3T Panasonic

USA

Panasonic Company
Division of Matsushita Electric Corporation of America
One Panasonic Way,
Secaucus, New Jersey 07094

Panasonic Hawaii Inc.
91-238 Kauhi St. Ewa Beach
P.O. Box 774
Honolulu, Hawaii 96808-0774

Panasonic Sales Company
Division of Matsushita Electric of Puerto Rico, Inc.
Ave. 65 De Infanteria, KM 9.7
Victoria Industrial Park
Carolina, Puerto Rico 00630

CANADA

Panasonic Canada
Division of Matsushita Electric of Canada Limited
5770 Ambler Drive, Mississaugo,

Ontario L4W2T3
OTHERS c0c00:0

Matsushita Electric Trading Co., Ltd. : :::: . :
32nd floor, World Trade Center Bldg., -
No. 4-1, Hamamatsu-Cho 2-Chome, 00000000
Minato-Ku, Tokyo 105, Japan ::::: . :::
Tokyo Branch P.O. Box 18 Trade Center -3-0-3-0d-H-4-
00000°000
00000000
www.pocketmuseum.com 000666000

Not for sale

SnapBASIC

an advanced programming
language for the HHC™

VOLUME II:
REFERENCE GUIDE

www.pocketmuseum.com Not for sale

Copyright (©) 1982 by Matsushita Electric Industrial Co.,_Ltd.
All Rights Reserved. HHC™ is a Trademark of Matsushita

Electric Industrial Co., Ltd.

www.pocketmuseum.com

TABLE OF CONTENTS

CHAPTER 1: STATEMENTS AND COMMANDS

7 1-2
Assignment 1-2
ATTACH ... 1-3
AUTO 1-3
BURN .. 1-4

Notes On the Execution of a “BURNed” Capsule ... 1-5
BYE .. 1-6
CALL ... 1-6
CLEAR .. . 1-7
CONT . 1-8
DATA 1-8

About String Values 1-8
DEF . 1-9
DEL ... 1-10
DETACH 1-10
DIM 1-11
END . 1-11
FDEL ... 1-12
FINS .. 1-12
FOPEN 1-12
FOR 1-13

Terminology 1-13

Note On Startinga Loop 1-13

Note On Endinga loop 1-13

Speed 1-14

Notes On NEXT 1-14

No-Nos 1-14
FPUT 1-15
FREAD 1-15
FREVISE 1-16
FWRITE 1-16
GET 1-16
GOSUB e 1-17
GOTO 1-17
HISTORY ... 1-17
HOME 1-18
IF 1-18
INPUT .. 1-19
LET 1-20
LIST 1-20

Interacting With LIST 1-20

Note On Deferred Execution 1-21
LOAD ... 1-21
NEW 1-22

Not for sale

NEXT 1-22
ON 1-22
ONERR . 1-23
PAREN . . 1-23
POKE . e 1-24
PRINT . 1-24

How Values Are Positioned 1-25

PRINT With No Values 1-25
READ . . 1-26
REM e 1-26
RESEQ e 1-27
RESTORE e e 1-27
RETURN . . e e e e 1-28
RUN 1-28
SQUEAK . e 1-28
ST OP . . . e e 1-29
TROFF .. 1-29
TRON . e 1-29

CHAPTER 2: INTRINSIC FUNCTIONS

ARITHMETIC FUNCTIONS 2-1
FILE FUNCTIONS e 2-4
INTEGER FUNCTIONS i, 2-4
STRING FUNCTIONS i, 2-5
TRIGONOMETRIC FUNCTIONS 2-10

CHAPTER 3: OPERATORS

NUMERIC OPERATORS 3-1
STRING OPERATORS 3-2
BOOLEAN OPERATORS L, 3-3

CHAPTER 4: RESERVED WORDS

CHAPTER 5: LINE NUMBERS, NUMBERS,
AND STRINGS

LINES ... 5-1
NUMERIC VALUES, 5-1
INTEGER VALUES 5-1
BOOLEAN VALUES o i 5-1
STRING VALUES 5-1
ARRAYS .. 5-2

www.pocketmuseum.com

RULES FOR DISPLAYING REAL VALUES
(PRINT, STR$, AND STRF$)

RULE FOR DISPLAYING INTEGER VALUES e
(PRINT) . 5-3
RULE FOR DISPLAYING BOOLEAN VALUES
(PRINT) 5-3
RULE FOR DISPLAYING STRING VALUES
(PRINT) . 5-3
RULES FOR READING REAL VALUES
(INPUT AND VAL) 5-3
RULES FOR READING INTEGER VALUES
(INPUT AND VAL) 5-4
RULES FOR READING STRING VALUES
(INPUT AND VAL), 5-4
RULES FOR READING BOOLEAN VALUES
(INPUT AND VAL), 5-4
CHAPTER 6: BASIC PROGRAM EDITOR
QUICK REFERENCE
EDITING LINES 6-1
ARROW KEYS 6-2
INSERT CHARACTERS 6-3
DELETE CHARACTERS 6-3
SHORTCUTS 6-3
CHAPTER 7: PERIPHERAL DEVICES
CONTROL CHARACTERS 7-1
ASCII Control Characters 7-1
ESCAPE CONTROL SEQUENCES 7-2
Opcodes 7-2
THE KEYBOARD 7-4
THE LCD ... 7-5
THE TV ADAPTOR 7-5
THE MICRO PRINTER 7-6
SERIAL INTERFACE 7-7
Initializing the Serial Interface 7-7
Note About Protocols 7-8
THE MODEM 7-10
Initializing the Modem 7-10
Technical Information 7-11

Not for sale

CHAPTER 8: PEEKS AND POKES

INPUT AND OUTPUT 8-1
The System Device Table (SDT) 8-1
THE HELP AND /O KEYS 8-2
THE KEYBOARD BUFFER, 8-2
Structure Of the Keyboard Buffer 8-2
The Pushkey Buffer 8-3
Buffer Locations 8-4
PEEKs and POKEs 8-4
FUNCTION KEYS 8-5
“Typing” a Function Key 8-6
THE STOP/SPEED KEY 8-6
DATE AND TIME 8-7
Format Of the Date and Time 8-7
ROTATION MODE 8-8
POKES AND PEEKS FOR FILE TYPES 8-9
THE AUTO-OFF TIMER 8-11

CHAPTER 9: ASCIl CHARACTERS

CONTROL CHARACTERS 9-1
DISPLAYABLE CHARACTERS 9-4
ADDITIONAL CHARACTERS 9-6

CHAPTER 10: ERRORS

ERROR MESSAGE FORMAT 10-1
FATAL ERROR CODES 10-1
NON-FATAL ERROR CODES 10-4

CHAPTER 11: INTERNALS OF SnapBASIC

SnapBASIC SUBSYSTEMS oo 11-1
STRUCTURE OF SnapBASIC PROGRAMS

BEFORE BURN\oooo 11-3
STRUCTURE OF VARIABLES 11-4
STRUCTURE OF THE LINE TABLE 11-4
STRUCTURE OF THE VARIABLE NAMES 11-4
STRUCTURE OF THE DIMENSION STACK 11-5
MEMORY USED TO STORE VARIABLES 11-5

www.pocketmuseum.com

CHAPTER 1: STATEMENTS AND
COMMANDS

Below is a complete description of every statement ang
command that SnapBASIC accepts. In describing the syntax
of the statements and commands, we will use the following
notation:

® Upper case letters should be used as shown.

® Lower case letters are “placeholders” for something you
must fill in when you write the statement.

® ‘[x]' means “x is optional.”

® ‘[xlylz] means "you may choose one of x or y or z, or you
may omit this expression.”

® ' {xlylz }" means “you must choose one of x or y or z.”

exp represents an expression

In represents a line number

Inexp Is an expression, representing a line number, or
simply a line number

n represents a numeric value (constant, variable,
expression, etc).!"

nv represents a numeric variable or array element

nc represents a numeric constant

offset represents a byte offset between 0 and flen(0)-1

recnr represents a record number between 0 and

frec(0)-1

S represents a string value

SV Indicates a string variable

SC represents a string constant, e.g. “Type name:”

Vv represents a variable of either numeric or string
type

X represents a value of either numeric or string
type

Where we need more than one element of the same type, we
will add numbers to the names: e.g., n1, n2, n3, . . .

h

1 . .
"' - Integer and numeric values are interchangeable, except where noted
otherwise.

I-1
Not for sale

?

See PRINT. ‘7’ is an abbreviation for PRINT.

Examples:
° M e
TRl o edticierndsTa My Pess Ty
S N o'y = o= I O I] e O .
w1
FE
Assignment
Format: [LET | nv = n
or ILET] sv = s

The value of the expression n or s is assigned to the variable

or array element nvor sv$. Type conversion is done automati-
cally, according to a conversion table.

The reserved word LET is allowed for compatibility with some
other versions of BASIC, which require it. An assignment
statement has the same effect whether or not LET is used.

b p gpm |ommieta
I--.I EII
1
PR :
| P N——
UL IR S
e
R iy i
mopER L MR P oo
I -! [1] [§] . (L] .,-II IJ-- [EEETE l : I‘.- I : EEE = 1 EE I.I FEE ®E E [2 1] I“I- wE# : I
TN T D S S T s S A s BT
: E § : [§] i"l‘.'l - II--I- = - [] - : W I..l. I‘!-- : ==
sarmiinsEsdorn i ny

1-2

www.pocketmuseum.com

ATTACH

Format: ATTACH n1 TO #n2

Attaches a device with device code n7 to LUN (logical unit
number) n2 and turns the device ON.

Valid values of n1 for each peripheral are given in Chapter 7.

Valid values for n2 are 0 through 15. 0 is the system input unit,
normally attached to the keyboard. 1 is the system output unit,
normally attached to the LCD. 2 through 15 have no “normal”
attachments; you must attach devices explicitly before you
can use them.

ATTACH overrides the I/O key; a device that shows an “OFF”
status in the I/O menu will show “ON” after an ATTACH.

Notes:

1. The typeahead feature is active as long as you do not
change input units. When the input unit number is changed,
SnapBASIC's typeahead buffer is cleared. Characters in
peripheral’s buffers are not cleared.

2. The CLEAR key does not affect the ATTACHed or
DETACHed status of LUN’s. If a LUN was already
attached, a subsequent ATTACH will first DETACH the
previously attached LUN.

Examples:
T TRLH oo T H
C T T LI T B
T T DPamy T #

AUTO (immediate mode only)

Format: AUTO n1,n2

AUTO provides automatic insertion of program line numbers;
n1 and n2 specify the starting line number and the increment
for successive line numbers, respectively. The increment may
also be negative, in which case you can proceed backwards
through your program.

When AUTO is executed, the first line number is displayed on
the LCD. If the AUTO feature is used with an already existing
program, any existing program line will be overwritten by the
new program line. There is one exception: typing an ENTER
iImmediately after the line number will keep the original line
unchanged.

1-3

Not for sale

To turn off the AUTO feature, press the BREAK key.
Examples:

HUTE 1B

S TR e o
T N 1 T B

BURN (immediate mode only)

Format: BURN sc

BURN is a very powerful command that transforms the current
BASIC program in memory into a stand-alone capsule image
file that can be “burned” into an EPROM capsule by the
HHC’s EPROM burner peripheral. sc is the name assigned to
the capsule that is produced (maximum of 16 characters).

The BURN command removes much of the file during execu-
tion, making it unuseable from within BASIC. Always make a
copy of the file before using the BURN command. After
execution of BURN, the file’'s name is the same, but its type is
changed from a SnapBASIC program file (20 Hex) to a
capsule image file (02 Hex); the file no longer appears in

SnapBASIC’s menu, but will appear within the menu of the
EPROM burner peripheral.

The EPROM burner peripheral in combination with a RAM/
ROM peripheral will allow you to test the capsule image form
of the program before an EPROM is actually produced. [The
RAM/ROM is a special product of Friends Amis, Inc.]

Since the capsule image file contains a byte-for-byte image of
the future contents of a capsule, it is also possible to transfer
these contents to a standard EPROM programmer device
available from a number of manufacturers. The capsule image
file is transferred through the HHC’s RS232C peripheral using

simple utility programs that can be easily developed with the
SnapBASIC or SnapFORTH ™ capsules.

_Nhile the BURN command is operating, the display shows a
listing of the program lines being loaded into the capsule

image. It is good practice to produce a printed listing by
ATTACHIng to a printer to have a more permanent form of the
program. After a successful BURN, the message

IS printed, where nnnn is the amount of EPROM space
required. Press any key to continue.

If a line in your program contains a statement or function that
cannot be burned, or if certain other errors occur, an error
message is displayed. The error message keeps alternating
with the listing of the line that caused the error and the HHC

-4

www.pocketmuseum.com

beeps. Type any key to return to the primary menu. The partially
BURNed file and the unBURNed source file are both

deleted.You can then copy the backup of the file back into the
working RAM area and correct the error.

Caution: Do not use the CLEAR key after a BURN error, or a
useless version of the partially BURNed file will remain in
memory. If this happens, delete the file using the FILE

SYSTEM.

BURN reduces the generated code to minimum memory
requirements by:

1. Removing all REM statements

2. Merging all DATA to one large DATA statement

3. Replacing all GOTO’s and GOSUB’s with absolute jumps
4.

Removing all line number tables, effectively destroying all
line information

Removing all the names of all the variables

6. Loading and linking into the image run-time routines that
are actually used by the current program

The following limitations apply:

BURNIing requires a substantial amount of free memory space
In addition to the space used by the file. You can burn a very
small file in an HHC with 4K of internal memory. For more
information on the memory requirements for BURNIng files,
see the Tutorial manual.

BURN cannot burn the following commands: HISTORY ON,
HISTORY OFF, BYE, NEW, RUN, TRON, TROFF, LIST, DEL,
PAREN, GOTO (expression), GOSUB (expression). Be sure
to remove these commands from your program before BURN
IS executed, or a '‘BU’ error will result during BURNINg.

The GOTO’s and GOSUB'’s that refer to a calculated address
have to be replaced by an appropriate ‘ON . . . GOTO’
construction before the BURN command can be given.

Note that the BURN command is very powerful, but that an
error in your program during the ‘burn’ procedure will ruin your
file. In all cases it is advisable to make a backup of your
program. '

Example:

d

No'tes On the Execution of a “BURNed” Cap-
sule

1. The capsule is stand-alone and does not require any other
capsule to be present.

Not for sale

2. The capsule uses a file in RAM as work space.

The name of the file is the same as the capsule name. The
file will use all the available RAM, unless otherwise SPecCi-
fied by the FREE command (advisable when the program
expands other files).

3. After a STOP, END, CLEAR, or error condition, the file in
RAM will be deleted, and control returns to the primary
menu.

4. When an error occurs, the error code is displayed and
execution waits until the user types a key.

5. The BREAK key (C1) is disabled and has no function
Pressing BREAK during an INPUT statement is the same
as pressing ENTER.

6. The number of characters that you may type ahead de-
pends on the type ahead feature of the current Input device
(l.e. 7 for the keyboard).

7. BURNed programs execute somewhat faster than file
programs.

BYE (Cannot BURN)

Format: BYE

BYE clears the variable values, saves the program file and
returns you from the SnapBASIC interpreter, which allows you
to edit and run a program, to the primary menu, which allows
you to choose a program and use the 1/0 key.

If you use the CLEAR key, the HHC's memory area will be
used to save the values and the program. You can safely go
back to the program after CLEAR, but in most cases there will
not be enough memory to start a new program. You should
always use BYE to exit SnapBASIC.

CALL

Format: CALL Inexp
CALL calls a subroutine written in 6502 machine language

Caution! Using an invalid value for Inexp can have catas-
trophic effects on your program and any other programs or

data in the HHC's storage.
Example:

CLEAR

Format: CLEAR

The CLEAR statement does the following things:
e Sets all numeric variables to zero, all string variables to
null, and all boolean variables to FALSE.
® Resets all dimensions of array type variables.

e Sets the index of any active FOR/NEXT loop to 0. This may
create unusual effects when the program is CONTinued.
For example, suppose you are running the following

program:

after

[T < I
has been printed, and then enter the commands CLEAR
and CONT, the program will print out

(1 7]
[]

and then stop. What has happened? SnapBASIC has
indeed reset the value of the variable [; but it is the middle
of the loop, and knows it was supposed to execute the loop
10 times. CONT makes the loop execute three more times,
with the value of | having been reset. This Is an example of
the rule against changing the value of a loop variable being

violated by the system itself.

(not written in SnapBASIC).

Inexp is the address of the subroutine’s entry point in the
HHC’s memory. Inexp must be in the range -32768 to 32767.

® The return pointer for any active GOSUB may be altered.
® RESTORESs the program’s DATA statements, if any.

Note that the CLEAR statement has no connection with the

Negative values of Inexp represent addresses larger than
32767.

If you are familiar with 6502 machine language, SnapBASIC's
use of memory and the HHC's internal operations. you can
perform functions that are not otherwise available in SnapBA-
SIC by POKEing machine language subroutines into the
HHC’s memory and CALLing them.

1-6

www.pocketmuseum.com

HHC’s CLEAR key.

Not for sale

www.pocketmuseum.com

CONT (immediate mode only)

Format: CONT

Use CONT to restart a program after you have interrupted it
by pressing the C1 key or after it has executed a STOP
Execution continues wherever it was interrupted, which may
or may not coincide with a line number or statement.

You may display and change the values of variables while the
program is interrupted. You can also LIST your program (as
long as you do not change it). Except for the changes you
make to variable values, the program will be in the same state
when you CONTinue it as it was in when it stopped.

You may not CONTinue a program after a fatal error has
occurred; after you have edited the program; or before you
have begun RUNning the program.

DATA (deferred mode only)

Format: DATA v1 [, v2, v3, . . .,vn]
Where each v is a numeric value or string value.

Contains data which a READ statement can read. See READ
for details of use.

A DATA statement may be inserted anywhere in your prog-
ram; flow of control goes around it.

About String Values

If a stlring value contains a comma, spaces, or a quotation
mark it must be enclosed in quotation marks:

-!Ili :‘i.. "EII .‘I‘I = = I=.--= r--- I-illI = i! ! I=l- I-I=l- r--! = = : : I:I-I-= .l' .H--= 'i .u. [] " mEEE L1 L | m
§ iR g g s Sofdeeed § 1 L . L S T B e sb.ifi
s s b L S LA I A 4 R SN o LS peiii gl

A string value with leading or trailing blanks needs to be in

qulotes. READ normally trims the blanks when it reads a
value.

A quotation mark that appears after the first character in a
string value is treated as follows:

To put a quotati_on mark in a string, double the quotation mark
an:j put quotation marks around the string itself. Therefore
say “hello”™ to Max” will result in ‘say “hello” to Max'.

1-8

Examples:

T T 5, 180 1

DETe

T TE 2L RED Twhite” s BLU

T Ty =225, VL ThmbBRL=0 s BLF 7 a0

DEF (deferred mode only)

Format: DEF FNmm(pr1,pr2,...,prn) = ex

DEF defines a function named FNmm. mm may be any
name. The prn parameters are real variables and are un-

known outside the function expression; they are local to only
one function. Functions may be redefined by a new DEF FN.

The function name must start with FN, and the function itself

should return a value of type ‘real’, or of type ‘integer’. String
functions are not allowed (FNA $... for example).

In evaluating the expression on the right hand side of the
equals sign, all variables from the program can be used.

The prs are the function’s real formal parameters; there must
be at least one specified. The parameter name may be any
name that would be valid as the name of a numeric real
variable. SnapBASIC recognizes the difference between
numeric variables and formal parameters with the same

name.

ex is the body of the function definition. If it contains refer-
ences to pr, they refer to pr as a formal parameter, not as a
variable (if there is also a variable named pr).

When you refer to the function later in your program, SnapBA-
SIC does the following:
1. Calculates the value of the function reference’'s argument.

2. Substitutes that value for the prs wherever prs appear In
ex.

3. Evaluates ex. _
4. Returns the real value of ex as the value of the function
reference.

Examples of definitions:

.-;.-E
Tees i
:

1-9

Not for sale

Examples of use:
FREIMT FHEO =Y
FEIMT SsFRACHE-20

AERFHrmberof choraoters 6

DEL (immediate mode only)

Format: DEL Inexp
or DEL Inexp1,Inexp2

Deletes line Inexpr or deletes lines from Inexpr1 through

Inexpr2.

Note_:lAH of the variables in your program are allocated in a
specific area within HHC RAM. If a line in your program has

created a variable, and is the only reference to that variable,

DELeting the line will not cause SnapBASIC to deallocate the

memory assigned to that variable. If your program is running
short on variable space, think twice before creating a variable--

because you will not be able to gain back the memory it occu-

pied. Rather, you may wish to create a few temporary vari-
ables, and use them repeatedly.

Examples:

DETACH

Format: DETACH #n

Detaches the current device from LUN (logical unit number) n.
See also ATTACH.

Note: Do not DETACH #0 and #1; you will disable the
keyboard and the LCD.

Example:

1-10

www.pocketmuseum.com

DIM

Format: DIM xa(n1 [, n2,. . .nx]) for real array
or DIM xa$(n1[, n2,. . .nx]) for string array
or DIM xa?(n1[, n2,. . .nx]) forboolean array
or DIM xa%(n1[, n2,. . .nx]) for integer array

Defines an array with x dimensions. The array has n1+ 1

elements along its first dimension, n2 + 1 elements along its
second dimension, and so forth.

Array elements are numbered from O; thus, the array's ele-
ments are numbered 0 to n1 along the array’s first dimension,

and so forth.
You can define more than one array in one DIM statement.

Separate the array definitions with commas. You cannot
change an array’s dimensions with a new DIM statement.

A DIM statement must always precede access to an array.
There is no default dimension.

Examples:

i mald

DT s 2

DHIFD Wi VOB MET O
Format: END

END terminates execution of your program. Unlike STOP, it
does not display a ‘'STOPPED in line nnnn’ message; further, it
is impossible to continue with the CONT command after the
END is executed.

Whether or not there is an END (or STOP) in a BURNed
program, the program will automatically return to the HHC
primary menu after execution. See the BURN command for
more information.

Note: Unlike some BASICs, the END statement is not required
at the end of a program; an END statement is assumed to follow
the last line. When you execute a trace and there is no END
statement in your program, the “assumed” END will appear as
line number -1.

Examples:
e
PRom=i THEM BRI

I-11

Not for sale

FDEL

Format: FDEL recnr

FDEL deletes a record with number recnr from the current file
All records following the deleted record will be shifted one to the
front (record recnr + 1 becoming recnr, and so on).

Examples:

= 11
(deletes record number 3)
To delete from record 25 to the end of the file:

] amE famss _sss geas =zs LT, Jorer wees L gress gads smses . o wea w .
PED RO o= 2EOTOY OFRET Lk e

FINS

Format: FINS recnr,stringexp

FINS inserts a record before the record with number recnr. in
the current file, and then writes it. Records following recnr will
be shifted up (i.e., the old record recnr will become recnr + 1.
and so on.)

If recnr) frec(0)-1, the record is inserted at the end of the file.
It recnr (0, the record is inserted at the beginning of the file.

See the FREE(n) function to determine and/or change the
available memory.

Example:

A A R D O O AR

FOPEN

Format: FOPEN stringexp

FOPEN opens the RAM file stringexp, which becomes the
current file. See the description of FREE for a specification of
the interaction with the HHC system.

Note: If the file does not already exist, FOPEN will create an
empty text file with the given name. To check if the file already
exists, you may use the function EXIST(stringexpression),
which will return the value TRUE or FALSE depending upon
whether the file exists or not.

To check if there is already a file currently opened, use the
FADR function; FADR(0) will return 0 if there is no file opened,
Or a non-zero value otherwise.

[-12
www.pocketmuseum.com

FORER Ume current

FOR
Format: FOR nv=n1 TO n2 [STEP n3] |
or FOR nv%=n1 TO n2 [STEP n3] loop with

iInteger index

FOR begins a FOR/NEXT loop.
The following applies for both real and for integer (= %) indices.

SnapBASIC executes the statements between ‘FOR nv=..
and ‘NEXT x with nv=n1, then with nv=n1+ n3, then with

nv=n1+2*n3, etc. SnapBASIC stops looping after the last
pass for which nv(=n2.

If n3is absent, SnapBASIC assumes n3=1.

If n3(0, SnapBASIC stops the loop after the last pass for which
nv)=n2.

nv may be a real or integer variable, not an array element.
Using an integer variable will speed up the loop.

Terminology

nv is called the index of the loop.

n1 is called the initial value of the loop.

n2 is called the limit of the loop.

n3 is called the step or increment of the loop.

Note On Starting a Loop

SnapBASIC first calculates the values of the expressions nf,
n2and n3 and then determines the number of times the loop is
to be made. If this number is greater than 32767, then an 1/O
error is given at runtime and the loop is not executed, even
when the index is real. Trying to change the values of n1 n2 n3
within the loop is ineffective and will not change the number of
times the loop is done. See the discussion under CLEAR for a

ramification of this.

Note On Ending a Loop

You may leave a FOR/NEXT loop by doing a GOTO if you wish.
If you do, the final value of the index will be the value it had the

[-15

Not for sale

last time through the loop. If you allow a FOR/NEXT loop to end

naturally, the final value of the index will the the value it had the
last time through the loop.

Note that a FOR/NEXT loop always executes at least once,
even when the initial value is past the limit.

If you want to write a NEXT that terminates only the innermost

loop (or if there is only one open loop it could apply to), you may
omit the index completely:

sop FOR I=1 TO 18 begins loop

Eekd MESET ends loop

Speed

® Using an integer variable for the index will speed up the loop
(use the %-symbol).

Notes On NEXT

You may notend two or more loops at the same point by putting
both of their subscripts in the same NEXT. (This is allowed by

some BASICs.) The way to end complex loops is to have the
innermost loop first, like this:

okt FOR Is=1 To 18 begins outer loop

Gkl FOR GJ=3 T begins inner loop

orokd MEET ends inner loop

o MESET T ends outer loop
No-Nos

If two or more FOR/NEXT loops are nested and they all end at
the same point, you must end every loop in a NEXT statement:

Gokd FURE I=1 TO 16 begins outer loop
G FORE J=3 TO S begins inner loop
oakd MHEST does not end both loops

www.pocketmuseum.com -14

Avoid doing the following things when you write FOR/NEXT
loops:
e Changing the limit or step after the start of the loop. (The
change will not affect the execution of the loop.)

e Entering a loop by executing a GOSUB, GOTO, or IF . . .
THEN instead of executing FOR. (You'll get an NF error
when you execute the NEXT.)

You may always leave a FOR/NEXT loop with a GOSUB,
then RETURN into it. You may also leave a FOR/NEXT loop
with a GOTO, then return to it with a GOTO, but that is not
good practice; it is difficult to follow and is liable to give rise to

programming errors.

e Changing the value of the index inside the loop. SnapBASIC
will continue, the loop index will be changed, but
SnapBASIC will not change the number of times the loop Is

done.
e Allowing the index to exceed 32767.

Examples:

FPUT

Format: FPUT offset,byte

FPUT writes a single byte in a non-record file. The offset must
be in the range {0...flen(0)-1 }. byte is an expression that
evaluates into an integer in the range 0-255 (i.e.
byte = BAND(expression,255)).

Example:

. P PR e 7
FERUT FLEMOE -1 0B

(puts a 0 in the last byte of the file)

FREAD

Format: FREAD recnr.sv

FREAD reads record with number recnr, and stores the
contents in the sv. Recnr must be in the range {0...frec(0)-1 }.

Example:

B W

L1]] r ! L. L L]

1-15
Not for sale

FREVISE

Format: FREVISE offset,length

FREVISE shrinks (if length (0) or expands (if length) 0) the
current file at the specified position. For non-record files only.

Wt_'nen expanding at offset, the byte at this position will be
shifted lengthbytes up. See the FREE(n) function to determine
the memory available for expansion.

When shrinking at offset, this byte is the first one that is
deleted.

Example:

-..I rl—ll ! £ [T 1] iii. [T 11 =-l-l FESEE REEEE =III. rl-- l-lt-l .lli -HI=
e B DIRRSET

FWRITE

Format: FWRITE recnr,sv

FWRITE writes on current file on record number recnr, and
overwrites any old information (take care!).

FWRITE will expand the file if the old record was smaller, or
shrink the file when the old record was larger than the current
one.

The maximum record length that will be written is 255 bytes.

An attempt to write on a record that does not exist gives Fl error.
See FINS.

Example:

GET

Format: GET [#n,]sv

Inputs one character from LUN (logical unit number) n and
assigns it to string sv.

It the LUN is omitted, SnapBASIC assumes #0 (normally the
keyboard).

GET does not echo the character on the LCD, as it would for
INPUT.

The ENTER and BREAK keys each count as an input character
like any other. So do all of the other “non-character” keys
except ON, OFF, and CLEAR which have their usual functions,
and SHIFT and 2nd SFT, which apply to the next key pressed
as usual.

I-16

www.pocketmuseum.com

Examples:

CET CHE
CET #2. CHE

GOSUB

Format: GOSUB In
or GOSUB exp (Cannot BURN)

Calls a subroutine; transfers control to the first statement on
line number In. Executing a RETURN will return control to the

next statement after the GOSUB.
Note that the use of a line number is always faster than calculat-
ing an expression during run time.

Examples:

GOTO

Format: GOTO In
or GOTO exp (Cannot BURN)

Transfers control to the first statement on line number In.
GOTO can begin execution when used in immediate mode.

This is useful since no variables are cleared.

Note that the use of a line number is always faster than calculat-
ing an expression during run time.

Examples:

W SEEEE WEE
l"ilil
P i

--:I

HISTORY (Cannot BURN)

Format: HISTORY ON
and HISTORY OFF

The two forms of HISTORY shown above set or clear a HIS-
TORY switch.

When HISTORY is ON, a full trace back is produced when an
error condition or a STOP command is encountered from a
running program. This facility types the current line number and
also prints a list of all started and as yet unfinished GOSUB's

and FOR’s.

I-17
Not for sale

When HISTORY is OFF, the above feature is turned off, and
the normal error and STOP messages occur.

Example:

HOME

Format: HOME

Outputs a standard escape sequence. On the LCD, the display
IS cleared and the cursor is positioned to the left. On the micro
printer, several blank lines are printed. On the TV or monitor,
the screen is cleared and the cursor placed in the upper left-
hand corner.

Example:
W HLEE
IF
Format: a) IF logical-expression THEN Inexp
or b) IF logical-expression THEN stmt[:stmt.. .stmt]
or c) |IF logical-expression GOTO Inexp
or d) IF logical-expression GOSUB Inexp [:stmt.. .stmt]

Evaluates logical-expression. logical-expression is usually
an expression involving a logical operator like ‘(' or ‘) =", but it
may be any expression that evaluates to a numeric value: or it
may be a Boolean variable.

Forms a) and c) are identical. If logical-expression has a
non-zero or TRUE value, control is transferred to the statement

Iq!enoted by Inexp; otherwise, execution continues at the next
ine.

With form b), if logical-expression is TRUE, the remaining
statements on the line will be executed; otherwise, they will be
skipped.

Similarly, form d) will perform the GOSUB (and the remaining
statements on the line, if any) if and only if the logical- ex-
pression is TRUE.

Examples:
PR Iie COTO 2850
PR DFIMTOI Y THEM I=IMToT 5+

[-18

www.pocketmuseum.com

IF ER THEM GLEUE el

TF @b Go=ldsE 1240 8 FRIMT "YES:
ITF TxTHTOl s THEM FEIMT C"Muast
bz ap inhedar, R LUTD 956

INPUT

Format: INPUT [#n,]["prompt™{;| ,}]v1,v2,v3,...|
Reads a line of input from the keyboard or from a peripheral.

nis the LUN to read from. If nis omitted, SnapBASIC assumes
LUN #0 (the keyboard).

prompt is a prompting message. If it is present, INPUT
prompts the user with this message. |f prompt is absent,
INPUT prompts the user with *?". promptis always sentto LUN

#1.

promptmust be a string constant. Warning: If you use a string
variable, INPUT will try to read into the variable.

v1,v2, v3,...arethevariables to be read. Each of them may be
numeric, integer, string, or Boolean.

Input reads values into the variables in the order that variables
appear in the statement. A value may be terminated by a
comma, space or end-of-line; except that if a value read into a
string variable begins with a quotation mark, it is terminated
only by a second quotation mark or end-of-line. It is possible to
read a quote ; to do so use a double quote “*“ as explained in

DATA.

If INPUT receives too few values on the keyboard, it prompts
the user for additional values with ‘??’. If it receives too few
values from a peripheral, it simply reads another record. If input
receives too many values from the (last) input line or record that
It reads, it discards the extras with a message ‘Rest Ignored’.
Note that this is different from the behavior of READ, which
saves the extras for the next READ.

Boolean input reads a string and returns FALSE if the first letter
Is n or N (from NO), f or F (from FALSE), or a digit #0.

Examples:

.,..
R

N S

= ™ : L] =] -
- EEEEE W - - L]

HI-IIII HLII-I II'I--

T}
i

Ill-iﬂi
LE]
:

T
I
afee
b e
.

Lo "':F II‘ll:r'I IIII.‘TI -—'

foveasf fewmnsf fevaned deeneal feeenef
bl |
eelunes

[-19

Not for sale

LET

See Assignment. LET is equivalent to an assignment state-
ment.

LIST (Cannot BURN)

Format: LIST

or LIST #n [,]

or LIST Inexp [,Inexp2]

or LIST #n,Inexp [,Inexp?2]

LIST will list the complete program.
LIST Inexp will list that single line and enter the edit mode.

LIST Inexp,Inexp will list those lines, and every line in be-
tween.

nis the LUN the list should go to. If nis not given, SnapBASIC
assumes LUN #1 (normally the LCD).

LIST prints BASIC keywords in upper case, expands “?” to
"PRINT”, inserts some spaces for readability, and adds pa-
rentheses to expressions. This often makes LISTed lines lon-
ger than they were originally typed. A unique feature is built into
SnapBASIC that allows you three different types of recon-
structing an expression with parentheses (see PAREN state-
ment/command).

Interacting With LIST

When you enter LIST and press RETURN, LIST displays the
first line you have requested, then the second line etc.

When multiple lines are being listed and a line is too long to fit
onthe LCD, LIST displays its beginning, and then rotates it until
the end becomes visible. To stop the rotation before the end
becomes visible, press any key. If only one line is listed, you
must use the ROTATE key to review a long line.

To end LIST at any point, press the BREAK key (C1 key).

LISTing a single line will make this line the current line for the
editor. See Chapter 6 about how to enter, leave and update
lines in the editor.

LISTing a line that does not exist will display the message
--NONE--" and make an existing line (with the next lower line
number) the current line for editing.

[-20

www.pocketmuseum.com

Note On Deferred Execution

You can use LIST in a program, but when you are done execut-
ing LIST your program will end. In other words, LIST behaves
as though an END statement were built into it.

Caution: If a line LISTs in inverse characters, then the line as
reconstructed is too long and characters have been lost. You
must shorten the line or split the line in two to replace the lost
characters.

Examples:

L IET
(list entire program)

i T -7 e |
: P . &3 b g

(list lines 5 through 30)

LOAD (immediate mode only)

Format: LOAD filename

LOADs and compiles the file with the name filename from the
current RAM bank. If the file does not exist, error FI (File Error)
results. LOAD does not remove the old program in BASIC.
When you are careful with line numbers, CHAINing is possible
by overwriting lines with the same line number.

During LOADIng, the record numbers of the source records
being LOADed are displayed.

Note: There are certain constraints on files to be loaded. First,
the file must contain only a line-numbered SnapBASIC prog-
ram in ASCII code; no immediate mode commands are allowed
(and using them may cause unpredictable results). Lines will
be truncated if they are longer than 80 characters.

Example:

P T
Pof kel i)

Not for sale

NEW (immediate mode only)

Format: NEW

NEW does the following things:

® Deletes all variables.

® Deletes all the lines from the program.
Since NEW deletes all the lines from your program, and affects

the program stored in the memory area as soon as itis entered,
you should use the statement very cautiously.

Using the NEW command is just like executing BYE, then
destroying the old file, and then selecting a new file with the old
name.

NEXT

Format: NEXT
or NEXT nv

Ends a FOR/NEXT loop.

nvis the index of the loop being ended. If nvis omitted, NEXT
ends the innermost loop now open.

For more information, see the description of FOR.

Note: NEXT is restricted to deferred mode, with the exception
that a single line may be entered in immediate mode including
both a FOR and a NEXT statement. For example,

an aEm ™ -r] L .u- [T 1] ses gees 2 T .=| peane ® 8 seuna
FOR D o= L TO ZEE FEINT IS MHos

is allowable in immediate mode.

Examples:

ON

Format: ON n GOTO In1,In2,. . .,Inx
or ON n GOSUB In1,In2,. . .,Inx

Evaluates n and truncates the result to the next lower integer if
necessary. |If n(1 or m)x, ON does nothing (/.e., the next se-
quential statement is executed). If n=1, ON does a GOTO or

GOSUB to In1. If n=2, ON does a GOTO or GOSUB to In2,
and so forth.

www.pocketmuseum.com 1-22

Examples:

O T GO T1ers Taders 10
1 T P T S O 9 P 1

ONERR (deferred mode only)

Format: ONERR GOTO In
or ONERR GOTO Inexp (cannot BURN)

Allows recovery from an error situation. When an error occurs,
all LOOPs are terminated and all GOSUBs are exited. The
program then continues at line Inexp.

Recovery from a ‘BREAK' typed by the user is done once only.
Hitting the BREAK key (C1) twice will stop the program, except
when a new ‘ONERR’ is executed. In such case the new
ONERR is active and will allow one recovery on a ‘BREAK’
typed by the user.

After an error, the error code that would have been displayed
had ONERR notbeen active is available as two ASCII bytes at
locations 852 and 853. PEEK these locations to find out what
caused the error condition; the bytes represent the first and
second letters respectively of a SnapBASIC error code (see
Chapter 10 for information on error codes).

Examples:
PED DR RRE T 11
Ll Uk LUITOD S
LRt Ik DHEERECFE i
LHEFOFERER TS =T
PHEM Y TN RAMOOLIT U RERPE T RN

PAREN (Cannot BURN)

Format: PAREN n

'I_'his switch specifies the manner in which computational priori-
ties are stated through the use of parentheses:

For n=0, the parentheses are reconstructed as well as possi-
ble, matching what might be entered by a typical user.

For n =1, parentheses are added for every priority level, to help
a user see the priorities.

For n =2, the parentheses are removed as much as possible.

1-23 Not for sale

Example:
If the following expression has been entered:

T % = 4 O 4

it will be reconstructed in the following way :

FEREH B 8 1#2+ 03+

-
Saaasis

i

FEREM B of 1R

POKE

Format: POKE n1,n2
Stores n2 in the HHC’s memory at the memory address nT.

n1 must be in the range -32768 to 32767. n2 must be in the
range 0 to 255. Negative values of n1 represent addresses
larger than 32767.

Caution! Since POKE stores data directly into the HHC's
memory, there is no checking to prevent you from POKEing
data into the wrong place. If you use POKE with improper
values for n1or n2, the results will be unpredictable, and can be
catastrophic. See the chapter on PEEK and POKE in the Snap-
BASIC Tutorial Guide for more information.

For a discussion of useful PEEK and POKE addresses, see
Chapter 8.

Example:

(changes the LCD rotation speed
to the fastest possible speed)

PRINT

PRINT [#n,] [x1] {,I;} [x2] {.I;} ... [xy] [,!;]
Format:
? [#n]

'?" is an abbreviation for PRINT. If you enter *?" in a statement,
SnapBASIC will display ‘PRINT when you LIST the statement.
If the line is too long when expanded, information may be lost
(see LIST).

PRINT writes information to the LUN (logical unit number)
specified by n. If nis absent, SnapBASIC assumes LUN #1

(normally the LCD).

www.pocketmuseum.com |-24

How Values Are Positioned

Each x is a numeric or strir_'lg expression. PRINT writes the
values of the expressions in the order they appear in the
statement.

PRINT divides the output line into zones, each 21 characters
long. The first x is displayed at the beginning of the first zone.

SnapBASIC puts no spaces between them. If the first and
second x's are separated by acomma, SnapBASIC skips to the
beginning of the next zone before displaying the second value.

If the last x is followed by a semicolon, SnapBASIC does not
end the line; the next PRINT statement will add data to the end
of the same line. If the last x is followed by a comma, SnapBA-
SIC does not end the line, but skips to the start of the next zone.
If the last x is followed by neither a semicolon nor a comma,
SnapBASIC ends the line, so that the next PRINT statement
will begin writing data at the start of the next line.

SnapBASIC has a special function, SPC$, which may be used
In PRINT statement expressions. SPC$(N) inserts N spaces
Into the output line. In combination with the function POS, any

type of tabulation can be programmed. For example, start
every 12th column:

S B = i 3 IO O N B TP et i D e B

SnapBASIC also has a special function, STRFS$, that is able to
format your floating point output.

When a PRINT is LISTed, a LUN is always shown, including
LUN #1 (implied when a LUN is not specified)

PRINT With No Values

A PRINT statement may have no x’s, like this:

EEEE EEEE
L] [I

i:-unlI i---] i'- i.-;"
: o1 L1

Such a PRINT.statement writes a blank line, or ends the current
line of output if the previous PRINT statement ended with a

s_,ernicol_on or a comma. This form of the statement is always
listed with a comma after the LUN.

Not for sale

Examples:

FREIMT Miles

CETHT "Fue] efficismod= sl mPd,
FRIMT "Order="3LEH CO5F0-3

REIHT

FREIMT #:2.1

READ

Format: READ vi[,v2,v3,...,vn]
READ reads data from one or more DATA statements.

Data items are read from DATA statements left-to-right and
from the beginning of the program to the end. One item is read
for each of the variables v1,v2,v3,...,vn.

If a READ runs out of data in one DATA statement, it begins
reading the next. If a READ has data left over when it is done
reading into its variables, it leaves the data for the next READ to

get.
If there is no more data, READ will stop with an out-of-data
error.
Examples:
bl Mk
FEED MiHEOH
e Y Rt o A

Format: REM followed by a remark of any sort.

REM begins a remark line. A remark line may be used to
include any sort of useful information in a program, such as the
name of the author, purposes of the variables, or notes about
how the program works.

SnapBASIC stores the remark line exactly as you type it. Thus,
if you enter this,
SEEE rem owoluss within Dimitay

L]
EEEEE RS L-.- L2}] L] EEEE

SnapBASIC will LIST this:

TEeE REM O woloes o within bimitae’

www.pocketmuseum.com 1-26

Note that REM turns an entire lineinto a remark. The remark is
not terminated by a colon, as other SnapBASIC statements

dare.

Also note that the if the first word of the REM statement starts
immediately after the REM, this word will be written in upper

case characters.
If you enter this,

sEAremen lues within Dimits?
SnapBASIC will LIST this:

SEHTEAREMVELUES within Pimits?
Examples:

FEM OIS orrad still oemPrd, ¥iwe error
DEM IRPut s user (s PromPred Yor odoto
FEM CoPdrisht 1P

BEM Yerifd thot ABRSOSOECS TR Taad0 D

RESEQ (immediate mode only)

Format: RESEQ n

“Resequences”’ all line numbers in a program to multiples of n.
During the resequencing operation, the program is listed with
the new line numbers. It is permissable to use the BREAK key
to stop the renumbering process; in this case, only a part of the
program will have been renumbered (and not all of the updates
will have been made). CONT will continue the process.

Example:

FESER 2O
(changes lines numbers to 20, 40, 60, ... etc.)

RESTORE

Format: RESTORE

“Rewinds” the program’s DATA statements so that next READ
statement will read the first data item on the first DATA state-
ment.

1-27
Not for sale

RETURN

Format: RETURN

Returns control from a subroutine to the statement after the
most recent GOSUB not yet RETURNed from.

If BASIC is not executing a subroutine, an attempt to execute a
RETURN statement will cause an RT error.

If a FOR loop has been started, but is unfinished when a
RETURN is executed, SnapBASIC will pop (throw away) the
unfinished FOR.

RUN (cannot BURN)

Format: RUN [In]

RUNSs the current program, clearing all the variables and arrays
before starting. If a line number is specified, execution begins
at that line; otherwise, execution begins at the first line in the
program.

If you execute RUN from within your program, the program will
be restarted from the beginning; this is not generally a good

Idea (and can lead to an infinite loop and other anomalous
results).

Examples:

IR
SRR

(starts at the beginning)

Fod bkl o

(starts at line 30)

SQUEAK

Format: SQUEAK n1,n2
SQUEAKS the beeper on the HHC at pitch n1 for time n2.

n1is converted into an integer. 36 gives the highest note; 0
gives the sound of silence. 32 is approximately middle C. A
difference of 1 is approximately 1 semitone.

n2is converted to an integer. The time unit is about 5.88 msec.
There are 10,200 counts/minute, or 170 counts/second.

Note that a very long value for the time will cause a very long
squeak, and that you cannot use the BREAK key to get out of
the squeak. For example, SQUEAK 35,-1 will squeak for more

than 6 minutes--and you could only stop it with the CLEAR key
(which is likely to foul up the program).

1-28

www.pocketmuseum.com

Negative pitch values will give an interesting assortment of
ticks, squeaks, and clicks. Values greater than 36 are reduced
to the range 25 to 36 (giving an octave range of twelve semi-

tones).
Example:

G HERT 1

w
ceele
i
= L] I
.
IL.‘
o
-J
EEEmm
1—.

i

(makes the HHC play a chromatic scale)

STOP

Format: STOP
Interrupts execution of the program and displays the message

=TORFELD m
on the LCD. (nnnn is the Line number of the line the STOP s
on.)

After STOPping a program, you can continue it with the CONT
statement. See CONT for more information.

BEsT-NE atty

TROFF (Cannot BURN)

Format: TROFF

Turns off the program execution trace that is turned on by
TRON.

TRON (Cannot BURN)
Format: TRON

Turns on SnapBASIC’s execution trace facility. When the trace
facility is on, SnapBASIC displays the line number of each
statement that it executes in deferred mode. The trace display
looks like this:

where each nn is the line number of one line in the program.

Once the trace facility is turned on, it remains on until itis turned
off with TROFF, or until you return to the SnapBASIC menu with
BYE.

[-29

Not for sale

If a statement that is a GOTO loop, like CHAPTER 2: |NTR|NS|C FUNCT|0NS

18 SO07TO 1\
Is encountered, TRON finds the problem and stops with a GO
error. ARITHMETIC FUNCTIONS
If the program h_as no END statement, an implied END is
executed whose line number is displayed in trace mode as -1. nv = ABS (n)
Example: Returns the absolute value of n.
nv = EXP (n)
. Returns the constant E (2.71828182846) raised to the
=16 TROH power n. The maximum value of n that will not produce an
overflow error is 2357.84713522.
=an TROFF nv = FIX (n)

Deletes the fractional part of n.

nv = FLOAT (n%)
Converts the integer number ninto a floating point number.
FLOAT can also be used as an alternative to INT: they
behave identically for positive numbers; however, for nega-

tive numbers, FLOAT(n) = INT(n+1) (i.e., FLOAT returns
the integer closest to zero).

nv = FREE (n)
n = 0: Returns the number of free bytes of memory
available for storing and running programs. This is the size

of the current memory area, minus the amount of space
already occupied by programs and data.

For other values of n , tries to increase (decrease) the
amount of memory available, such that n bytes of memory
are free for the program. Such free space is used when:

1) adding a new line

2) adding a new variable

3) executing a DIM statement

4) adding a new string, or extending existing strings
5) (temporarily) input or output operations are done

Note that FREE(0) forces a “garbage collection” on dyna-
mic strings. Garbage collection is automatically done at
various times, and may take several seconds, causing an
apparent loss of system to the user. If you wish to avoid
this, you can execute a FREE(0) when the program is not
expecting input or generating much output. The leftmost

(undefined) blip is turned on during “garbage collection” as
an indication to wait.

Caution: Never press the CLEAR key while the “garbage’

blip is on (or anywhere else in SnapBASIC). Use the BYE
command.

will trace every action between line 510 and 520.

2-1
www.pocketmuseum.com 1-30

Not for sale

www.pocketmuseum.com

Note also that FREE allocates memory space for SnapBA-
SIC. FREE(0) will take almost all the memory available in
the RAM area -- so if HHC system devices or the file
system ask for more memory, it may not be available. If you
are going to use file operations that will expand the files.
make sure that SnapBASIC does not allocate all of the

memory, by using FREE(n). For example, to use 300 for
BASIC and the rest for the file system, enter:

FREE CZEE

To use 300 bytes for the file system and the rest for BASIC.
enter:

EEE ll= .rll-l EEEEE 'l rIII rli= o ilil- .l =ll:= -.. .ll! -l-: il-: I..
S Sl Tl O 5 B 1 1 O

nv = INT (n)
Returns the largest integer nv such that n<=nv. INT (1.1)
IS 1; INT (1) is 1; INT (.9) is 0; INT (-.1) is -1.

nv = LN (n)
Returns the the natural (base E) log of n. To obtain the

base Y log of X, use the formula LN (X)/LN (Y). Example:
the base 10 (common) log of 7 is LN (7)/LN (10)

nv = LOG (n)

Returns the the common (base 10) log of n. To obtain the
base Y log of X, use the formula LOG (X)/LOG (Y).

nv = MAX (m,n)

Returns the maximum (larger) of m and n.
nv = MIN (m,n)

Returns the minimum (smaller) of m and n.
nv = MOD (m,n)

Returns the modulus of m and n. Positive and negative
values for m and n are handled as follows:

m n MOD(m,n)

8 3 2
-8 3 -2
8 -3 2
-8 -3 =2
Note that this is different from the MOD% function.
nv = PEEK (n)

Returns the value stored at memory address n. n must be
In the range -32768 to 32767. Negative numbers represent

addresses larger than 32767. Values are returned in the
range 0 to 255.

nv = POS (0)
Returns the length of the current output line.
if you execute POS immediately after ending a line of

output or PRINTing a carriage return, POS returns the
value 0. PRINTing a character adds 1 to the value POS will

return.

The value of POS is affected by output on the LCD and on
every peripheral. For example, if you execute the following
code:

som PRIMT 2. DEFG"S
e G I SR
the value returned by POS will be 7, even though the
lengths of the current output lines on the LCD and LUN #2
are 3 and 4, respectively. Thus, you must avoid doing

output on one LUN while building up a line of output on
another if you want POS to have meaning.

Note that ‘0’ is a required dummy parameter.
nv = RND (n)
Returns a “random’” number in the range 0<<=RND(n)<1.

The first time you call RND, use a negative n (for example,
RND(-PEEK(526)), a peek at the fastest changing value In
the timer). This makes RND use n as a “seed” to begin
generating a random number sequence. The same seed
always produces the same sequence. RND returns the first
number in the sequence.

On subsequent calls to RND, use 0 or a positive n. This
makes RND return the next random number in the sequ-
ence.

nv = ROUND (n)

Returns the arithmetic rounded value of n, i.e. the whole
number (without a fractional part) that is closest to n.

nv = SQR (n)
Returns the square of n. Equivalent to n"2.

SQR(N) produces the same result as N2, but executes
more quickly.

nv = SQRT (n)

Returns the square root of n. Equivalentto n".5. Causes an
AE error’ (Arithmetic error) if n<O.

SQRT(N) produces the same result as N .5, but executes
more quickly.

Not for sale

FILE FUNCTIONS

nv = EXIST (s)

Returns a boolean TRUE if filename (s) exists, otherwise a
FALSE.

nv = FADR (0)
Returns the current address of the start of the current file.
Returns 0 if there is no file opened.

nv = FGET (offset)

Returns the byte at the given offset position. The byte at
offset O is the first data byte.

nv = FLEN (0)
Returns the number of data bytes in the current file.
nv = FREC (0)

Returns the total number of records in the file

INTEGER FUNCTIONS

Integer functions are the same as as the normal fu nctions, but
they do their operation(s) on the integer parameters, and they
return an integer as function result. Thus, execution time is
considerably faster.

nv = ABS% (n%)

Returns the absolute integer value of n.
nv = BAND (m%,n%)

Returns the bitwise AND’ of the integers m% and n% .
nv = BOR (m%,n%)

Returns the bitwise ‘OR’ of the integers m% and n%.
nv = BXOR (m%,n%)

Returns the bitwise XOR’ (exclusive OR) of the iIntegers
m% and n%.

nv = MAX% (m%,n%)

Returns the integer maximum (larger) of m% and n% .
nv = MIN% (m%,n%)

Returns the integer minimum (smaller) of m% and n%.
nv = MOD% (m%,n%)

Returps the integer modulus of m% and n%. Positive and
negative values of m% and n% are handled as follows:

2-4
www.pocketmuseum.com

m% N% MOD“/o(m‘-"/o,n"/o)

8 3 2
8 3 1
g -3 -2
8 -3 -

Note that this is different from the MOD function.

STRING FUNCTIONS

In the following list of string functions, the actual parameters
are checked to be within the limits of the current string.
Parameters that are not within limits are set to be identical to

the (nearest) limit.

nv = ASC (s)
Returns the number that represents the character s (the
first character of s, if s is more than one character long) in
ASCI| notation. For example, ASC (“G”) returns 71; ASC

(“!"") returns 33.
If sis the null string, ASC causes an ‘IQ error'.

sv = CHAR (s,n)
Returns the number that represents the character at the
n-th position in the string s, in ASCII notation.

sv = CHR$(n%)
Returns the character that is represented by the number n
in ASCII notation. For example, CHR$(71) is ‘G’; CHR$(33)

s V.
sv = DATES

Returns the string contained in the variable DATES, repre-
senting the date. The format is

ddd mmm nn yyyy
where ddd is the day of the week, mmm is the month, nnis
the date, and yyyy is the year. For example;

WED May 19 198l
sv = ERASES (s,n1,n2)
Returns a string value consisting of the characters of s from

which n2 characters have been deleted starting at charac-
ter position n1.

Not for sale

www.pocketmuseum.com

sv = INSERTS (s1,s2,n)

Returns a string value consisting of the characters of s1 to
which the characters of s2 have been inserted starting at
character position n.

sv = LEFT$(s,n)

Returns a string value consisting of the first n characters of
S.

If nis not an integer, LEFTS$ truncates it.
If nis zero, LEFT$ returns the null string.
If n>LEN (s), LEFTS$ returns s.

If n<O0 , LEFTS$ returns the left part of s, except for n
characters (on the right ot s).

nv = LEN (s)

Returns the length, in characters, of the string s.

sv = MID$(s,n1,n2)

Returns a substring of s beginning at the n1th character,
n2 characters long.

If n1is 1, the substring begins at the first position in s; it N1
IS 2, the substring begins at the second position, and so on.

If n1 is not an integer value, MID$ truncates it. If
n1>=LEN(s), MID$ returns the null string.

If n2=0, MID$ returns the null string. If n2 is greater than
the number of characters remaining in the string from n7 to
the end, MID$ returns the entire part of the string from
character n1 to the end.

If n2<<0, MID$ returns the s except the middle part, starting
at n1 with length n2.

sv = RIGHT$(s,n)

Returns a string value consisting of the last n characters of
S

RIGHTS$ treats unusual values of n the same way that
LEFTS does.

If n<0 , RIGHTS returns the right part of s except for n
characters (on the left of s).

nv = SEARCH (s1,s2,n)

Searches for the n-th occurrence of the string s2in the s1.
When found, returns the character position of the first
matching character. Otherwise returns 0 (not found).

sv = SPCS$ (n%)

Returns a string of (integer) n spaces. Identical to
“bbbbbbb” where the string of b’'s denotes n spaces.

sv = STR$(n)

Returns the value of n, converted to a string. For example,
STR$(71) is 71"

STR$ uses the same conversion rules that the PRINT
statement uses when it displays a numeric value.

= STRF$(n,width,low-exp,high-exp,power-increment,

rounding-factor,frac-len,exp-len)

Returns the value of n, converted into a string according to
the remaining parameters. The parameters are defined as
follows:

width is the total length of the resultant string. See the
notes below for how width interacts with frac-len and
exp-len.

low-exp and high-exp are integers that determine what
numbers will be formatted in floating point notation, and
which will be formatted in scientific notation. Specifically, if

n< 10Iow—exp

or
n > 10high-exp

then the result will be formatted in scientific (exponential)
notation; otherwise, the result will be formatted in floating
point notation. (Floating point notation is the normal way a
number is printed in SnapBASIC, e.g. “345.768149034").

power-increment is a value that allows you to specify in
what increments the exponent will be increased when a
number is formatted in scientific notation. Normally, the
iIncrement is one; a number entered as 1.45E10 would be
printed as 1.45E10, just as it was entered. However, if
power-increment is 3 (for example), the exponents would
only be multiples of 3, so that 145E10 would be formatted
as 14.5E9. This is useful if you want your numbers format-
ted as millions, billions, and so on.

rounding-factor is an integer that specifies at what digit
rounding is to happen, in terms of powers of 10. In other
words, if rounding-factor is x, then all digits following the
10™ position will become 0, and the digit in the 10* position
will be rounded according to the original remaining digits.

The position immediately to the left of the decimal is thus
the “Oth” position.

<
|
~]

Not for sale

www.pocketmuseum.com

Example: Assume that n = 12345.6789. Then:

Rounding
factor Result

2 12300.0000
-2 12345.6800
4 10000.0000
-99 12345.6789
99 U.0000"

*a warning that nothing sensible could be printed for this
value, since the rounding-factor is so high.

frac-len is the number of fractional digits (those following
the decimal point) that are to included. The decimal point is
not included in this count. Digits beyond the number
specified by frac-len are truncated.

exp-len is the number of exponent digits to be included.
The ‘E’ is included In this count.

The several field width parameters interact as follows, to
determine the number of digits reserved for the integer part
of the number:

Assume width is 16, frac-len is 5, and exp-len is 3. Then
the resultant field will look like this:

16 positions total width

The exponent, on the right, takes up three positions
(including the ‘E’). The fractional part is exactly 5 digits
wide. The decimal point uses a position, leaving 7 digits for
the integer part. If the number is negative, then there is one
less position available for the integer part.

Some of the parameters have limited ranges, and some
values for some of the parameters have special meanings.
Further, each parameter has a “default” value that is that
parameter’s equivalent in the STR$ function, and in normal
free format output from PRINT statements.

Parameter Comment

width Must be > 0, or causes an error.
Default is 22.

low-exp No limitation. Default: -2.

high-exp No limitation. Default: +10.

power-increment If < 1, converted to 1. Default: 1.

rounding-factor No limitation. Default: -12.

2-8

frac-len Negative values changed to 0.
Special case: If frac-len = 0. as
many digits as are possible will be
printed following the decimal point,
with trailing zeroes suppressed.
Further, decimal point alignment is
disabled. Default: O.

exp-len Values less than 0 are changed to
0. If the value is 0, decimal point
alignment is disabled, and the
width of the exponent field will vary
according to the size of the expo-
nent. A value of 1 will always
generate a field of asterisks if there
IS any exponent, since the E itself
requires a position. Default: O.

This function is designed so that, upon output, decimal
points will be aligned in a column (unless this is defeated by
O values for frac-len or exp-len). There are some special
conditions:

e |[f the number is too large to represent in the space provided
by the width parameter, then all that will be printed is a field

full of asterisks (for example, if width is 3, then 12345 will
be printed as ***'))

® As indicated above, if n < 10%, then a rounding factor X or

greater will cause the integer part of the number to be
replaced by a ‘U’.

e |f the width is insufficient to represent all the desired digits

in the fractional part of the number, then the fractional part
will be truncated.

e |[f the actual exponent cannot be represented in exp-len
characters, the field is filled with asterisks.

sv = SUBS (s1,s2,n)

Returns a string value consisting of the characters of s1

from which the n-th occurrence of the string s2 has been
deleted.

sv = TIMES$

F%etu_rns the string contained in the variable TIMES, repre-
senting the time, in the format

Im!m!m hh:mim:ss

where hh is the hours (of a 24-hour clock), mm is the
minutes, and ss is the seconds, e.g. “21:48:59".

nv = VAL (s)

Returns the value of s, converted to a number. For example,
VAL (“717") is 71.

2-9

Not for sale

VAL uses the same conversion rules that the INPUT
statement uses when it reads a numeric value. If the string
value cannot be interpreted as a number, VAL ignores
everything from the first invalid character to the end of the
string. Thus VAL ("5X") returns the value 5; VAL
(“FGHRTY") returns the value 0.

Note that VAL, like INPUT, considers a lower case ‘e’ to be
a valid character in a number expressed In scientific
notation. For example, ‘2.5E3" and ‘2.5e3" are valid, and will
return the value 2500.

TRIGONOMETRIC FUNCTIONS

SnapBASIC on the HHC has the following trigonometric
functions.

nv = COS (n)
Returns the cosine of the angle n (radians).
nv = PI
Returns the value of the constant pi (3.14159265359).
nv = SIN (n)
Returns the sine of the angle n (radians).
nv = TAN (n)

Returns the tangent of the angle n (radians).

2-10
www.pocketmuseum.com

CHAPTER 3: OPERATORS

NUMERIC OPERATORS

Operators are listed in descending order of priority, i.e., the
operators with the smallest “priority” numbers have the

highest priority.

Numeric Operators

oper- pri-
ator ority function example of use result
() O overrides other A=5%4+3) A =35
priority rules
- 1 negation A=-8-2 A=64
~ 2 exponentiation A=2-~3 A=8
* 3 multiplication A=2"6 A=12
/3 division A=8/2 A=4
+ 4 addition A=8+1 A=9
- 4 subtraction A =8-1 A=7
= 5 s equalto IF 5=0 GOTO 90 no action
<> 5 s not equal to FL=5<>0 FL=1
< 5 Isless than
<= 5 s less than or
equal to
> 5 Is greater than
>= 5 Is greater than or
equal to
3-1
Not for sale

STRING OPERATORS

String Operators

oper- pri-
ator ority function

() O overrides other
priority rules

concatenation

deletion
IS equal to

is not equal to

is less than

IS less than or
equal to

is greater than

IS greater than or
equal to

V
oo oo oo A

=

|

example of use resuit

A$="8"+“1" A$="81"

A% ="“abc’-“ab” A$="c”

IF “XX"'="“X" no action
GOTO 90

F?=“XX"<>“X" F?=TRUE

Strings are evaluated in ASCII order. Upper case letters come
before (are lesser than) lower case letters. If this does not
distinguish between the strings, then the length counts: the

shorter string is “smaller’.

www.pocketmuseum.com 3-2

BOOLEAN OPERATORS

For these examples, assume F? = FALSE and T? = TRUE.

Boolean Operators

oper- pri-

ator ority function example of use result

() O overrides other A?=(F?ORF?) A?=F?
priority rules AND (F? OR T7?)

NOT 1 complement A? = NOT F? A?=T7?
= 5 equivalance A? = (F? = T?7) A?=F?
<> 5 nonequivalence A? = (F? <> T?)A?=T7
AND 6 conjunction A? = F? AND T? A?=F?
OR 7 disjunction A? = F?70RT? A?=T17
XOR 7 exjunction A? = T? XOR F? A?7=T7

Truth tables for the Boolean functions are:

A?|NOT A? A?|B?|A?=B? A?|(B?|A?<>B?

T?2(T?] T7 T?| 17 F?
T?|F?| F? T?|1F?] T7?
F?21 7?1 F? F2(T? T7?
F?2IF?1 T7? F?2LF?21 T7?

A?|B?|A?ANDB? B?|A?ORB? A?|B?|A?XORB?
T2|T?| T2 2| T2 T2 2| T?| F?
T?2|F?| F? 2 |F?2| T2 T2 |F?| T2
F?({T?| F? | T2 T2 F?|T?| T2
F?|F?| F? F?| F? F?|F?| F?

Where SnapBASIC must disregard the order of precedence to
avoid a TM error (Type Mismatch), it does so automatically.
Here is an example of such a situation:

FEEEE EEEESD REREE 2B 020 @ @ § W EEEEE
u]] # & w B omEiE
lllll

3-3

Not for sale

www.pocketmuseum.com

The normal order of precedence would evaluate A + X$’ first.
That would produce a type mismatch, however, so
SnapBASIC evaluates ‘X$ =Y’ first, yielding a 0 or 1, which
may be added to A.

The conversions are performed according to the following
table.

INT REAL BOOL STRING

INT: INT REAL INT ILLEGAL
REAL: REAL REAL REAL ILLEGAL
BOOL: INT REAL BOOL ILLEGAL

STRING: ILLEGAL ILLEGAL ILLEGAL STRING

In short, operators are coerced to the type that requires the
most storage: BOOLEANSs are shorter than INTs, which are
shorter than REALs. STRINGs are not coercable, and nothing
IS coercable to STRING.

Certain numeric operations are converted to logical
operations, when the operands are Boolean. Specifically:

+ Is converted to OR

" Is converted to AND

- IS converted to NOT

Also, NOT is converted to - when used with numeric
operators.

Certain other operations are simply illegal for certain types.
The operations *, /, and ~ are illegal for STRING operands.
The operations -, /, and -~ are illegal for BOOL operands. Using
these operations of illegal types will cause the TM error.

3-4

ABS(
ABS%(
AND
ASC(
ATTACH
AUTO
BAND(
BOR(
BURN
BXOR(
BYE
CALL
CHAR(
CHRS$(
CLEAR
CONT
COS(
DATA
DATES
DEF
DEL
DETACH
DIM
END
ERASES(
EXIST(
EXP(
FADR(
FALSE
FDEL
FGET(
FINS
FEX(
FLEN(
FLOAT(
FNx(

FOPEN
FOR
FPUT
FREAD
FREC(
FREE(
FREVISE
FWRITE
GET
GOSUB
GOTO
HISTORY
HOME
IF
INPUT

INSERTS$(

INT(
LEFTS$(
LEN(
LET
LIST
LN
LOAD
LOG(
MAX(
MAX%(
MID$(
MIN(
MIN%(
MOD(
MOD%(
NEW
NEXT
NOT
ON
ONERR
OR

4-1

PAREN
PEEK(
P|
POKE
POS(
PRINT
?

READ
REM
RESEQ
RESTORE
RETURN
RIGHTS(
RND(
ROUND(
RUN
SEARCH(
SIN(
SQR(
SQRT(
SQUEAK
SPC$(
STEP
STOP
STR$(
STRF$(
SUBS(
TAN(
THEN
TIME$
TO
TROFF
TRON
TRUE
VAL (
XOR

CHAPTER 4: RESERVED WORDS

Not for sale

CHAPTER 5: LINE NUMBERS, NUM-
BERS, AND STRINGS

LINES

Maximum length: 80 characters (after SnapBASIC has
LISTed a line on the display.)

Minimum value: O
Maximum value: 32766

values allowed: any integer value from minimum to
maximum.

NUMERIC VALUES

Maximum value (magnitude): approximately
+9.999929*10'%%°

Tiniest non-zero value: approximately + 1.00000*10°'%%*
Maximum precision: 13 decimal digits
Memory used: 8 bytes per value

INTEGER VALUES

The limits on integer values apply only to the values of integer
variables and arrays.

Maximum magnitude: 32767
Minimum value: -32767
Memory used: 2 bytes per value

BOOLEAN VALUES

The limits on boolean values apply only to the values of
boolean variables and arrays. A boolean variable may have

an “integer value” (a value that contains no decimal part) O
and 1.

Only possible values: TRUE and FALSE
Memory used: 1 byte per value

STRING VALUES

A string value contained in a string constant, variable, or
array, contains ASCII| characters represented in 7 bits.

www.pocketmuseum.com Not for sale

String Length: 0 to 255 bytes, inclusive

Memory used: 3 bytes plus characters in the string, allocated
dynamically.

ARRAYS

Maximum number of dimensions: 13 (more causes CX
error)

Maximum number of elements per dimension: as many as
can fit in memory; absolute maximum of 32766

Memory used: 6 + 2 * (number of dimensions) + (total
number of elements) * (size of each element)

RULES FOR DISPLAYING REAL VALUES
(PRINT, STR$, AND STRF$)

1. If a number is negative, the first character displayed is ‘-
Otherwise the first character displayed is “space”.

The number follows. It contains only as many digits as are
needed to represent it completely. There are no leading
zeroes before the decimal point (if any), and no trailing
zeroes after the decimal point (if any).

The number is not divided by commas into groups of three
characters, although such commas are used in some parts
of this book to make large numbers more readable.

2. If the absolute value of the number is in the range
01 <= n < 1,000,000,000

the number is displayed as a real value (with a decimal
point). Examples:

1 -1 3.141592 9111.11111
-9111.11111

3. If the number doesn't fit into category (2) or (3) above, it is
displayed in scientific notation.

The mantissa is expressed as a number in the range
1<=n<10 displayed as a real number. Example:
3.14E+14

When ‘E’ is negative, it is followed by a ‘-’ and an exponent
of maximum 4 digits. Examples:

3.14E14 3.14E-14 3.E-3

www.pocketmuseum.com

RULE FOR DISPLAYING INTEGER VALUES
(PRINT)

If the number is negative, it is preceded by a minus sign. The
number follows, without a trailing decimal point. There are no

extra spaces.

RULE FOR DISPLAYING BOOLEAN VALUES
(PRINT)

Boolean values are displayed as TRUE or FALSE.

Note that TRUE has a trailing space, so that both are 5
characters long.

RULE FOR DISPLAYING STRING VALUES
(PRINT)

Strings are displayed as entered, without extra spaces.

RULES FOR READING REAL VALUES (INPUT

AND VAL)

The rules for reading numeric values are essentially the same

as the rules for displaying them, except that the rules that

choose between alternate forms of a number do not apply. For

example, any number, regardless of value, may be inpuj in
scientific notation, or as a decimal value, or (value permitting)
as a Integer.

1. If a number is negative, the sign must be ‘-'. Otherwise the
sign may be ‘+’ or may be absent. Leading blanks are
allowed.

2. After the sign, if any, is an integer constant or numeric

constant.
SnapBASIC considers the number to stop at the first
character that is not part of a valid value. For example, if the
value being read is ‘50,000’, SnapBASIC reads ‘50'. If the
number is * 50’ (with a leading blank), SnapBASIC reads
'50’, since leading blanks are allowed.

Note that a leading zero is not required; the numbers ‘0.1’
and .1 are equivalent.

If the number is in floating point notation, it ends here. If the
number is in scientific notation, the following parts must be
present.

3. The next character is ‘E’ (it may be in upper or lower case).

4. Next is the exponent’s sign. If the exponent is negative, its
signis -'. Otherwise its sign may be ‘+ ', or may be absent.

5-3

Not for sale

5. Next is the exponent, which must be an integer.

6. The entire number must be within the valid range of a
numeric variable.

For example, all of the following numbers are valid and
equivalent:

3.14E + 14 3.14E14 3.14E + 0000014

314E+12 314000E9 +0.314E+ 15
314E15

There are a few special cases. A decimal point entered by
itself results in the number 0.0; a decimal point followed by an
E followed by an exponent results in the number 1.0Eexp; the
same applies to a O followed by an E followed by an exponent.

If an E is used at all, it must be followed by an exponent or an
error will occur.

RULES FOR READING INTEGER VALUES
(INPUT AND VAL)

The rules for reading integer values are the same as the rules
for reading real values; once the value is entered, SnapBASIC
attempts to convert it to an integer. If the number is not within
the range of an integer, an 1Q error results.

RULES FOR READING STRING VALUES
(INPUT AND VAL)

Any line of text constitutes a string. Strings are terminated by
a comma. If it is necessary to enter a comma as part of a
string, the entire string must be enclosed in quotes (). If it is
necessary to include a quote as part of a string, two quotes

must be used and the string must be enclosed in quotes.
Examples:

this is one single string
this is two strings, since there is a comma

“but this, with commas and quotes, is one string”
“this String Contains “HquoteSHH.H

RULES FOR READING BOOLEAN VALUES
(INPUT AND VAL)

Boolean values may be entered as arbitrary strings. Any string
starting with upper or lower case ‘N’ or ‘F’, or starting with the

digit O, is interpreted as FALSE; any other string is interpreted
as TRUE.

0-4

www.pocketmuseum.com

CHAPTER 6: BASIC PROGRAM EDI-
TOR QUICK REFERENCE

EDITING LINES

Change to be made Procedure

Add a line Type a line with a line number
before it. Basic inserts the line in
the program in line number order.

Delete a line (1) Type a line number alone; press
ENTER.

or

(2) EDIT the line (by using the
arrow keys) and delete everything
except the line number, then press
ENTER to make Basic accept the
edited line.

or

(3) “DELETE linenr” to DELETE
one line |

or

(4) “DELETE linenr1,linenr2” to
DELETE lines from linenr1 to
linenr2, inclusive.

Change a line Type a new line with the same line
number as the line you want to
replace. You can use all the usual
HHC line edit commands.

or
~ LIST the line and edit it.
List a line 1" (1) ‘LIST’ will list the whole
program
or

" - If a LISTed line appears In inverse characters, the sprcitM 4 S
version of the line expanded by LIST is longer than 80 characters, and
Information is not available in the display although the compiled line may

be RUNable. If this line must be changed, the missing information must
be added back and the line shortened.

6-1

Not for sale

Copy a line

Move a line

ARROW KEYS
Key

Up arrow

Down arrow

www.pocketmuseum.com

(2) ‘LIST linenr’ lists the line and
goes to edit mode

or

(3) ‘LIST linenr, linenr lists the
range of line numbers

To stop a LIST, press the BREAK
key.

EDIT the line and change its line
number to the line number you
want the copy to have. Press
ENTER to make Basic accept the
edited line.

Copy the line; then delete the
original line.

Function

If not already in EDIT mode, enter
EDIT mode at the “current” line
(this is the last line EDITed if there
was one; otherwise, it is the last
line in the program).

If already in EDIT mode, updates
the current line, and moves to the
previous line. If this was the first
line In the program, return to
command mode. In this case,
another up arrow will go to the last
line.

If not already in EDIT mode,
behaves the same as up arrow:
except that if there was no last line
EDITed, the “current” line is the last
line in the program.

If already in EDIT mode, updates
the current line, and moves to the
next one, if there is one; otherwise
returns to command mode. In this
case, another down arrow will go to
the first line.

6-2

Right arrow

Left arrow

Moves cursor right. To move to the
end of line, hold down the key until
the HHC beeps twice (signaling
end of line).

Moves cursor left. To move to the
beginning of the line, hold down the
key until the HHC beeps twice
(signaling beginning of line).

INSERT CHARACTERS

Editing Operation
Insert a character, x

Insert multiple characters

Insert a character to right
cursor

Keystrokes
INSERT x

LOCK INSERT xxxxx...
Press INSERT again when
done.

of INSERT right arrow key, new
key

Insert a character to left of INSERT left arrow key, new

cursor

DELETE CHARACT
Editing Operation

Delete character under
cursor;

leave cursor on following
character

Delete character under
Ccursor:;

move cursor left to
preceding

character

Delete to end of line

SHORTCUTS
Editing Operation

Review a line longer than
LCD

key

ERS

Keystrokes
DELETE right arrow

DELETE left arrow

LOCK DELETE right arrow
(hold down arrow)

Keystrokes

ROTATE
Press right arrow key twice
when done.

6-3

Not for sale

Go directly from any Skip pressing INSERT.

INSERT mode Press DELETE, LOCK

to any DELETE mode DELETE, etc.

Go directly from any Skip pressing DELETE.
DELETE mode Press INSERT, LOCK INSERT,
to any INSERT mode etc.

Interrupt a “LOCK”" Press any key.

operation before its

natural end

Note: If you are in the middle of editing any line, you may
break without updating (i.e., leaving the compiled line
unchanged) by pressing the BREAK key.

0-4

www.pocketmuseum.com

CHAPTER 7: PERIPHERAL DEVICES

CONTROL CHARACTERS

Control characters are “characters” which do not generate
output on an output device, but cause the device to perform
control functions, such as cursor movement.

There are three categories of control characters for you to be
concerned with:

1. ASCII standard control characters which are recognized by
the HHC. These characters are listed in the following table
with numeric values below 32.

2. ASCIl standard control characters which are not
recognized by the HHC. These are all the characters
represented by numeric codes below 32 that are not listed
in the following table.

3. HHC control characters that are not standard ASCII control
characters. These are characters listed in the following
table with numeric values above 32.

If you write a control character to a device that does not use it,
the device will either ignore the character or display its HHC

graphic representation. See the descriptions of individual
devices for details.

ASCIl Control Characters

numeric ASCIi
value name std typical meaning

7 bell yes Sounds audible
alarm.

8 Dbackspace yes Move cursor left one
position; erase
character cursor is
moved to.

10 line feed yes Move cursor down
one line.

12 formfeed vyes Move cursor to start
of first line on next
page.

13 carriage rtn yes Move cursor to start

of next line. (Note
that “carriage
return” does an
automatic line feed
on HHC peripherals.

Not for sale

This differs from its
action on some
other devices.)
Marks beginning of
an escape control
sequence.

2/ escape yes

ESCAPE CONTROL SEQUENCES

Escape control sequences provide an extended set of control
characters on the HHC. Each sequence is 3 bytes long:

byte meaning

0 escape (ASCIl value 27) begins an escape
control sequence.

1 operation code (opcode).

2 data; meaning depends on the opcode.
Unless noted otherwise below, the data byte
IS Ignored.

The HHC has a standard set of escape control sequences
which apply to all peripherals. Not all peripherals respond to
all escape control sequences, however. If a peripheral does
not respond to a particular escape control sequence, it
ignores that sequence; that is, the sequence is a
“no-operation” command for that peripheral.

In some other HHC manuals the opcodes are referred to by
five-character symbols. These symbols are included in the
following table.

Opcodes

Name: LCD Unescape
Opcode: 64
Symbol: ESCUN

On the LCD, the data byte is displayed (as in ESCDA). On all
other devices, it is ignored.

Name: Insert Right
Opcode: 65
Symbol: ESCIR

The data byte is displayed at the cursor. The character
previously under the cursor, and all following characters on
the line, are pushed to the right.

Name: Delete Right
Opcode: 66

www.pocketmuseum.com 7-2

<&
7

<

< @

PO

-\

<

&

W

&

"

ceceCcec e

CeeCCCeCOee6
P VO P I D VDV VDU I I VIRV UUVOVUVOVY VYUY LUV VUG

Symbol: ESCDR

The character under the cursor is deleted; following
characters on the line are moved left. The data byte is used as
a fill character at the end of the line.

Name: Set Inverse Mode

Opcode: 67
Symbol: ESCSI

Subsequent output is displayed in inverse-image (the colors
of the character and background are reversed).

Name: Set Uninverse Mode

Opcode: 68
Symbol: ESCUI

Subsequent output is displayed normally (not inverse-image).
Reverses the effect of ESCSI.

Name: Set Flash Mode

Opcode: 69

Symbol: ESCSF

Subsequent output will be displayed in flashing characters.

Note: the advent of flashing may be delayed (i.e., characters
written immediately after “set flash mode” may not flash)
under some circumstances. You can force flashing to begin by
doing an I/O operation on any device other than the LCD.

Name: Set Unflash Mode
Opcode: 70
Symbol: ESCUN

All subsequent output is displayed in non-flashing characters,

until the mode is changed by ESCSF. Reverses the effect of
ESCSF

Note: the end of flashing may be delayed, like the advent of
flashing (see above).

Name: Display Character Absolute
Opcode: 71

Symbol: ESCDC

The data character is displayed, even if it is a control
character that would normally be executed. For example, if the
next data character is 13 (carriage return) and it is sent to the
micro printer, it is written as an inverse-image M.

Name: Flush |/O Buffer
Opcode: 72

-]
e

Not for sale

www.pocketmuseum.com

Symbol: ESCFL

Characters in the device’s |/O buffer are written (if they are
being output) or discarded (if they are being input), emptying
the buffer.

This operation is generally applied only to output devices that
write a line of data at a time. Writing a line would normally be
triggered by a CR character.

Name: Set Control Character Mode
Opcode: 73

Symbol: ESCCC

If the data byte is non-zero, subsequent non-executable
control characters sent to the device will be displayed; if zero,
subsequent non-executable control characters sent to the
device will not be displayed.

Name: Home Cursor
Opcode: 74

Symbol: ESCHM
Returns the cursor to the upper left corner of the display.

Name: Set Word Break
Opcode: 75
Symbol: ESCWB

The data byte defines the word break character. When the
device encounters this character in output data, it considers
the character to mark the break between two words.

When an output line becomes longer than the device's
maximum line length, the device word-wraps automatically;
that is, it ends the line and moves the last word of the line
down to the next line, so that the word will not straddle a line
break.

The initial value of the word break character is 32 (space) for
each device.

If you set a device’'s word break character to 255, word
wrapping is disabled for that device.

Note that the LCD has no word-wrap capability.

THE KEYBOARD

The keyboard is normally attached to LUN #0. See Chapter 9
for the displayable characters.

o |
|
p—

Technical Information

ATTACH device code: 129
Control codes: not applicable to input-only devices.

Escape control sequences: not applicable to input-only
devices.

THE LCD

The LCD is normally attached to LUN #1. See Chapter 9 for
the displayable characters.

Technical Information

ATTACH device code: 65
Control codes:

Code Meaning Function on device
7 Bell Makes the HHC beep.
8 Backspace Backspaces the cursor, erasing

the character the cursor was
previously at. {"

12 Form feed Prints an inverse upper case L.

13 Carriage rtn Clears display and moves cursor
to left edge of LCD.

27 Escape Begins an escape control
sequence.

Escape control sequences: the LCD supports all of the
standard escape control sequences except ESCFL, ESCCC,
and ESCWB. Note that the data byte of ESCUN is displayed
on the LCD (as in ESCDC); it is ignored on all other devices.

THE TV ADAPTOR

The TV adaptor may be coupled to a standard
blacl;-and-whlte or color television receiver or video monitor. It
provides a two- dimensional display that is more useful for

many purposes than the one-line display on the HHC'’s LCD.

The TV Adaptor display shows 16 lines, each 32 characters
ang. It can also generate several kinds of dot-matrix graphic
dlspla_ys. On a color television set, it can display letters,
graphics, and background in various colors.

' - if the cursor is in the leftmost character position, the backspace will

shift all existing characters to the right and insert a blank | i
character position. J space in the first

7.5 Not for sale

Technical Information

ATTACH device code: 67 (output)
Control codes and escape control sequences:

The TV Adaptor has many control codes and escape control
sequences, and a description of them would be much too long
to include in this manual. Information on programming for the
TV Adaptor may be found in a special publication.

THE MICRO PRINTER

The micro printer prints 15-column lines on a roll of paper 1.4
wide. It has a “thermal” printing mechanism that makes marks
on specially coated paper by heating tiny areas in the print
head. The character set is identical to that of the LCD.

The micro printer uses a buffer in the HHC’'s RAM that can
hold up to two lines of data. The printer accumulates two lines
at a time, and prints them in a single operation.

Technical Information

ATTACH device code: 68
Control codes:

Code Meaning Function on device
7 Bell No-operation.
8 Backspace “Erases’” the last character sent

to the printer, if it has not
already been printed. Several
backspaces in a row will erase
several characters.

10 Line feed No-operation. The micro printer
automatically advances the
paper when it does a carriage
return. A separate line feed
operation is not supported.

12 Form feed Ends the current line of output,
prints the contents of the
printer’'s buffer, and advances
the paper 4 lines.

13 Carriage rtn Ends and prints the current line
of output. If the buffer contains
two lines of output, it prints both.

27 Escape Begins an escape control
sequence.
www.pocketmuseum.com 7.6

81 Cursor left Non-destructive backspace.
g2 Cursor right Non-destructive space.

Escape control sequences: ESCCC, ESCDC, ESCDR,
ESCFL, ESCHM, ESCIR, ESCUN, and ESCWB.

SERIAL INTERFACE

The serial interface enables the HHC to do I/O on a great
variety of devices designed to communicate through an
RS232C interface. This interface, established by the
Electronics Industries Association (EIA), is widely used for
low- and medium- speed peripheral devices.

Initializing the Serial Interface

Before you use the serial interface for the first time, you may
need to use the RS232C capsule’s configure option to make
the interface compatible with the device you want it to control.
The configuration program sets properties such as the type of
error checking the serial interface is to do.

To configure the serial interface, plug the interface into the
HHC and turn it on with the I/O menu; select the “Serial 1/O”
program from the primary menu, and then select the
“Configure” option from the program’s menu. (Note that this is
done from the HHC Main Menu, rather than from BASIC. It is
possible to initialize the serial interface from a BASIC
program, but the process requires some understanding of the

HHC’s machine language, and is beyond the scope of this
manual.)

The configuration program creates an “invisible” file which
contains initialization data. ‘¥ Whenever you use the serial
interface, the HHC automatically reads this file and initializes
the serial interface from the information contained in it. Thus,
you need not run the RS232C configure program again unless
the initialization file is somehow deleted.

The initialization file can contain a separate set of data for the
bus socket on the HHC (slot #0 in the I/O key menu) and for
each socket in the I/O adaptor (slots #1 through #6 in the
menu). Thus, you can set up the initialization file so that you

can change the interface’s configuration just by plugging it into
a different slot.

If you have some computer experience, you will probably find
the configuration program to be self-explanatory. If you do not,

2l - an invisible file is one that does not appear in the file system editor’s
menu or in BASIC’s menu.

Not for sale

see the manual that accompanies the RS232C capsule for
iInstructions.

Other capsules such as Telecomputing 1 and 2 will also

operate in the Serial Interface, offering additional interface
possibilities.

Note About Protocols

The RS232C capsule’s configuration program can make the
serial interface operate with or without a transmission
protocol. This is a set of rules that a computer and a
peripheral (or two computers) can use to make sure that

neither one sends characters when the other is unable to
receive them.

Whether or not you initialize the serial interface for a
transmission protocol must depend on whether the interface is
connected to a device that uses one. Unless the serial
interface and the device connected to it are using the same
protocol, they cannot communicate properly.

The serial interface supports two alternate software protocols:
XON/XOFF protocol and ETX/ACK protocol. Additionally, the

Data Terminal Ready (DTR) line in the data transmission
cable controls communication.

XON/XOFF protocol is commonly used in communications
between the HHC and another computer. Many kinds of
printers and other peripheral devices use it as well.

Suppose you are using XON/XOFF protocol to communicate

between the serial interface adaptor and a printer. Here is how
the protocol works.

As the printer receives characters from the serial interface, it
stores them in a buffer until it can print them. If the serial
Interface sends characters to the printer faster than the printer
can print them, the printer’'s buffer eventually fills up. When
the buffer is almost full, the printer sends the interface an
XOFF command (“transmission off”, ASCIl code #19). This
makes the interface stop transmitting. When the printer’s
buffer becomes less full, the printer sends an XON command

(“transmission on”, ASCIlI code #17). This makes the
interface resume transmitting.

XON/XOFF protocol works for input to the HHC, as well as
output from it. Suppose you were using the serial interface to
communicate with another computer, which could both send
and receive characters. If the other computer sends
characters faster than the HHC can process them, eventually
the serial interface’s buffer nearly fills up. Then the serial
iInterface sends an XOFF command to make the other
computer stop transmitting. Later the serial interface sends an

www.pocketmuseum.com 7-8

XON command to make the other computer resume
transmitting.

XON/XOFF protocol has two effects on you as a user of the
serial interface:

1. You do not have to worry that the device attached to the
interface might lose data because the HHC continued
transmitting when the device's buffer was full. The serial
interface handles the XON/XOFF protocol automatically,
and prevents any such mishap from occurring.

2. You cannot transmit or receive the ASCII codes #17 (XON)
and #19 (XOFF) as data characters (except as part of an
escape control sequence). If you try, the device connected
to the serial interface will interpret the characters as XON
and XOFF commands. That will make it start or stop
transmitting data at inappropriate times.

ETX/ACK protocol is commonly used by peripheral devices
such as printers. Its purpose is the same as the purpose of
XON/XOFF protocol: to make sure that the serial interface
does not send information when the attached device is unable
to receive it.

In ETX/ACK protocol, the serial interface transmits a string of
characters, called a message, that is known to be short
enough for the device to process without losing characters.
The interface ends the message with an ETX character (“end
transmission’”, ASCIlI code #3). When the device has
processed the message and is ready for another one, it sends
an ACK character (“acknowledge”, ASCIl code #86). This
signals the serial interface that it may send another message.

Unlike XON/XOFF, ETX/ACK protocol works only for
transmissions in one direction: from the Serial Interface
Adaptor to a device. Thus it is unsuitable for devices that
engage in two-way communication, such as modems and
keyboard printers.

The effects of ETX/ACK protocol on you as a user are the
same as the effects of XON/XOFF protocol, except that the
ASCII character you cannot transmit as data (except as part of
an escape control sequence) is #3 (ETX) instead of #17
(XON) and #19 (XOFF). (You can transmit ACK as a data

character, since it has a special meaning only when received
by the Serial Interface.)

Technical Information

ATTACH device codes: 70 (output) and 134 (input)

Control codes: none; but see the discussion of transmission
protocols, above.

7-9

Not for sale

Escape control sequences: none. The “escape’ control
character (ASCII code 27) is treated as data.

THE MODEM

The modem enables you to communicate with other
computers via telephone. Two rubber cups on the modem
hold the mouthpiece and earpiece of a standard telephone
handset.

The modem encodes the information that the HHC writes to it
in sound patterns and transmits them over the telephone. It
receives information in the same fashion, and passes it to the
HHC when the HHC “reads” the modem.

The modem contains an object called a control ROM, which
iIs similar to an HHC capsule, but contains a program to
control the operation of the modem itself, as well as an
application program that you can run from the primary menu.

The modem’s control ROM is interchangeable in much the
same way that an HHC capsule is. Two control ROMs are
available for the modem at this time; their names are
Telecomputing 1 and Telecomputing 2. Their functions are
similar, but Telecomputing 2 has more features than
Telecomputing 1 does. For details on the features of these
programs, study the instructions that accompany the modem,
and speak to the distributor of your HHC.

Initializing the Modem

Before you use the modem for the first time, you may need to
use the telecomputing system’s configuration selection to
make the modem compatible with the computer you want the
modem to communicate with. The procedure for configuring
the modem is very similar to the procedure for configuring the
serial interface adaptor, described above. The major
differences are:

1. The modem’s configuration file can hold only one set of
configuration data, rather than one set per I/O slot, as the
serial interface’s configuration file does.

2. The modem supports XON/XOFF protocol, but does not
support ETX/ACK protocol. (Telecomputing 1 sends
XON/XOFF to the host computer, but does not “listen” for

them. Telecomputing 2 can send and/or listen for
XON/XOFF)

7-10

www.pocketmuseum.com

Technical Information

ATTACH device code: 130 (input) and 66 (output)

Control codes: none; but see the notes on XON/XOFF
protocol above, and under the description of the serial

interface adaptor.

Escape control sequences: none. The “escape’ control
character (ASCII code 27) is treated as data.

Not for sale

CHAPTER 8: PEEKS AND POKES

INPUT AND OUTPUT

The System Device Table (SDT)

The HHC keeps track of LUN attachments through the
System Device Table (SDT). The SDT is kept at locations
705 through 712.

The byte at: represents LUN

705 #0 (normally the keyboard)
706 #1 (normally the LCD)

707 #2
708 #3
709 #4
710 #5
711 #6
712 #7
/13 #8
714 #9
715 #10
716 #11
717 #12
/18 #13
/19 #14
720 #15

Interpret the value of each byte as follows:

value means

O Keyboard is attached to this LUN.
6 LCD is attached to this LUN.
255 Nothing is attached to this LUN.

other A peripheral is attached to this LUN. Values
indicate the order in which peripherals were
ATTACHed, not peripherals’ device types.

To unattach a device, POKE 255 into the proper SDT entry.

This is the same as executing the DETACH command for that
LUN, except that DETACH also turns off the device.

Treat LUNs #0 and #1 very carefully, since they are your
channels for communicating with the HHC. If your program
should leave LUN #0 without a properly attached device, you
will be unable to control the HHC: if it leaves LUN #1 without a

8-1

Not for sale
www.pocketmuseum.com

properly attached device, you will be unable to see what you
are doing. Either way, you may have to press CLEAR to reset

the device attachments.

THE HELP AND /O KEYS

The 1/0 key is normally disabled in SnapBASIC.

To make the HELP and/or I/O keys function while you are
in SnapBASIC, POKE the following values into location 524

value means
0 HELP and I/O both function
1 HELP functions (the normal case)
4 1/O functions

5 neither key functions

Note: If you have used the POKE to activate the HELP
function, your setting in location 524 may change after the
HELP key is actually pressed.

Warning: You can view the /O menu from within SnapBASIC,
but it is not possible to make changes.

THE KEYBOARD BUFFER

The HHC stores keystrokes that it has not yet processed in a
keyboard buffer. You can use PEEK to look ahead at the
contents of this buffer before you do an INPUT or GET, and
you can use POKE to “type” into the buffer, so that your
program, in effect, is pressing keys on the keyboard.

Note: you must be very careful because one character can be
removed from the buffer for each BASIC instruction executed.

Structure Of the Keyboard Buffer

The keyboard buffer is 8 bytes long. The bytes in the buffer
are numbered 0 to 7. The HHC places the first character typed
in the 7th byte, the second in the 6th byte, etc. After the 8th
character typed has been placed in the Oth byte, the 9th
character typed is placed in the 7th byte (assuming the 1st
character typed has been read by the program), and so on.

The HHC maintains two pointers to the keyboard buffer. A
“store” pointer contains the number (0 to 7) of the byte where
the next character typed on the keyboard will be stored. A

www.pocketmuseum.com

“fetch” pointer contains the number of the byte where the next
character read by the program will come from.

For example, suppose you have just entered BASIC and
nothing has been typed yet. "' The keyboard buffer and its
pointers look like this:

________ keyboard buffer
t “store” pointer
t “fetch” pointer

Now suppose you type in 3 characters, ABC’. Your program
does a GET, so that you have input 3 characters, and your
program has read one. Now the buffer looks like this:

} “store” pointer
} “fetch” pointer

You continue typing in the alphabet, and your program
continues GETting characters. At some later time when you

have typed the alphabet through J and your program has read
it through E, the buffer looks like this:

} “store” pointer
t “fetch” pointer

The Pushkey Buffer

The HHC has a second buffer called a pushkey buffer which
it uses to hold characters that are “pushed” back into the input
stream by a program.

Whenever BASIC does an INPUT or GET, the HHC returns
any characters that are in the pushkey buffer before going to
the keyboard buffer. Thus, any characters you store in the
pushkey buffer will be read before characters typed in

through the keyboard, even if the keyboard characters go into
their buffer first.

The pushkey buffer is 4 characters long. It is used as a LIFO
queue (}he last character put in is the first taken out). The
bottom” of the buffer, where the first character is pushed, is

character O; the “top”, where the last character may be
pushed, is character 3.

- Thisis an oversimplification, since the same buffer is used by the rest of
the HHC. Something had to have been typed for you to have entered

SnapBASIC from the primary menu. The discussion of the process is
accurate, however.

3-3

Not for sale

A pushkey counter indicates the number of characters already
in the buffer. Its value may be 0 to 4. A value of 0 means the
pushkey buffer is empty; 4 means the pushkey buffer is full,
and there is no more space for characters to be pushed into it.

For example, if you push a '2’, then a ‘G’ into the buffer, the
buffer looks like this:

2 G pushkey buffer

pushkey counter

|
N

INPUT or GET will receive the ‘G’, then the 2’
2 pushkey buffer

pushkey counter = 1
~______ pushkey buffer
pushkey counter = 0 (empty)

Buffer Locations

location contains
620 keyboard buffer (location of character 0)
518 “store” pointer to keyboard buffer
519 “fetch” pointer to keyboard buffer
628 pushkey buffer (location of character 0)
522 pushkey pointer

PEEKs and POKEs

To inspect the pushkey buffer, PEEK at the pushkey
pointer. If it is 0, the pushkey buffer is empty. If it is not zero,
use it to extract the contents of the pushkey buffer.

The following subroutine assembles a string whose value is
the current contents of the pushkey buffer:

T I B I R b p R R e e e o
1 rirt “L.! i T I el O I O D T s S ST T 1 B B OO il B TR TR N O
Prys=hbaed b dar
- l."“ '] =l- - g aas - TT L] | ! - TLL] -
PIIE OREM ML 1= Pushiked PLr
1128 PhE=""1PC=PEEK (522
‘ JI .—= =-.:I‘ “:r‘.- ILI.-! .‘-- Ew TEE [] ["B [] [] L2 F] l=l EEE EE I_ [] O [2 ¥ (2§ -] L1 F) [I] [T]] '..
I A o SO 0wl SN OO 1 200 O O O S O T o O O e N
Feo s 0 A e g
PHAT T o0 a
I I) CT RO T N SRR o et CTTLETTR G PP IR G
Pl Po=RO-18 IR FOTE THEM FETLRR
J sl T U '] Bt SR N I T O S o el L T - ™ % %
1150 FEE=RFE SRR FRR] T o = I I
I B I B R B B I R B R,
A ko N T O O O R A AR
8-4

www.pocketmuseum.com

To POKE a character into the pushkey buffer, check to make
sure it is not full. If it is not, POKE the character into the bufer
position indicated by the pushkey counter, then increment the
counter.

To POKE a character into the “top” of the keyboard buffer,
so that it will be the next character to come out: first, check to
make sure that the buffer is not full. Then move the “fetch”
pointer backwards one location, and POKE the character to the
location the “fetch” pointer now indicates.

Do not try to put a character into the “bottom” of the keyboard
buffer by POKEing into the location indicated by the “store”
pointer and advancing the pointer. If you do this, there is always
a risk that you will POKE a character at the same time that the
real keyboard inputs a character; if this happens, one character
or the other will be lost.

FUNCTION KEYS

The definitions of the three function keys are kept in three
consecutive areas, each 16 bytes long. Each area begins with
a byte containing the length of a function key definition in
characters, followed by 15 bytes containing the definition. If
the definition is less than 15 characters long, the part of the
area beyond the end of the definition is ignored.

The locations that contain the function key definitions are:

location contents
642 Length of f1’s definition.
643 f1's definition.
658 Length of f2’s definition.
659 f2's definition.
674 Length of f3’s definition.

675 {3's definition.

You can change the definition of a function key by POKEing
appropriate values into the that function key's definition area.

8-5 Not for sale

“Typing” a Function Key

You can “type” a function key by POKEing it into the keyboard
buffer, but the preferred way to do it is to do the two POKEs
described below.

Let FA =642, the location of the length of F1’s definition; then:

to “type” a
function key perform POKEs

f1 POKE 520,PEEK (FA)
POKE 521, 1

f2 POKE 520,PEEK (FA+16)
POKE 521,17

{3 POKE 520,PEEK (FA+32)
POKE 521,33

When you “type” a function key in this way, your program will
INPUT it before any of the characters in the keyboard bufter or
the pushkey buffer.

You cannot “type” a function key by POKEing it into the
pushkey buffer. If you try, your program will INPUT the ASCI|
code that represents the function key (#21, #22, or #23)
instead of the function key’'s current definition.

THE STOP/SPEED KEY

The HHC’'s LCD rotation speed and menu speed are
controlled by the value at location 535. This location may be
PEEKed or POKEd. The value's meaning is:

value STOP/SPEED setting

10 1 (slowest setting)

9 2

8 3

7 4

6 5

5 6

4 7

3 8

2 9

1 O (fastest setting)
0 faster than fastest STOP/SPEED

setting

Caution: POKEing a value of ‘0’ also disables the keyboard
auto-repeat feature that most keys have.

www.pocketmuseum.com 8-6

DATE AND TIME

The HHC maintains a the current date and time in a 5-byte
memory area at locations 526 through 530. You can PEEK at
this area to get the current date and time.

The HHC's timer is not directly available to you; locations 526
through 530 contain a copy of it. This has two consequences:

1. The date and time that you can PEEK are not absolutely
accurate. They are updated periodically by the HHC. The
updating schedule is too complicated to explain here in
detail, but at a minimum, the date and time are updated
whenever one of the following events takes place:

a. The cursor flashes on (every 0.7 seconds, when the
cursor is flashing).

b. When a character is input to the HHC from the keyboard
or from any peripheral. (This refers to the physical event of
inputting a character, not to the program’s execution of an
INPUT statement, which may happen much later.)

c. Approximately every 9 hours.

2. You cannot POKE the date and time. If you try, the value
you POKE will be wiped out the next time the HHC updates
the timer.

Format Of the Date and Time

The date and time are kept in a single integer number thatis 5
bytes long. The value of this integer is the number of clock
units (one clock unit = 1/256 second) from the beginning of
January 1, 1980, to the present. The bytes of the date and
time count the following units of time:

location counts units of:
526 1/256 second
527 seconds

528 256 seconds

529 65,536 seconds
(approximately 18 hr., 12 min.)

530 16,777,216 seconds
(approximately 194 days, 4 hr.)

8-7 Not for sale

One reasonable way to use the date and time is to define a 5-
element array and move each byte of the value into one
element:

abtd DI TIOS

ol FORE I=@0 TO 4

el TIOT i=FEEE (526410
ookl MEST 1

Then you can write a variant of our day-of-year calculator to
convert the 5-element array into a meaningful date and time.

You can simplify the task somewhat by ignoring the first byte
of the time, since the time will seldom be accurate to more
than a second.

If you are concerned only with elapsed time, you can build two
arrays like Tl, above, one for a start time and one for an end
time. Then you can “subtract” one array from the other. Do this
by analogy with the ordinary process of subtracting two
numbers by hand; treat each element of the array as a
‘numeral” and borrow from the next greater element when
necessary:

VR BEM s 1= start time

oo times Ll e loPescd foims
-1 R D= T =
Tt 1 N I SR I RO THEH

Tl a=TE S a s TEC I+ o= TE T+ 51
okl TLOlo=TE I »=-TE0 T
merkd MiEsT
b PEM BT is o sioPosecd bime o oo
ekt Bl =l o T CE T
Tl Rt ol I Tt B R o o
ekt BT smE TRl e PR e T O

ROTATION MODE

The LCD’s rotation mode is controlled by the value at
location 534. The value’s meaning is:

value rotation mode

O fill mode. The LCD is filled with text, left to
right, as fast as a program can display it.
After the LCD is full, the HHC erases
everything and starts filling the LCD again.

1 fill-and-rotate mode. The LCD is filled with
text as in fill mode. After the LCD is full, the
HHC shifts characters off the left end to
make room for new characters on the right.
(This is the HHC’s normal mode of
operation.)

www.pocketmuseum.com 8-8

2 rotate mode. Characters are rotated onto the
LCD from the right edge, even when the LCD
IS not full of text.

Note that the rotation mode is not reset by the CLEAR key.

POKES AND PEEKS FOR FILE TYPES

The location FADR(0) + 2 contains the type byte of the current
file. For some files, the first data byte is used as an “extension”
to the type byte. The file type assignments are:

Bit pattern:

80H 40H 20H 10H 08H 04H 02H 01H Designation

o 0O O O 0O O 1 X Capsule
image file
0O O 1 0 0 0 SnapBASIC
program file
0 0 0 PORTACALC
Portafile
X X File naming
conventions
are used to
distinguish
files
1 1 1 0 X X 0 X File extension
used

O O 1 o O O 1 0 Temporary file

0
0 1 O O O
X

X = Value may be either O or 1

1. The ‘temporary attribute’, (bit 02H) has been reassigned to
expand the list of possible file types. Attributes still in effect
are:

Bit Type Description of effect

10H Microsoft Basic File appears in Microsoft Basic
menu

08H Text File can be edited using the file
system

04H Executable File appears in ‘RUN SNAP’
menu

O1H Invisible File does not appear in file

system list of files

2. A code of 0COH through OCFH indicates that there is some
information in the file NAME itself that can be used to
distinguish file types. Various conventions may be used to
Identity file classes. For example, PORTAFLEX source files

8-9

Not for sale

THE AUTO-OFF TIMER

The HHC maintains an Auto-Off timer that will automatically

have “SRC” as the last four characters in their name:
PORTAFLEX object files have “.OBJ” as the last four

characters. hut down if no input (in immediate mode or via the GET or
The file extension byte (to be used only with a file type byte of ISNPUT statements) has been received. This can be disruptive if
OEOH) has the following re-definition: SnapBASIC has an intensely compute-bound program.

There are two ways to get around the Auto-Off timer;

File Extension Byte Usage e
g) 1. Periodically “stoke” the timer so that it thinks a keystroke has

Oror - OFFH rurther expansion bytes used occurred (even if there has been none). To do this, enter:

OCOH - OEFH User-definable extension byte crkE 1R, BORCFEEECLED 3oadl |

080H - OBFH Reserved for future use 2 Disable the Auto-Off timer completely. To do this, enter;
'IE A1M BabDOPERRCIEL 3 Tz

O0-07FH Reserved for Friends Amis FOEE TEIM BRI i

Two extension bytes have been already allocated: Caution: do not POKE any other value into address 101.

OH PortaWriter compressed text file
10H SnapFORTH dictionary file

Applications should check for explicit 8-bit combinations when
usign the file extension byte feature. Any use of the user-
definable set of extensions should be for very special purpose
software in which the chance of a conflict is very small.
Friends Amis will assign file type extensions to software
developers who are developing general purpose software.

The attribute bit values may be ‘OR’ed together in any way
that makes sense. (Note that the significance of the numbers
s as individual bits—in hex, for instance, a SnapBASIC file
has its type byte set to 20H). Thus, to make an invisible Text
file, you could do the following:

and the next time you ran the File System, “somefile” would not
appear on the menu (however, SnapBASIC could still access
the file). This is a nice way to hide important information from
the user. The Clock/Calender system, for example, creates an
alarm file with the name CHR$(-1) (actually, hex OFF) that is of
types TEXT and INVISIBLE. With a little cleverness a SnapBA-
SIC program could be generated that would create alarms and
messages directly. Some judicious investigation of the format
of the alarm file would be called for, however.

8-11

www.pocketmuseum.com 5-10 Not for sale

www.pocketmuseum.com

CHAPTER 9: ASCIl CHARACTERS

The character set used by the HHC is listed in order of the
numbers that represent the characters in ASCII| notation.

CONTROL CHARACTERS

The following table lists characters #0 through #31. These
characters are control characters, rather than graphic
characters: that is, their customary function is to perform a
control function on an output device, rather than to display a
symbol like A or "?".

The meanings of the columns in the table are:

e Numeric value: the number used to represent this
character in the HHC’s memory. If NV is the numeric value
of the character, then CHRS$I(NV) is the character.

e HHC name: the name, or description, used to identify this
character in the HHC system.

e ASCII name: the name or description used to identify this
character in “pure” ASCII.

e HHC key: key on the HHC keyboard that inputs this
character.

e HHC graphic: the graphic symbol that represents this
character when the character is displayed on the LCD. For
characters that have a control function, you must use the
“ESCDC” escape control sequence to display the
character.

e LCD action: control function performed by this character
when it is sent to the LCD. If this column is empty, the
character has no control function; it displays the graphic
symbol listed under “HHC graphic”.

9-1
Not for sale

- numeric HHC HHC ~ LCD
0 NUL, Null ?
1 SOH, Start of heading 5
2 STX, Start of text .
3 ETX, End of text
4 EOT, End of transmission g
5 ENQ, Enquiry -
6 ACK, Acknowledge “beepn”
/7 Rotate; Bell BEL, Bell 7 ROIATE P
Backspace cursor;
8 Backspace BS, Backspace 8 erase Eharacter
J HT, Horizontal tab under cursor after
10 Line feed LF Line feed backspace.
11 1/0O VT, Vertical tab 9
12 Form feed FF, Form feed 10
13 Enter CR, Carriage return 11 1O
14 Stop/Speed SO, Shift out 15
15 Sl, Shift in 13 ENTER Erase LCD:; move
16 DLE, Data link escape cursor to left edge.
17 DC1, Device control 1, XON 14 STOP/ "
18 DC2, Device control 2 SPEED
19 DC3, Device control 3, XOFF 15
20 Help DC4, Device control 4 16
21 f1 NAK, Negative acknowledge 17
22 f2 SYN, Synchronous idle 18
23 {3 ETB, End of transmission block 19
24 CAN, Cancel 20 HE{!-}P
25 EM, End of medium 21 N
26 SUB, Substitute 2 12
27 Escape ESC, Escape 23 13
28 FS, File separator 24
29 GS, Group separator 25
30 RS, Record separator 26 .
31 US, Unit separator 27 Begins an escape
control sequence.
28 E
29
30
31

" - This key has an immediate function in BASIC, and so cannot normally
be read by GET.

9-3

www.pocketmuseum.com 9-2 Not for sale

DISPLAYABLE CHARACTERS gg g
The HHC's use of characters #32 through #126 conforms 70 i
exactly to the ASCII standard. /1 G
numeric HHC 72 H
value key name 73 |
74 J
32 Space 75 K
33 | exclamation mark
34 | quotation mark 76 L
35 # pound sign 77 M
36 $ dollar sign ;g (N3
37 % percent sign
38 & ampersand 80 P
39 ’ apostrophe 81 Q
| 82 R
40 (left parenthesis 83 S
41) right parenthesis
42 * asterisk, star, or ‘times' sign 84 T
43 + plus sign 85 U
86 V
44 : comma 87 W
45 - hyphen, dash, or minus sign
46 . period 88 X
47 / slash 89 Y
90 Z
48 0
49 . 91 | left bracket
50 2 92 \ backslash
51 3 93] right bracket
94 A caret
52 4
£ . 95 _ underscore
54 6 96 accent grave
55 7 97 a
o s
57 9
58) colon 100 d
59 : semicolon 101 =
102 f
60 < left angle bracket or ‘less than‘ sign 103 g
61 = equal sign
62 > right angle bracket or ‘greater than 104 h
sign 105 i
63 ? question mark 106 J
107 K
64 (@
65 A 108 |
66 B 109 m
67 C
9-4 9-5

www.pocketmuseum.com Not for sale

www.pocketmuseum.com

110
111

112
113
114
115

116
117
118
119

120
121
122
123

124 | vertical bar
125 } right brace
126) tilde

nw =0T O 5

S < C ~

~~ N << X

left brace

ADDITIONAL CHARACTERS

The HHC uses characters from #127 up as displayable
characters and control characters. However, in SnapBASIC it
is impossible to output characters above #127.

In “pure” ASCII, character #127 represents the control
character “delete”. Characters above #127 are undefined.

numeric HHC HHC HHC LCD

value name key graphic action

127 “insert” cursor ”

128 up arrow P

129 left arrow ¢« +« Backspaces
cursor; does not
disturb character
under cursor
after move.

130 right arrow A -+ Advances cursor;

does not disturb
character that
was under cursor
before move.

9-6

131
132

133

134
135
136
137
138
139

140
141
142

down arrow -2

“AM” symbol INSERT'
“PM” symbol ~ DELETE '
superscript M 4}
division sign 4]
“times” sign 14
block cursor ~ SEARCH @

“delete” cursor

“a” umlaut C1%
“0” umlaut c2
“u” umlaut C3
“n” tilde C4

2} - INPUT reads this character as ENTER.

H
I

Except when
read by GET,
causes a “break”
In execution of
the current
program.

S INPUT cannot read this character; it performs its usual editing or
control function.

4!~ INPUT skips this character.

I~ INPUT is able to read these characters, but PRINT cannot print them.

9-7

Not for sale

CHAPTER 10: ERRORS

ERROR MESSAGE FORMAT

When BASIC detects a fatal error in immediate mode, it
displays a message saying D 20

1 ERELRE
where xXx is one of the two-character codes described below.
When BASIC detects a fatal error in deferred mode, it displays
a message saying D 20

i EEEUE DM mrmer
where xx is a two-character code and nnnn is the line number
of the line that was being executed when the error occurred.

After an error in a running program, all FOR . . . NEXT and
GOSUB structures are exited.

FATAL ERROR CODES

AE -- Arithmetic Error

This can be due to : PB - a floating point number overflow

PB - an illegal parameter to an arithmetic function (such as
SQRT(-1) or LOG(-1))

AS -- lllegal Assignment

An assignment statement tried to assign a string value to a
numeric variable, or vice versa; or an operator found a

value of the wrong type; or a function found an argument of
the wrong type.

AT -- Attach Unsuccessful

You attempted to attach a device, and could not for some
reason (e.g., the device is not connected to the bus, there
Is not enough power to turn the device on, or there is not
enough system memory to attach the device).

BU -- Burn error

You can not ‘burn’ the next statement. See BURN
specifications. The program has not finished BURNIing, but
your source file is no longer useable. Delete whatever file

remains, and make a new copy. Note that no line number is
printed in this error message.

CC -- Can’t Continue

You tried to CONTinue a program when you have not done
a RUN, or after you edited the program.

10-1 Not for sale
www.pocketmuseum.com

CH -- lllegal Character
You have entered a character (such as a control character)
that BASIC cannot interpret.

CO -- Command Error
You have attempted to execute a Deferred Mode Only
command in immediate mode, or vice versa.

CX -- Too Complex Error
A line is too complex to compile; a line is too difficult to list;
or you are using too many nested GOSUBs or FOR-NEXT
loops, causing an overflow of the system stack.

DA -- Data Exhausted
You executed a READ statement, and no DATA items
remained for it to read.

DF -- Undefined User Function (Run time error)
You tried to use a function that has not been defined.

DF -- lllegal User Function Name (Compile error)
User function name must start with FN.

Fl -- File Error
A file error can occur in the following situations:
- file is not 'open’ed
- you tried to read from or write to a non existing record
- system memory is full; there is no room to expand or
create the file
GO -- Undefined GOTO Statement
You tried to go to a non-existent line number with IF GOTO,
or GOSUB.
1Q -- lllegal Quantity
One of the following occurred:

- You tried to perform a calculation whose result was too
large in magnitude to be represented in BASIC’s numeric
format. The largest number BASIC can represent IS
approximately 9.99999E1023. (Note that very small
numbers, lesser in magnitude than 1.0E-1024, are reduced

to zero.)

- You tried to divide a number by zero. Dividing zero by zero
also produces this error.

- The quantity is too big to convert the real number to an
iInteger.
- You tried to perform the ASC function on a null string.

NX -- NEXT without FOR

BASIC encountered a NEXT statement that did not
correspond to a FOR/NEXT loop it was executing. This can
be caused by a NEXT that does not match any FOR; a

www.pocketmuseum.com 10-2

NEXT with the wrong variable name: or a GOTO that

passes control to a line inside a FOR/NEXT loop without
executing the FOR statement.

OD -- Outside Dimension

You tried to use an array element that is outside the
dimensions of the array. This message can also occur if
you use the wrong number of subscripts.

OM -- Out of Memory

There Is not enough memory for your program to run. This
can be caused by any combination of the following
conditions: the program is too large; the program requires
too much memory for variables, arrays, strings, and 1/O
conversions; or the memory specified by FREE is full.

OV -- Overflow

An arithmetic operation on integers has resulted in a value
greater in magnitude than 32766.

RD -- Redimensioning Dimension

You tried to define an array with DIM after the array was
already defined.

RT -- Return Without GOSUB

You tried to execute a RETURN without having executed a
GOSUB. This is often caused by passing control to a
subroutine with GOTO instead of GOSUB, or by letting

control fall into a subroutine instead of passing it
somewnhere else.

SP -- lllegal Separator (Compile error)

BASIC expected a value (a variable, for example) but found
a reserved word instead. For example; D 20

or D 20

I-I .4I' —
ME =

.i .i--= .= IIEII i = E--H !' !
. dpimw [] EEN | 1
& S el

. L] I“l “ill .-III -'I'-l
: g E F § e
I—:I i-.-l I I" .! -I-Il

SY -- System Error (Run time)

This error occurs if part of BASIC's memory has been

overwritten by your program (possibly by POKEing) and
LIST can no longer recognize it.

SY -- Syntax Error (Compile time)

You made an error in writing a statement, such as missing
parentheses in an expression, use of a reserved word in a

variable name, missing elements in a statement, a missing
separator, etc.

TM -- Type Mismatch

You have attempted to perform an operation, but the

operands are not of the correct type. Example: A$ * B
(can’t multiply strings). P Ples A3 X

10-3

Not for sale

UD -- Undimensioned Dimension

An array has to be dimensioned before you can access its
elements. This error will also occur if you try to use a
function that does not exist (since the syntax for a function
reference and an array reference is identical.)

NON-FATAL ERRORS

% %% &k

When a number cannot be printed within the field specified
by the parameters of the STRF$ function, a string of
asterisks is returned, filling the entire field.

Returned by numeric to string conversion when a value that
could not be represented by some number is encountered
(possibly garbage was poked somewhere).

Returned in the integer portion of a number processed by
STRF$ when an attempt is made to round more digits than
the number has.

29

Displayed by the INPUT statement when the user entered

fewer parameters than were requested, to request INPUT
for the remaining variables only.

Rest Ignored

Displayed by INPUT when the user entered more variables
than were requested, indicating that the extra values are
lost.

Error, Retype Line?

Displayed by INPUT when an integer value has been
requested and a non-number has been entered.

(Inverse video display)

When the LISTed line appears in inverse video, the
expansion of the line by LIST has lost information (because
it is longer than 80 characters).

www.pocketmuseum.com 1)-4

CHAPTER 11: INTERNALS OF Snap-
BASIC

This chapter provides information on the inner structure of
SnapBASIC. The four SnapBASIC subsystems and the mem-
ory structure of SnapBASIC are described.

SnapBASIC SUBSYSTEMS

SnapBASIC can be thought of in terms of four seperate,
somewhat independent operational modules: the Run Time
Support Module (RTSM); the BASIC Compiler; the BASIC
Decompiler and Lister; and the Eprom BURN module.

A) The Run Time Support Module has the responsibility for
supporting the BASIC interpreter, and contains all of the
run-time support code (organized as tags) needed for
BASIC to execute that is not already part of the HHC
support system.

B) The BASIC Compiler contains all of the code that supports
the compiler actions. BASIC programs, consisting of
numbered lines of BASIC source code, are compiled into a
form that is supported by the RTSM. Every statement is
compiled line-by-line into Snap tags following the format of
the RTSM and the HHC support system, which are both
based on the FORTH extension SnapFORTH. A line table
(LT) is built, containing the information on where the
compiled code is positioned in memory. At runtime, the
compiled code is executed by Snap's inner Interpreter
“NEXT” with no additional interpretive overhead.

]

| Typed | .C I——l —-—-|Compiled Statements

— ompilier ' - — 1

| Source| | __|—|Line Table |
Figure 11-1

The actions of inserting, deleting, and changing lines are done
through the Line Table, and change the pointers to the
compiled code to reflect the new state of the program.

To RUN a program, the list of compiled statements are
processed through the RTSM. Because of the structure of the
Line Table, it is possible to start execution at any point in the
program (by the RUN line-number command); it is also
possible to STOP and CONTinue a program through the Line
Table and the compiled statements.

[1-1

Not for sale

Compiled Statements | —-

O RTSM | — [Running Program‘l
iIne Table — —
L

Figure 11-2

C) The BASIC Decompiler and Lister (BDL) contains all the
code needed to decompile the compiled BASIC statements
and to list the program in readable form. Compilation
transforms BASIC's algebraic notation into Reverse Polish

notation for execution by Snap; decompilation reconstructs
the Reverse Polish to algebraic notation.

As the original source text is not saved by the system, it is not
possible to LIST the orignal program text in the exact form it
was entered. The BDL generates a recreation of the original
text in intent; i.e., in such a form that it reflects the original text
In a more or less standard, form.

The BDL is to be considered the inverse of the BASIC
Compiler. It transforms the code segments in the compiled
statements back to line numbers and BASIC words.

Compiled Statements | — l Program‘
BDL | —=
Line Table —*l fext |
Figure 11-3

D) The BURN module contains all of the code needed to
transform the compiled program to a form that can be
executed out of a ROM capsule. To enable the program to
execute without the availability of the RTSM, it is necessary to
load and link any needed runtime support routines from the
RTSM and to store them with the compiled program.

RTSM I__Compiled Statementsi I-_I_ine TablEl

I BURN Module]—-Ifom Coi:iil

Figure 11-4

11-2

www.pocketmuseum.com

STRUCTURE OF SnapBASIC PROGRAMS
BEFORE BURN

Figure 11-5 shows the structure of SnapBASIC programs
hefore the BURN command is executed.

- m Statement Space | LT i Variables | String Heapl

Prog ram _Space

Figure 11-5

e The pointers are internal to the program space, and are
relative to the file. They point to specific areas within
BASIC. Examples of pointers are: pointers to a program,
pointers to the line table, pointers to the variable names,
pointers to user functions.

e The compiled statements are organized as one large
continued “word” (from the Snap Interpreter's point of
view); while the line table contains the address of each line
within statement space. All statements are compiled in line
number order. Jumps, such as GOTO, GOSUB, and so on,
are compiled relative to the program space.

® The variables are discussed below.

The organization of the SnapBASIC program within the RAM
file includes the following information:

FiI:e H-eader Type
Byte
Figure 11-6

® The file header includes the name of the file

® The type designation is 20 Hex for a BASIC program file,
and 02 Hex for a BASIC capsule image file.

® The internal variables are important variables in controlling
the BASIC file. They are saved even when the CLEAR key
is used, and are always updated on to the file. Examples of
internal variables are: the number of program lines; go
slow/go fast information ''!; long/short form program
information %

Ir;ternal Variables_l Statements

"1 All jumps are compiled relative to the program, allowing changes in
the program code. When the program is RUN, the program compiles
absolute jumps for faster execution: all relative jumps are stored
absolutely once computed and executed. Information is maintained to

revert to slow mode for program changes, once BREAK or CLEAR is
pressed.

2l The CLEAR key keeps the long form of the program; BYE stores a
short form produced by removing dimensional values; the String Heap
and Variable values. When the program is selected from the BASIC
menu, these areas of memory are allocated again.

11-3

Not for sale

STRUCTURE OF VARIABLES

Variables are named, and are of several different types:
Integer, Real, String, and Boolean. Arrays of variables are
also named, and consist of the same types as the simple
variables. Array dimensions are put with the names.

Var Names|Var Values[String Heap—<Dimensional Valueé'

Figure 11-7
® The variable values are associated with the names, and
iInclude the values of simple variables.

® The string heap contains all strings, and is allocated
dynamically. A garbage collector runs automatically to
restore free space when necessary.

® The dimensional values include the (dynamic) arrays.

® Together, the string heap and the dimensional values fill up
the memory that is available for BASIC within the current
RAM area.

STRUCTURE OF THE LINE TABLE

The line table keeps track of the position of all the BASIC lines
In memory. The line table is deleted from the BURNed
program. The format of the line table is:

1) Relative pointer to the beginning of the line (2 bytes)
2) Line number (2 bytes)

STRUCTURE OF THE VARIABLE NAMES

The variable names are constructed as sequences of strings
of characters for names of the four simple types and four array
types. The names of simple variables are represented as
follows:

XCCCC...CCCXCC...CCCXCCC... etc.
The names of dimensioned arrays are represented as:
XCCC...cccx#parms,1-dim,2-dim,...,n-dimxccc... etc.

where:

® x represents a distinguishable start byte, indicating the
beginning of a new item

® C represents the characters of the name
® #parms is the number of dimensions
® |-dim represents the size of the i-th dimension

[1-4

www.pocketmuseum.com

STRUCTURE OF THE DIMENSION STACK

The string heap consists of a string of characters. The
dimension stack consists of a series of arrays, each of which
has the following format (note that this grows downward in
memory, toward the top of the string heap):
dimensions 2 bytes
I-dim 2 bytes/dimension
bytes/cell 2 bytes (as in the table just above)
values bytes/cell bytes each

MEMORY USED TO STORE VARIABLES

Memory used for variable storage is as follows:
integers 2 bytes
reals 8 bytes
booleans 1 byte
strings 2 byte pointer to string heap
arrays 2 byte relative pointer to dimension stack

| 1-5

Not for sale

www.pocketmuseum.com

INDEX

A

? statement, 1-2
ASCII, 7-1

Character set, 9-4

DELETE character, 9-5
Assignment statement, 1-2
ATTACH

POKE and, 8-1
ATTACH statement, 1-3
AUTO statement, 1-3

B

Body of function definition, 1-9
Boolean value
Range of, 5-1
BURN statement, 1-4
BYE statement, 1-6

C

C1 key, 1-8
CALL statement, 1-6
Character

Displayable character set, 9-4
CLEAR statement, 1-7
Clock unit, 8-7
CONT statement, 1-8, 10-1
Control character, 7-1, 9-1
Control ROM, 7-10

D

DATA statement, 1-7, 1-8, 10-2
Date, 8-7

DEF statement, 1-9

DEL statement, 1-10

DETACH statement, 1-10

DIM statement, 1-10, 10-3

E

EIA, 7-7
END statement, 1-8, 1-11
Error

Message format, 10-1

Escape control sequence, 7-2, 9-1
ETX/ACK protocol, 7-9, 7-10

Not for sale

" Keyboard, 7-4
Additional characters, 9-5

FDEL statement, 1-12 Control character input, 9-1
FINS statement, 1-12 Displayable character set, 9-4
FOPEN statement, 1-12 Keyboard buffer, 8-2
FOR statement, 1-7, 1-13, 1-22, 10-2 Reattaching, 8-1
FOR/NEXT statement, 10-2
Formal parameter, 1-9 L
FPUT statement, 1-15
FREAD statement, 1-15 LCD, 7-5
FREVISE statement, 1-16 Additional characters, 9-5
Function key Control character display, 9-1
Defining a, 8-5 Displayable character set, 9-4
Precedence over keyboard & pushkey buffers, 8-6 Reattaching, 8-1
Simulating keystrokes, 8-5 Rotation mode control, 8-8
FWRITE statement, 1-16 STOP/SPEED control, 8-6
LET statement, 1-2, 1-20
G Limit, 1-13
Line
GET statement, 1-16 Maximum length of, 5-1
GOSUB statement, 1-7, 1-17, 1-28, 10-2, 10-3 Line number
GOTO statement, 1-17 Range of, 5-1
Graphics, 7-5 LIST statement, 1-20
LOAD statement, 1-21
H Logical expression, 1-18
LUN
HELP key Attaching keyboard or LCD to, 8-1
Using in BASIC, 8-2
HISTORY statement, 1-17 M

HOME statement, 1-18
Machine language subroutine, 1-6

| Message (ETX/ACK protocol), 7-9
Micro printer, 7-6

/O key Modem, 7-10
Using in BASIC, 8-2
IF statement, 1-18 N
Increment, 1-13
Index, 1-13 Nesting
Initial value, 1-13 FOR/NEXT loops, 1-14
INPUT statement, 1-19 NEW statement, 1-22 -
Integer value NEXT statement, 1-7, 1-13, 1-14, 1-22, 10-2
Range of, 5-1 Number
Overflow, 10-2
K Numeric value
Range of, 5-1
Key Rules for display, 5-2
C1,1-8 Rules for input, 5-3
Function, 8-5
HELP, 8-2
/0, 8-2

STOP/SPEED, 8-6

www.pocketmuseum.com Not for sale

O

DIM, 1-10, 10-3
END: 1'81 1-11
ON/GOSUB statement, 1-22 1-12
FDEL'.!
ON/GOTO statement, 1-22 FINS, 1-12
ONERR, 1-23 FOPEN, 1-12
Overflow, 10-2 FOR, 1-7, 1-13, 1-22, 10-2
FOR/NEXT, 10-2
P
FPUT, 1-15
PAREN statement, 1-23 FREAD, 1'1?
FREVISE, 1-16
POKE statement, 1-24 FWRITE. 1-16
PRINT statement, 1-24 ’
Protocol, 7-8 GET, 1-16
; GOSuB, 1-7, 1-17, 1-28, 10-2, 10-3
ETX/ACK, 7-9
GOTO, 1-17
XON/XOFF, 7-8
HISTORY, 1-17
Pushkey buffer, 8-3 HOME. 1-18
Precedence over keyboard buffer, 8-3 IF 1-18
R INPUT, 1-19
LET, 1-2, 1-20
READ statement, 1-8, 1-26, 1-27, 10-2 LIST, 1-20
REM statement, 1-26 LOAD, 1-21
RESEQ statement, 1-27 NEW, 1-22 y 105
RESTORE statement, 1-7, 1-27 NEXT 1-7, 1-13, 1-14, 1-22, 10-
RETURN statement, 1-28, 10-3 ON/GOSUB, 1-22
ROM ON/GOTO, 1-22
Control, 7-10 ONERR, 1-23
Rotation mode, 8-8 PAREN, 1-23
RS-232 interface, 7-7 POKE, 1-24
RUN statement, 1-28 PRINT, 1-24
READ, 1-8, 1-26, 1-27, 10-2
S REM, 1-26
RESEQ, 1-27
SDT RESTORE, 1-7, 1-27
Addresses in, 8-1 RETURN, 1-28, 10-3
Serial interface, 7-7 RUN, 1-28
SQUEAK statement, 1-28 SQUEAK, 1-28
Statement STOP 1-8, 1-29
?,1-2 TROFF, 1-29
Assignment, 1-2 TRON, 1-29
ATTACH, 1-3 Step, 1-13
AUTO, 1-3 STOP statement, 1-8, 1-29
BURN, 1-4 STOP/SPEED key, 8-6
BYE, 1-6 String
CALL, 1-6 DATA statement, 1-8
CLEAR, 1-7 Subroutine
CONT, 1-8, 10-1 Machine language, 1-6
DATA, 1-7, 1-8, 1-27, 10-2
DEF, 1-9
DEL, 1-10
DETACH, 1-10

www.pocketmuseum.com Not for sale

T

Telecomputing system, 7-10
Television, 7-5

Time, 8-7

TROFF statement, 1-29
TRON statement, 1-29

TV Adaptor, 7-5

W

Word break character, 7-4
Word-wrap, 7-4

X

XON/XOFF protocol, 7-8, 7-10
Z

Zone, 1-25

www.pocketmuseum.com Not for sale

FRIENDS AMIS, INC.

The program described in this document is furnished under a license
and may be used, copied and disclosed only in accordance with the
terms of such license.

FRIENDS AMIS, INC. (“FA”) EXPRESSLY DISCLAIMS THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR USE FOR A PARTICULAR PURPOSE RESPECTING THE
HHC SOFTWARE PROGRAM AND MANUAL. THE PROGRAM
AND MANUAL ARE SOLD “AS IS”. THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR USE FOR A PARTIC-
ULAR PURPOSE AS TO THE MEDIUM ON WHICH THE SOFT-
WARE IS RECORDED ARE LIMITED TO SIXTY (60) DAYS FROM
THE DATE OF LICENSING BY THE INITIAL USER OF THE PROD-
UCT AND ARE NOT EXTENDED TO ANY OTHER PARTY.

USER AGREES THAT ANY LIABILITY OF FA HEREUNDER, RE-
GARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED
THE LICENSE FEE PAID BY USER TO FA. FA SHALL NOT BE
LIABLE FOR INDIRECT, SPECIAL OR CONSEQUENTIAL DAM-
AGES, SUCH AS, BUT NOT LIMITED TO, LOSS OR INJURY TO
BUSINESS, PROFITS, GOODWILL, OR FOR EXEMPLARY DAM-
AGES, EVEN IF FA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

FA will not honor any warranty when the product has been subjected
to physical abuse or used in defective or non-compatible equipment.

The user shall be solely responsible for determining the appropriate
use to be made of the program and establishing the limitations of the
program in the user’s own operation.

An important note: Good data processing procedure dictates that
the user test the program, run and test sample sets of data, and run
the system in parallel with the system previously in use for a period of
time adequate to insure that results of operation of the computer or
programs are satisfactory.

www.pocketmuseum.com Not for sale

	01.gif
	02.gif
	03.gif
	04.gif
	05.gif
	06.gif
	07.gif
	08.gif
	09.gif
	10.gif
	11.gif
	12.gif
	13.gif
	14.gif
	15.gif
	16.gif
	17.gif
	18.gif
	19.gif
	20.gif
	21.gif
	22.gif
	23.gif
	24.gif
	25.gif
	26.gif
	27.gif
	28.gif
	29.gif
	30.gif
	31.gif
	32.gif
	33.gif
	34.gif
	35.gif
	36.gif
	37.gif
	38.gif
	39.gif
	40.gif
	41.gif
	42.gif
	43.gif
	44.gif
	45.gif
	46.gif
	47.gif
	48.gif
	49.gif
	50.gif
	51.gif
	52.gif
	53.gif
	54.gif
	55.gif
	56.gif
	57.gif

