTER, 2-3, 19-1, 19-2, 20-1
IF/THEN, 9-6 Function, 19-1
Multi-statement lines, 9-11 defining, 19-1
Immediate mode, 4-2 HELP, 19-1, 19-2
editing, 6-6 /O, 7-1, 7-6
FOR/NEXT, 13-7 INSERT, 6-1
Increment, see Step LOCK, 6-2, 6-6
Index of FOR/NEXT loop, 13-1 OFF, 2-2, 19-3
Initial value of FOR/NEXT loop, 13-1 ON, 2-2, 19-3
Initial value of variable, 3-2, 4-10 ROTATE, 6-5
INPUT statement, 4-11, 14-6, 16-3 SHIFT, 2-3, 4-13, 19-3
Scientific notation, 5-3 STP/SPD, 5-8
Without LUN, 14-7 % . 4-4 4-5 4-6, 6-5
INSERT Key, 6-1 *  4-5 6-5
INSERT$ function, 16-6 Keyboard, 14-9
INT function, 15-3 Auto-repeat speed, 5-8
Integer, 10-3
arrays, 10-5 L
conversion to real, 10-4 LCD. 2-2 14-9
functions, 10-4 Scrollir -
mixing with reals, 10-4 ek >
name. 10-3 TP/SPD key, 5-8
. LEFT$ function, 16-11
operatiorss, 10-3 LEN function, 16-10
conversion. 15-4 t:nm;t of FOR/NEXT loop, 13-2
representation, 10-4 - .
Integer arithemetic Linlgiﬂm;g‘r lirjzgtf; ;}fsprogram ine, 9-11
mixed with reals, 10-4 Line numbers
Integer arithmetic, 10-4 usage, 4-9
Interface to subroutine, 17-6 Liquid cr{/stal display, see LCD
Intrinsic LIST command. 4-4
Application, 7-1 line too Iong’ 4-3
Intrinsic RAM, 4-1 long lines, 4-3
Printer, 14-7

www.pocketmuseum.com Not for sale



LN function, 15-3 RESTART, 2-3

AD command, 24-1 Micro printer, 14-9
II:8CK ﬁgy, 6-6 Use with HHC, 14-3
Editing with, 6-2 MID$ function, 16-12
LOG function, 15-3 MIN% function, 10-4
Logarithm MOD% function, 10-4

common, 15-3 Mode, 4-2
natural, 15-3 deferred, 4-2

Logical operator, 9-9 immediate, 4-2

Logical unit number, see LUN

Loop, 9-2 N

FOR/NEXT, 13-1 Nesting
LUN, 14-4 FOR/NEXT loops, 13-4

PEEK and, 18-1 Subroutine call, 17-2

NEXT statement, 13-1

M NO ROOM, DELETE FILE message, 7-5
Main routine, 17-2 NOT, 9-9
Mantissa, 5-3 Null string, 16-1
MAX% function, 10-4 Number
Maximum length of program line, 4-3 Conversion to character, 16-22
Memory, 4-1, 7-5 Integer, 10-3

Current, 7-6 real
Menu, 2-4 range of, 10-1

Destination RAM, 7-5 ~ representation, 10-1
Primary, 2-4 Scientific notation, 5-3

SnapBASIC, 2-4 Numbers
Message range, 5-3

error Numeric constant, 2-6
AE, 5-2
AS. 16-10 O
CH, 5-1 OFF key, 2-2, 19-3
CO, 5-2 ON key, 2-2, 19-3
CX, 15-6, 17-7 ON/GOSUB statement, 17-7
DA, 14-3 ON/GOTO statement, 9-11
DE,: 16-5 ONERR statement
during ONERR, 23-1 lost information, 23-1
GO, 9-2 Operation code, see Opcode
1O, 14-5 Operation code in escape control sequence, 20-2
1Q, 5-2 OR, 9-9
NX, 13-2, 13-5
OM, 5-2 P
RT, 17-7 .
SY 5-2 Peek function, 18-1

NO ROOM .DELETE FILE. 7-5 Address or integer value, 18-1

Peripheral device, 2-3, 7-4. 7-7
How to connect, 14-4
Use with HHC, 14-3
Uses memory area space, 7-6

Rest Ignored, 4-12
Retype Line, 4-12

Messages, 2-3
errors, 2-5

www.pocketmuseum.com Not for sale



Pl (mathematical constant), 15-3
Plotter, 14-9
POKE statement, 18-2
dangers and precautions, 18-3
Precedence
relational operators, 9-5
Primary menu, 2-4
PRINT
empty line, 5-7
several statements on one line, 5-6
SPC$(N), 5-7
Zones, 5-4
avoiding, 5-5
PRINT statement, 2-6
Debugging aid, 12-11
Without LUN, 14-7
Printer
Debugging aid, 12-11
Program design, 9-8
Program development, 12-1
Program line
Maximum length of, 4-3
Program security, 22-1
Programmable, 1-1
Programmable Memory Peripheral, 4-1, 7-4, see PMP
Programmable Read-Only Memory, see PROM
Programming language, 1-1
PROM, 4-1
Prompt, 2-4
INPUT, 4-11, 4-12

Q
?
PRINT statement, 2-7

R

RAM, 4-1

Extrinsic, 7-5

Free space in, 7-1

Intrinsic, 4-1

Programmable Memory Peripheral, 4-1
Random access memory, see RAM
Random number, 15-3
READ statement, 14-1, 16-4
Read-only memory, see ROM
Real number, 2-6

Integer

conversion, 15-4
precision, 2-7

www.pocketmuseum.com

representation, 10-1
Real numbers
mixing with integers, 10-4
Relational operator, 9-4, 9-5
True and false values produced by, 9-4
Releational operator
precedence, 9-5
REM statement, 8-1
advantages, 8-2
disadvanatages, 8-2
during BURN, 8-2
what to write, 8-3
Renaming a file, 7-3
RESEQ command, 4-9
Reserved word, 2-6
Not allowed in variable name, 3-2
RESTART message, 2-3
RESTORE statement, 14-3
RETURN statement, 17-1
Error, 17-7
Returning a value, 15-1
RIGHTS$ function, 16-12
RND function, 15-3
ROM, 4-1
ROM socket, 2-1
ROTATE key, 6-5
Rotation, 6-4
Speed of, 5-8
Row, 11-5
RS-232, 14-9
RS-232C, 24-2
RUN command, 4-2, 4-10, 12-12

S

2nd SFT key, 2-3, 19-3
Saving a program, 4-9
Scientific notation, 5-3
Scrolling, 5-4
SDT, 18-1 “
Second shift key, see 2nd SFT key
Serial Interface Adaptor, 24-2
SHIFT key, 2-3, 4-13, 19-3
SnapBASIC
menu, 2-4
SnapBASIC compiler/interpreter, 1-1
special features, 1-2
SnapFORTH, 1-2
SPC$(N), 5-7
SQR function, 15-3

Not for sale



SQRT function, 15-3
SQUEAK command, 20-3
Statement, 2-6, 4-2
?, 2-7
Assignment, 3-1
ATTACH, 14-4
DATA, 14-1, 16-4
DEF, 15-6
DIM, 11-2
required, 11-2
END, 9-12, 12-12
FOR, 13-1
GET, 16-24
GOSUB, 17-1
GOTO, 9-1
HISTORY OFF, 12-11
HISTORY ON, 12-11
IF, 9-3, 9-6
IF/GOTO, 9-3
IF/THEN, 9-6, 9-11
INPUT, 4-11, 14-7, 16-3
NEXT, 13-1
ON/GOSUB, 17-7
ON/GOTO, 9-11
POKE, 18-2
PRINT, 2-6, 12-11, 14-7
READ, 14-1, 16-4
REM, 8-1
advantages, 8-2
disadvantages, 8-2
during BURN, 8-2
what to write, 8-3
RESTORE, 14-3
RETURN, 17-1
STOP 12-12
TROFF, 12-10
TRON, 12-10
Statements
Several on one line, 9-10

STEP operand of FOR/NEXT, 13-3

STOP statement, 12-12
Storage, 4-1, 4-2
STP/SPD key, 5-8
STR$ function, 16-10

compared with CHRS$, 16-23

STRF$ function, 16-14
String
Assignment, 16-3

Comparison, 16-7, 16-18, 16-19

constant, 16-1

www.pocketmuseum.com

Length of, 16-1, 16-10
Null, 16-1
PRINT, 5-5
Substring, 16-11
subtraction, 16-6
Variable, 16-2
name, 16-2
String constant, 4-12
Strings
INPUT
quote rules, 16-3
Subroutine, 17-1
Error, 17-7
Subscript, 11-1
Column, 11-5
Row, 11-5
Substring, 16-11

T

Telecomputing, 14-9
downloading, 24-4
Text file
structure, 21-3
Trace, 12-10, 12-11
Trade-off, 17-5
Trig functions, 15-3
TROFF statement, 12-10
TRON statement, 12-10
True value, 9-4
TV Adaptor, 14-9
Type conversion, 10-4

V

VAL function, 16-11
compared with ASC, 16-23
Variable, 3-1
boolean, 10-5
Initial value of, 3-2, 4-10-
name, 3-1
Name rules, 3-2
length, 3-2
value, 3-1
Variable names
usage, 3-2

X
XOR, 9-9

Not for sale



Z

Zones
PRINT, 5-4

www.pocketmuseum.com Not for sale




www.pocketmuseum.com

FRIENDS AMIS, INC.

The program described in this document is furnished under a license
and may be used, copied and disclosed only in accordance with the

terms of such license.

FRIENDS AMIS, INC. (“FA”) EXPRESSLY DISCLAIMS THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR USE FOR A PARTICULAR PURPOSE RESPECTING THE
HHC SOFTWARE PROGRAM AND MANUAL. THE PROGRAM
AND MANUAL ARE SOLD “AS IS". THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR USE FOR A PARTIC-
ULAR PURPOSE AS TO THE MEDIUM ON WHICH THE SOFT-
WARE IS RECORDED ARE LIMITED TO SIXTY (60) DAYS FROM
THE DATE OF LICENSING BY THE INITIAL USER OF THE PROD-
UCT AND ARE NOT EXTENDED TO ANY OTHER PARTY

USER AGREES THAT ANY LIABILITY OF FA HEREUNDER, RE-
GARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED
THE LICENSE FEE PAID BY USER TO FA. FA SHALL NOT BE
LIABLE FOR INDIRECT, SPECIAL OR CONSEQUENTIAL DAM-
AGES, SUCH AS, BUT NOT LIMITED TO, LOSS OR INJURY TO
BUSINESS, PROFITS, GOODWILL, OR FOR EXEMPLARY DAM-
AGES, EVEN IF FA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

FA will not honor any warranty when the product has been subjected
to physical abuse or used in defective or non-compatible equipment.

The user shall be solely responsible for determining the appropriate
use to be made of the program and establishing the limitations of the
program in the user’s own operation.

An important note: Good data processing procedure dictates that
the user test the program, run and test sample sets of data, and run
the system in parallel with the System previously in use for a period of
time adequate to insure that results of operation of the computer or
Programs are satisfactory.

Not for sale



	001.gif
	002.gif
	003.gif
	004.gif
	005.gif
	006.gif
	007.gif
	008.gif
	009.gif
	010.gif
	011.gif
	012.gif
	013.gif
	014.gif
	015.gif
	016.gif
	017.gif
	018.gif
	019.gif
	020.gif
	021.gif
	022.gif
	023.gif
	024.gif
	025.gif
	026.gif
	027.gif
	028.gif
	029.gif
	030.gif
	031.gif
	032.gif
	033.gif
	034.gif
	035.gif
	036.gif
	037.gif
	038.gif
	039.gif
	040.gif
	041.gif
	042.gif
	043.gif
	044.gif
	045.gif
	046.gif
	047.gif
	048.gif
	049.gif
	050.gif
	051.gif
	052.gif
	053.gif
	054.gif
	055.gif
	056.gif
	057.gif
	058.gif
	059.gif
	060.gif
	061.gif
	062.gif
	063.gif
	064.gif
	065.gif
	066.gif
	067.gif
	068.gif
	069.gif
	070.gif
	071.gif
	072.gif
	073.gif
	074.gif
	075.gif
	076.gif
	077.gif
	078.gif
	079.gif
	080.gif
	081.gif
	082.gif
	083.gif
	084.gif
	085.gif
	086.gif
	087.gif
	088.gif
	089.gif
	090.gif
	091.gif
	092.gif
	093.gif
	094.gif
	095.gif
	096.gif
	097.gif
	098.gif
	099.gif
	100.gif
	101.gif
	102.gif
	103.gif
	104.gif
	105.gif
	106.gif
	107.gif
	108.gif
	109.gif
	110.gif
	111.gif
	112.gif
	113.gif
	114.gif

