o000D
(2 2 2 X NJ
90000
20000
20000
20008
20000
20000
20000
20000 @
0000000
[Z A X X RN T T |

Panasonic

20000000
I ITXYIY]

[J I XX RN X ¥] - whe
eoeo0c00R® o

(XXX XXX X]
(I XIXXXYXY]
(JXIXXTX Y]
(ALY Y]
eooOOOOOS
L B BN BN BN BN B BN)

ooo0o00OOPOOE®

L 1]

O000OO0P000 VOOOOOOS SOOO OGBBOO

OO0 00T OCOCOQOCQCCEODROPCONCOCOCCOQCCOQOECOQTET

R

(I I I B A

s

)

AN - = A i~
¢ v v @

>

&

SnapFORTH

the high-level programming
language native to the HHC™

VOLUME I:
TUTORIAL

-

e @
¢ ® TABLE OF CONTENTS
= >
e @ CHAPTER 1: GETTING STARTED
&®
e @ CHAPTER 2: STACKS & NUMBERS
€ ® 24THESTACK 2-1
- 2.1.1 The Print Command 2-2
€ 2.2 ARITHMETIC OPERATIONS 2-3
¢ Ta 2271 Addition ... 2-3
2221+ and 2+ ... 2-4
e 2.23 Subtraction 2-4
2 2241-and 2- ... 2-4
G 2.2.5 Multiplication 2-5
P - 2.2.6 Division and Remainders 2-5
i 2272%and 2/ ... 2-5
[2.2.8 Combination Operations 2-6
P 229negate ... 2-6
4 22108b8 i 2-6
2231 max .o 2-6
c® R 2-7
.] 2218 Cr 2-8
2.3 STACK MANIPULATION COMMANDS 2-8
e 234dup 2-8
232 8WAD ... 2-9
< o R o e 2-9
. B LT B - [2-9
y 235drop oo 2-10
s 236 pickandroll 2-10
Y 2.4 SnapFORTH NOTATION 2-10
& TABLE 2.1 ARITHMETIC OPERATORS 2-11 |
TABLE 2.2 STACK OPERATORS 2-12 |
¢ @ ‘
5 |
e CHAPTER 3: CONSTANTS, VARIABLES, AND |
e 9 VECTORS
e P GHCONSTANTS 3-1
. O B82VARIABLES, 3-1
3.2.1 Examining Variables 3-2
o 9 3.2.2 Changing Variables 3-3
P 3.2.3 Byte Operators 3-5
2. 33VECTORS 3-5
.)))) - 3.3.1 Veclors of Bytes 3-7
Copyr!ght (©) 1982 by M_atsush:@a Electnq Industrial Co., Ltd. c ® TABLE 3.1 CONSTAKITS_. VARIABLES AND VECTORS 3-8
Copyright ©) 1981 by Micromotion. All Rights Reserved. an
HHC™ is a Trademark of Matsushita Electric Industrial Co., <
v @
- -

|

CHAPTER 4: THE EDITOR

4.1 CREATING ANEW FILE 4-1
4.2 EDITING COMMANDS 4-3
HS COPYING FILES .. coousw: vasams vnegs o 4-4
4.4 RENAMING AND DELETING AFILE 4-5
CHAPTER 5: WORDS & THE DICTIONARY
5.1 PRINTING MESSAGES 5-1
52DEFININGWORDS 5-2
DA WLISE o isnsannins, smpmmaerna 5-2
SHMLROBRGET o o inmssnn s duaaedaassngss 5-3
55MOREDEFINITIONS 5-3
5.6 MULTIPLE DICTIONARIES 5-7
TABLE 5.1 WORDS AND THE DICTIONARY 5-8
CHAPTER 6: FLOW OF CONTROL
6.1 DEALING WITH DECISIONS 6-1
6.1.1 Logical Operators 6-1
6.1.2 Conditional Structures 6-3
B2 LRDIOFS wasnamasmemmanneze s 6-8
6.2.1 Finite Loops: “do...loop.” 6-8
6.2.2 Indefinite Loops 6-12
6.2.3 “begin..until” ... o 6-12
6.3ANOTHERDUP 6-14
6.4 THE RETURN STACK 6-15
6.5 FINISHING EARLY 6-16
6.5.1 Leaving a “do...loop” 6-16
6.5.2 Exiting a Word e 6-16
6.6 CASE STATEMENTS 6-17
TABLE 6.1 FLOW OF CONTROL 6-19
CHAPTER 7: MORE ABOUT NUMBERS
7.1 INTERNAL REPRESENTATION 7-1
7.2 HEXADECIMAL NUMBERS 7-1
7Z3BYTESANDWORDS 7-2
LA SIGNED INTEGERS: ooy iiciinai. o 7-3
7.5 RATIONAL ARITHMETIC 7-4
7.6 DOUBLE NUMBERS 7-5
7.7 UNSIGNED INTEGERS 7-6
7.8 MORE MIXED-NUMBER OPERATORS 7-6
79 FLOATING POINT 7-7
TABLE 7.1 DOUBLE-NUMBER WORDS 7-8
TABLE 7.2 MORE ARITHMETIC WORDS 7-9
TABLE 7.3 FLOATING POINT WORDS 7-10

J.

nnnﬂﬂ.‘.”".”lt.’.‘ﬁﬂa(\nnéim{jﬁo“ﬂp

L4)

(i

i]

i
v

CHAPTER 8: STRINGS

8.1 STRING CONSTANTS 8-1
82 STRING VARIABLES 8-2
8.3 STRING MANIPULATION COMMANDS 8-2
831slandcmove, 8-2
8.3i2 D= i e b D Ee g 07 e 8-3
8383 9F i e PR e G S 8-3
8.4 CHARACTER & STRING CONVERSIONS 8-5
8.4.1 Strings to Numbers 8-5
8.4.2 Numbers to Strings 8-6
TABLE B STRINGS ..o o i cvvin e i v i 8-8
CHAPTER 9: USER INTERFACE
9.1 SINGLE-CHARACTER INPUT AND OUTPUT 9-1
9.2 INPUT STRINGS AND NUMBERS 9-3
93 FILE STORAGE i, 9-4
931 CreatingaFilecccovn.... 9-4
932O0peningaFile 9-4
9.33 AccessingaFile 9-5
934 AlteringaFile 9-6
9.3.5 Deleting froma File 9-7
9.4 GETTING IT TOGETHER 9-8
CHAPTER 10: ADVANCED TOPICS
10.1 EXCEPTIONAL CONDITIONS 10-1
10.2 CREATE AND DOES=> oo 10-1
10.3 EXECUTION AND COMPILATION 10-2
10.4 USING MACHINE CODE 10-3
10.5 PERIPHERALS 10-3

nnoo10it-vo.tm.v.vmosononhnnoa_nqnnﬁﬂofgJ

DDDOG@G\D\?ODOO!GUO\I\)00000‘*006&0()05

CHAPTER 1: GETTING STARTED

Hello! This manual will introduce you to the SnapFORTH
language. It assumes you have not worked very much (if at
all) with SnapFORTH before. SnapFORTH is a powerful and
sophisticated language, and many of the details involved in
programming in it are covered in the SnapFORTH Reference
Manual, only a fraction of its capabilities are covered in this
introductory manual. For instance, you will be using programs
that exist only as dictionary files and that you can access only
from the SnapFORTH capsule. In addition, you will not be
learning about assembly language programming or about how
lo make your programs into capsules or “BUN SNAP
PROGRAMS”. These topics are covered in the SnapFORTH
Reference Manual.

To use this manual, you must have a Hand-Held Computer
(HHC) and a SnapFORTH capsule. No peripherals will be
necessary.Insert the capsule into any spare socket in the back
of the HHC. Be sure that the arrow on the capsule matches
the arrow on the socket.

Note: While you need a SnapFORTH capsule to write a
program, you can save the program in a form that will run on
an HHC without a SnapFORTH capsule. For more information
on that, see the SnapFORTH Reference Manual.

Now let's get going. Turn on the HHC and press CLEAR twice.
The primary menu will appear in the window, one line at a
time:

Py R R TR
'hese messages will repeat in sequence as long as it takes
you lo make a choice. Press the number n to select the
SnapFORTH capsule. Remember, you can return to the
primary menu at any time by pressing CLEAR twice. You will
first see

Tl B0 e

I
appearing alternately in the display. Since you have no
choice, press the “1” key. You will be asked to:

For now, answer:

[y
Don't forget to press ENTER. We will explain what “myown" is
for a little later, in chapter 4.

1-1

You should now see:

i
Congratulations! You are now up and running and ready to
program in SnapFORTH.

Now let's review. Press CLEAR twice to return to the primary
menu and select SnapFORTH. This time you will see:

S_elect 2 (myown). The word “myown” will appear briefly in the
display. When you see the now familiar

you are now ready to read chapter two.

DOOOCOCP®PPEPEPPEPPPPTPTNOCFTFEINCOCNDNOOTPTONONONOCOOCP

L A B B R BB BB R B EEREEEEE EEENEENENENEENEEREREEEEEEEEK

CHAPTER 2: STACKS & NUMBERS

All operations in SnapFORTH are conducted by means of
words. Some of SnapFORTH's words may not look like words
to you— * / or + for example—but the computer sees them
as such. As far as SnapFORTH is concerned, any character
or group of characters separated from other characters or
groups of characters by a space on each side is considered a
word. For example,

b | Loy s 1ER 2
all could be valid SnapFORTH words. Therefore, you must get
into the habit now of spacing between each word so that
SnapFORTH will recognize your commands.

Numbers are also words in SnapFORTH. Numbers may not
contain any punctuation and are normally no larger than
32767 and no smaller than -32768. (Larger numbers will be
introduced in the chapters on Advanced Numbers and
Floating Point.) Negative numbers are preceded by a minus
sign. The following expressions—

IoE -1 £eh
are all valid SnapFORTH numbers. Numbers are normally
acted on by other SnapFORTH words and are saved in a
special place called the “stack.”

2.1 THE STACK

The stack is a “holding file” for numbers that you intend to
work with by means of words. Any number you type into the
display is entered onto the stack awaiting future use. The
order in which these numbers are stored, however, is of
crucial importance; you are responsible for understanding
how the stack works and how to manipulate it to your
advantage.

One of the most familiar ways of imagining the SnapFORTH
stack is to think of cafeteria trays on a spring-loaded rack. If
you label three trays 1, 2, and 3 and add them in that order to
the top of the stack, when you take them off again their order
will now be reversed: the first one you remove will be #3, the
second one #2, and the third one #1. You cannot get at tray
#1 unlil you have taken off tray #3 and then tray #2.

#1—+_#1_ (top) Push #1 on stack.

#2—~_#2_ (top) Push #2 on stack.
#1 (2nd item)

2-1

#3—_#3_ (top)
#2 (2nd item)
#1 (3rd item)

~—_#2_ (top)
#1 (2nd item)

Push #3 on stack.

Pop (remove) top item.

2.1.1 The Print Command

The word . (“dot") will take whatever number is on top of the
stack off and display it. This number, you should note, is not
on the stack any longer; if you need to use it for another
purpose, you will need another operation to save it—more on
this later. If you type several dots in a row, one for each
number, SnapFORTH will print all the numbers on the stack
(Irn the order we have described). Now try this out. But
fws?-—do you see the “ok” prompt? Good. Begin by typing a
series of numbers: 1 2 3 4 . Be sure to add enough dots to
account for all the numbers:

in these beginning exercises, remember that you can always
back up with the left arrow key and write over your mistake
with the correct input. As you back up, the information will
remain in the window; nothing changes until you type over a
character or press the ENTER key—at which point
everything to the right of the cursor will be lost. Likewise, if you
need to move over to the right of the line, you can accomplish
this one character at a time by using the right arrow. Again,
nothing is erased as you space across it.

To getto the beginning of a line in a hurry, you can do either of
two things: Use the up arrow, which will move you there all at
once, or hold down the left arrow key while it repeats. To getto
the end of a line in a hurry, press the down arrow or hold down
the right arrow.

Now press the ENTER key to let SnapFORTH recognize the
commands, and it will answer you:

P &1 o
If you type more dots than there are numbers in the stack
SnapFORTH will warn you: ' '

3 "
"

Notice the dot at the end of the error message? SnapFORTH

will always try to display the word that caused the error—in
this case, the extra dot.

2-2

OO0 E0N0 N0 DS DO OO0 QO Q0

fn O NH OO O 2 " 00 0

A A A A N BN EEENENENENENENEN:

Note: You may encounter other error messages as you
experiment with SnapFORTH. A full description of these and
their meanings is in the SnapFORTH Reference Manual.

The concept of a stack must be mastered as you use
SnapFORTH, as you will often be asked to remember how
your information is stored there. Furthermore, you will be
learning ways to manipulate the order of your data on the
stack. A convenient way to remember the concept is the
abbreviation LIFO—Last In First Out.

2.2 ARITHMETIC OPERATIONS

2.2.1 Addition

One of the unusual things about SnapFORTH is the order in
which the elements of your arithmetic problem—in computer
terminology, the “arguments’—are entered. Your normal
inclination might be to write an addition problem like this:

and with many languages and calculators this would be quite
correct. In SnapFORTH, however, the same operation would
look like this:

Also, as you will discover later, this system will eliminate the
need for parentheses in more complicated algebraic
operations.

But back to our simple addition problem. When you type

and ENTER, SnapFORTH stores 2 and 3 on the stack (in the
LIFO order just described), adds them, and replaces them
with the answer. What is now on the stack? Only the answer,
5. When you include the dot, the contents of the stack will now
appear:
BRI R Ol &

Adding a long column of numbers is almost as easy, but you
must remember to include sufficient + operators.
SnapFORTH can only add two numbers at a time. It will take
the top two numbers you put on the stack, add them, and
replace them with the answer; then it will take the next number
on the stack and add that, leaving just the answer, and so on.
What you need to do is put a ‘+ after the first two numbers

j

0

Or the same problem can be written like this:

T4 omd e bk b b LIEE ak

Caution: As you remember, at this point you cannot work with
any number greater than 32767 or less than -32768. If you try
to input such a number or perform a computation that would
result in such a number, you will get an answer—but it will be
wrong.

o !

2221+ and 2+

For certain frequently performed operations, SnapFORTH
saves you computer time and space by consolidating the
elements of the operation. If you wanted to add 1 to 14, for
example, you could use the command 1+ without having to
type a 1 separately and a + sign as well, Try this both ways:

T e

Surprise! 2+ works exactly like 1+, except with 2 instead of
1.

2.2.3 Subtraction

This operation follows the same basic logic as addition. You
enter the two arguments (the numbers in your subtraction
problem), the command for subtraction (-), and the dot.
SnapFORTH destroys the original two numbers and replaces
them with the answer.

If you were trying to subtract two from three, for example, the
usual order “three minus two” would now become “three two
minus:”

Try a variety of subtraction problems to get comfortable with
this operation.

2.2.4 1- and 2-

Subtracting 1 or 2 from a number is such a common operation
that SnapFORTH provides separate words for them:

2-4

PPN

. L L

-~ (-

AL R

0%‘6090‘33‘030000‘0@00“00'

“
™
)

2.2.5 Multiplication

The only new thing to learn about multiplication is the
command for it, which is an asterisk (*). (Using an X or a dot
would be too confusing, as those symbols have other
functions.) The reverse notation that you learned for addition
and subtraction still applies. Knowing this, how would you
multiply 15 by 57

2.2.6 Division and Remainders

Division is slightly more complicated because there are
remainders to deal with. At this point, SnapFORTH can only
deal with whole numbers; it cannot give you fractions or digits
lo the right of the decimal point to express remainders. But
you can arrange to see the remainder as follows.

Alter you type two numbers, the command / (“divide”) causes
the first number to be divided by the second. If you tried

Your answer would be

Wk
If you wanted to know the remainder, you could type the same
numbers plus a new aperator “mod”:

Vot ok
and the answer would be the remainder:
Wl
A lot of trouble, right? But SnapFORTH has graciously
created a new word that will do both at the same time: /mod
(“divide-mod"). It is important, however, to remember 1o give
SnapFORTH two print commands, one for the quotient (which
will be on top of the stack and printed first) and the other for

the remainder (which is next on the stack and printed second).
Now try out this same problem with /mod:

RSV DATe S

2.2,7 2" and 2/

These operations are used so often that they have been
especially written for extra speed. they multiply (2*) and
divide (2/) by 2: |

- o LB ks 1

A

i

2-5

Note: since 2/ works by shifting the number, it will not work for
negative numbers.

2.2.8 Combination Operations

SnapFORTH can also handle several different kinds of
arithmetlic operations in quick succession.

For instance, suppose you wanted to add 15, 37, and 1086,
multiply the result by 5, divide by 7, and see the quotient as
well as the remainder. You could reduce this to a very concise
set of instructions, as follows:

2.2.9 negate

The command “negate” will reverse the sign of whatever
number is on the top of the stack. Try typing a -2 on the stack
and changing it with a “negate”:

The same process WI|| work with a +2 (written simply as 2):

2.2.10 abs

“Abs” will give you the absolute value of the top number on the
stack. Try the same two numbers with this new command:

2.2.11 max

With “max,” SnapFORTH will tell you which of the top two
numbers on the stack is the greater by removing the smaller
number. What SnapFORTH prints, then, is the larger number.
Try a pair of numbers like 17 and 53:

SR D A
This will also work with combinations of signed and unsigned
numbers:

2-6

OO0 00000000 00068 CCO000CO0CO0COQCQ 0

o n n 00

O 0 PP DI IV P OO VPO POV U VU OV OO OO OO OLOOOODS

2.2.12 min

As you might have guessed, “min” will give you the smaller of
the top two numbers on the stack. The larger number is
deleted from the stack, and SnapFORTH prints what is
left—the smaller number. Try the same sets of numbers:

Why would anyene need a “‘max” or “min” command? Surely
we can all tell just from looking whether one number is greater
than another. But there are useful operations that can be
accomplished by combinations of these two commands. For
instance, suppose you would like to exclude numbers from
your program that are less than -10 or greater than 100. If you
put -8 on the stack and follow it with -10 and “max,”
SnapFORTH will leave -8 and delete -10 because -8 is the
greater number.

will exclude the 23 wh|ch is Iees than -10.

Half your problem is solved. The other half can be solved in
aymmelncei fashion by comparing numbers to 100 using
“min."” Test this on 56 and 897:

L ntt, of work rrght’? But SnapFOHTH will allow you to perform
both commands one after the other without retyping the
original number. You type in the number in question and
compare it to -10; in the same line you compare the result to
100, and SnapFORTH will print the result. Look closely at the
following example:

ebat el mocy LEE mie 43 ol
Read this line the way SnapFOHTH reads it. First, 43 is
entered onto the stack, and -10 follows. The two numbers are
compared by means of max, and the greater, 43, is left on the
stack while the lesser, -10, is deleted. The number 100 is now
added to the stack, and it is compared to 43 by means of
“min.” The resulting smaller number, 43, is printed.

2-7

l

2.213 cr

The word “ cr " (“carriage return”) waits a reasonable amounlt
of time to let you read a line and then moves you on to the next
line in the display. You can control the speed of the display by
pressing the STP/SPD key followed by a number from 0 to 9.
The lower the number, the slower the display, except 0 (which
gives the fastest display).

You can use “ cr " to break up a long display into readable
pieces:

The result will look like this:

2.3 STACK MANIPULATION COMMANDS

SnapFORTH is methodical, thorough, and entirely consistent.
It will always enter your numbers in LIFO order. There may be
times when you don’t want them in that position, times when
you want to get at something further down in the stack without
going through all the numbers on top first. SnapFORTH
provides for these occasions by offering a small but powerful
set of stack manipulation commands,

2.3.1 dup

This is an especially useful command for cases when you
want to use an argument several times or for several
purposes. The word “dup” simply makes a copy of (duplicates)
the first (top) number on the stack. If you typed in

If you typed in

2-8

P2 ONOOO

® ™

e ™" 200

0O o000

99099 9@

S 6 O

U B B A

2.3.2 swap

This command, as its name implies, reverses the order of the
top two numbers on the stack. If you typed in the same series
of numbers as before plus a “swap” command, your

1 "
would become

instead of the usual

2.3.3 over

The command “over” makes a copy of the second number
from the top of the stack and puts the copy on top, pushing the
former top number down one place. Your same series of
numbers

which usually yields

when printed with the addition of “over,” thus:

OV meemy ok
will appear like

this
(Remember to allow for the duplication of the second number
and add another dot.)

2.3.4 rot

This command stands for “rotate”; it removes the third number
on the stack and puts it on top of the stack, moving the other
two numbers down to make room for it. In other words, the
third item becomes the top item, the top becomes the second,
and the second becomes the third. Your three numbers

ok

which usually come off the stack like this

]
will with the addition of “rot”
SOV ot ok

look like this

2-9

Remember, this command only changes the order of numbers
on the stack. None are copied or removed.

2.3.5 drop

The word “drop” does exactly what it says; it takes the top
number off the stack and deletes it. Your familiar series

would usually yield

when you printed it. With the use of “drop,” the top number on
the stack will disappear.

OV FoooW¥ OB ol
The word “swapdrop” combines the actions of a “swap”
followed by a “drop”:

2.3.6 pick and roll

The words “pick” and “roll” are generalized stack manipulation
words. To duplicate the nth-item of the stack and place it on
top of the stack, use n pick:

The command 1 pick is the same as dup; 2 pick is the same as
over; 0 pick (or less) is meaningless.

The command “roll” is the generalized form of “rot.” Typing n
roll moves the nth number (not counting itself) to the top of the
stack, moving the remaining values into the vacated position:

2 roll is the same as

swap; 1 roll or 0 roll is meaningless.

2.4 SnapFORTH NOTATION

A standard way to indicate changes in the stack is to use
arrows with the “before” status on the left and the “after” status
on the right (before —> after). Numbers on the stack appear
in order of entry, so the number furthest to the right will be the
top number of the stack. If a blank appears before the arrow,
thal means that nothing is required for the word to execute: if a
blank appears after the arrow, then the word leaves nothing

2-10

nnnnosﬁg\m(\r\n(\f\nr‘ﬂﬂﬂr\nnt\t\ﬁﬁﬂﬂrrrnﬂ

o &

O 90

9009

v

L 2B I

P99 999

»

999

Vo

on the stack. The symbol “n” stands for number. Examples
appear in the following tables.

For a complete listing of all words included in SnapFORTH,
refer to the SnapFORTH Reference Manual, where they are
arranged in essentially alphabetical order.

TABLE 2.1 ARITHMETIC OPERATORS

WORD

14

mod

/mod

p_a

2.1”

negate

abs

STACK

(nt —=
ni1-plus1)

(n1
ni1-plus2)

(n1 n2 —=
n-diff)

(nl —=>
ni-minusi)

>

(N1 —=>
ni1-minus2)

(N1 N2 —=>
n-prod)

(n1 n2 —=>
n-quot)

(n1 n2 —=
n-rem)

(n1 n2 —=
n-rem n-quot)

(Nt —=
ni-times2)

(nt —=
ni-divby2)

(n—=>n)

(n—=>n)

ACTION
Prints number on top of stack.

Adds two numbers.

Adds 1 to number.

Adds 2 to number.
Subtracts n2 from n1,
Subtracts 1 from number.
Subtracts 2 from number.
Multiplies n1 and n2.
Divides n1 by n2.

Determines remainder
of n1 divided by n2.

Divides, leaving remainder
and quotient,
Multiplies number by 2.

Divides number by 2.

Changes the sign of n.

Returns the absolute value of n.

max (n1 n2 —:= Returns the greater of n1 and
n-max) ne.
min (n1 n2 —= Returns the lesser of n1 and n2,
n-min)
cr (—=) Moves the display to the

next line.

TABLE 2.2 STACK OPERATORS

WORD STACK ACTION
dup (n1 —=> n1 n1) Duplicates the top number on
the stack.

swap (n1 n2 —> n2 Swaps the top two numbers on
nt) the stack.

over (n1n2 —=
nin2 nt)

Pushes a copy of the second
stack item onto the stack.

rot (n1 n2 n3 —> Removes the third item in the

n2 n3 nt) stack and pushes it on top.
drop (n—=) Removes the top stack item.
pick (n —= Duplicates the nth stack item.
n-picked)
roll (n —=) Moves the nth stack item to thle

top of the stack, moving the
remaining items to the vacated
position.

swapdrop (n1 n2

> n1) Swaps the two top numbers on
the stack and then drops the top
number.

nonnogsmnnnnnnnf-aﬂr\nnnapppnrrl‘fc

o099

(0 BN BN B BN BN B B BN

™

P99 9 99999

CHAPTER 3: CONSTANTS,
VARIABLES, AND VECTORS

In your work with SnapFORTH, you will occasionally need to
set up constants and variables that have specific values. As
their names imply, constants have values that never (well,
hardly ever) change, and variables have values that can be
easily changed.

3.1 CONSTANTS

As you work with SnapFORTH, you will find it very handy to be
able to set up constants. These essentially give names to
numbers that you use often and make it easy to find,
manipulate, and (if necessary) change those numbers,
Setting up a constant is very simple. You specify a value, type
the word “constant,” and then give it a name. Here is an
example:

wsorEt ot o ook
Whenever you want to use the value of a constant, you need
only refer to its name, “days/week”:

, e '
i b wod LEE

3.2 VARIABLES

Variables have values which can be changed. These values
must therefore be stored in random-access memory (RAM).
You can request a temporary storage area (TSA) in which to
contain these variables which has a name of its own. For
example, suppose you wish to create two variables for
counting rainfall and snowfall, and to include them in a TSA
called "working". You request the TSA with the words “area”
and "endarea” thus:

e ek ok (Press ENTER after each line.)
hfuld el ok
W W

T A T

Note: You can only have one TSA active at a time. Plan
carefully! Furthermore, each TSA is limited to 255 bytes; each
variable takes two bytes. If you exceed this, you will not get a

warning. If you want to reserve more, see chapter 10,
Advanced Topics.

If-you now type “working,” SnapFORTH will attempt to find
exactly enough RAM for the two variables “rainfall’ and
“snowfall.” If it succeeds, a 1 (true) will be left on the stack; if it

341

fails, a 0 (false) will be left. Let's allocate the variables “rainfall”
and “snowfall” by invoking the name of the TSA:

To mmallze ramfall’ to the value 3, type in the following line
exactly as it appears in the text. (DOn t worry about what this
line means just yet.) You need to set an initial value (initialize)
a variable right at the beginning; until you do, it will contain a
meaningless number,

The Current value of the Varlable named “rainfall” is now 3.

3.2.1 Examining Variables

The difference between a constant and a variable shows up
when you try to get SnapFORTH to print the value you have
assigned. Try asking for the value of a variable in the same
way you would for a constant:

o

What happened” The number you got from SnapFORTH
(which might lock like the example we provided or might be a
similar large and improbable number) is not the value of the
variable; rather, it is its address in the TSA in RAM. (an
“address” is a location in memory.) Getting the value of the
variable takes an additional step:

The r’a symbol (fetch goes to the address that RAINFALL
has already put on the stack and puts the value it finds there
on the stack, replacing the address. The dot, as usual, prints
this number, removing it from the stack. These two operations
are combined with a smgle symbol, the question mark (?).

[y ir | ful | i

Changmg the Value of a varlable is quite simple. You enter the
new value, type the name of the variable, and add a new
command ! ("store”).

Suppose you wanted to change the value of your variable
“rainfall” from 3 to 6, for example. Your instructions to
SnapFORTH would look like this:

Be sure you can read and understand this the same way that
SnapFORTH does. Typing a 6 puts that number on the stack;
typing “rainfall” puts the address of that variable on the stack
as well; ! stores the new value at the address on top of the
stack, destroying the old value in the process. Now when you
ask for “rainfall” you will get the new value:

3-2

DO 2OOAOONNOOOEEPECEOLOLOON

—— -

.
]

P PP GO PV I O @

LR B

PO OOV

Pt boOTE ol
Note: Before you can use the ! (“store”) command, a value
and an address within a TSA must be on the stack; the
address (where you will be storing the value) must be on top.
“Store” needs this information to finish its task.

3.2.2 Changing Variables

Using the commands you already know from the previous
chapter, it is easy to manipulate the value of a variable. For
example, suppose you have a meteorological variable called
“recordhigh” for temperature. Each day you would like to
compare the value of “recordhigh” (the highest temperature
recorded so far) with today’s peak temperature (which you
have already named “todaystemp”). If the value of
‘lodaystemp” is greater than the value of “recordhigh,” then
the value of “recordhigh” should be changed to reflect this.
Your problem has three parts: you must first create and
initialize “recordhigh” and “todaystemp”: next, you must
determine which of the values is greater; and finally, you must
order the numbers on the stack so that this value will be stored
in “recordhigh.”

First, you need to create and allocate a TSA for the new
variables. But wait: you already have one, and one is the limit.
You have to get rid of “working" before proceeding. Do it this
way:
Pt e b e ks

Now start W|th a new TSA (go ahead and use the same name
again if you like; SnapFORTH has already forgotten the old
TSA, so it won't be confused):

102.

Firm[ly, Iet Check recordh|gh’

against today's temperaturo

Make sure you understand how SnapFORTH reads your
instructions at each point: The command “recordhigh @ puts

3-3

the current value of “recordhigh” (98) on the stack. The
command “todaystemp (@" puts today’s peak temperature
(102) on the stack as well. The word “max” compares the two
and eliminates the smaller value from the stack, leaving 102,
Typing “recordhigh” puts the address of that variable on top of
the stack. The “store” command (!) stores the value 102 at the
address specified on the stack, destroying the earlier value
(98) in the variable. What is the current value of “recordhigh?”

e ey e by Db 7

Variables are particularly useful when keeping track of running
totals. Suppose you are working with two variables, “totalrain”
and ‘“todaysrain.” As of yesterday, “totalrain” is 15 and
“todaysrain” is 2. You want to add “todaysrain” to “totalrain” to
update your running total. Again, your problem is in three
parts: you must allocate and initialize the variables, add the
two values, and store the total correctly. First you must forget
the old TSA, set up a new one, and allocate the new variables.
Next, initialize “totalrain” to 15 and “todaysrain” to 2. We
assume you know how to allocate and initialize variables. If
you are still confused, please reread the material above.

Now study the following example:

Walk through this example to be sure you understand it.
Typing “totalrain " puts the value of this variable (15) on the
stack. Next, “todaysrain (@" puts the value of this variable (2)
on the stack as well. The operator + adds the two values and
puts the result on the stack, eliminating the two arguments.
Typing “totalrain” pushes the address of this variable on the
stack. The command ! stores the total of 15 plus 2 at the
address of “totalrain.” Check to see what the current value of
“totalrain” is:

Since keeping running totals is such a common task,
SnapFORTH has a special command just for this purpose,
written +! (“plus-store”}. To use “plus-store,” push the value to
be added onto the stack. Then push the address of the
variable onto the stack. The command +! adds the value on
the stack to the one at the address indicated and stores the
result at the address. First, let's set the variable values back to
the ones you started with:

34

AR E R R EE R X

OO0 R 22200

o0

O P9 99

PPV OV OV

»

Check to be sure that the result is the same with this method:

ook b e FLY

When you want to change the value of a variable, the new
value does not need to come from other already-established
variables. To SnapFORTH, a value on the stack is a value on
the stack, regardless of where it came from.

Therefore, if you wanted to add 4 to the value of your current
variable “totalrain,” you would follow exactly the same
procedure as you used in the example above:

A A S S
Four is the new value; typing “totalrain” pushes its address
onto the stack; entering + ! adds 4 to the old value and stores
the total at “totalrain’s” address. Check your result:

oo i Y

3.2.3 Byte Operators

Special byte operators are available to manipulate 8-bit
numbers. They work just like conventional operators. The
word “cvar” will establish an 8-bit variable in a TSA, “c@” will
fetch an 8-bit number, and “c!"” will store an 8-bit number.
Unsigned byte values that you can manipulate with byte
operators range from Q to 255.

3.3 VECTORS

Now that you understand how constants and variables work
separately, it's time to learn how to use them together. A
logical grouping of identically-sized variables is called a
veclor. Each variable is differentiated from the rest by a
number called an index. One of the best reasons for using
veclors is saving space. It takes a relatively large amount of
SnapFORTH space to name and store variables, and when
they are clustered, more space can be freed for other tasks.
As an example, suppose you are keeping track of your daily
caloric intake and compiling the results weekly. If you set up
seven different variables, one for each day of the week, a
greal amount of computer space would be taken up with the
"bookkeeping” tasks of naming, locating, and storing so many
separate pieces of information.

To continue our caloric example, let's create a vector called
“cal/day,” meaning calories per day. (Long variable names
also take up unnecessary computer space; abbreviate when
you can, but don't be too cryptic.) Vectors are created and

allocated in much the same way that variables are (r
emember
to forget the old TSA “working” first): {

ELLECH I SO I i w o LA

The vector “cal/day” is created with enough RAM area to store
‘:;even 2I-byte numbers. The values are numbered or
‘indexed.” The first value is at index 0 and the last value is at
index 6. (By the way, to avoid the common error of trying to
use the value in the seventh position [which doesn't exist], you
could allocate one exira value to the vector with “8 véctor
cal/day.”)

You can visualize “cal/day” as a large box divided into seven
smaller two-byte boxes, each of which stores a day’s caloric
_total. The address of any box can be found by pushing the
index of that box on the stack, followed by the name of the
vector, “cal/day.” Once you have the address, you can add a
value to the box. For example, to initialize the first box (at
index 0) to 2000, type:

k> Bocarsaod ook
To examine the first box, type:

R BN PR

s R L Wi
We can give _each box a name by creating constants for each
index. (This is not the most efficient use of computer space,
but it is a good example of how to use constants for clarity.)

2k (Sunday’s index)
i (Monday'’s index)
- (Tuesday's index)
i (Wednesday's index)
i (Thursday’s index)
(Friday's index)

o v R L (Saturday's index)
Now the long box looks (diagrammatically) like this:

7 VECTOR CAL/DAY

Sunday’s | Monday's Saturday's
2 bytes 2 bytes 2 bytes
0 +2 +12

How does this work? Study the following example. Suppose

Iyou consumed 1000 calories on Tuesday; your input would
HSH

noooa110onnnonnanonnnnnaﬂaoonoaon

(0 B B BB I B)

P POV PO OOV

o 9 9

T ogesmedo s oo berolo

Entering 1000 puts that number on the stack. Typing “tuesday”
puts the index 2 on the stack. Typing “cal/day” replaces the
index 2 with the address of the second box, and “store” (!)
stores 1000 there (“inside” the vector “cal/day”).

Now how do we get Tuesday’s caloric record out? Watch:

L AT U=t D e B it : ik

Review this carefully. Typing the constant “tuesday” puts its
value (the index 2) on the stack. Next, “cal/day” replaces the 2
with the address of the second box. The command ? goes to
that address and fetches the value, putting it on the stack and
then printing it.

For larger vectors, it is not practical to make each offset a
constant. Instead, the index should be given directly. For
example, suppose you were interested in daily caloric intake
for a month. You would first need to forget the old TSA and
start over. When you retype “working,” include the vector:

N T Tl RS el B b i P B
Remember, you can only have one TSA at a time, and it is
limited to 255 bytes. This will be your last reminder!

3.3.1 Vectors of Bytes

One byte of computer memory can hold any number from zero
to 255. If the values you put into an vector are never outside
this range, you can effectively double the storage of an vector
by storing one-byte numbers rather than two-byte numbers,
o do this, you need to allocate a “cvector” instead of a
“vector,” Study the following example:

g (Within a new TSA)
his sets up a vector of seven bytes. The bytes within the
vector are indexed as usual (from 0 to 6). To store into this
byte-vector, however, we use the command “ ¢! ” (“c-store”),
which is the byte-equivalent of “ I * (“store.”) (Historically, the
“¢" stands for “character.” Commands which begin with “c” are
often used to manipulate characters, such as “a” or “b,” which
occupy one byle of memory each.) For example, to specify
four meals on the third day, type:
it

O T D B I e B S B 3
(Remember, the vector actually begins with day zero, so day 3
has the index 2).

sy oo s o B
PR T LT R Sl 11 <

3-7

To fetch the value of the third day, use “c(@ " (“c-fetch”), which
is the byte-equivalent of * @ " (“fetch”):

b g e

Numbers on the stack are normally two-byte numbers. The
word “ ¢! " serves to pack these numbers into one-byte form,

while * c(@ " serves to unpack them into two-byte form again.

TABLE 3.1 CONSTANTS, VARIABLES and
VECTORS

WORD STACK ACTION
constant <pame= Creates constant of name
(n—=) <name> and value n.
area <name:> Creales a temporary storage
(—=ok?) area (TSA) in RAM. Returns 1 if

successful, 0 otherwise.

endarea (—=) Marks the end of the TSA.
Variables and vectors between
area and endarea will be
allocated when the named TSA

is executed.
var <name= Creates variable of name
(—=) =<name= within a TSA.
cvar <_name>- Creates 8-bit variable (ie, one

byte or character) of name
<hame> within g TSA.

(@ (address—>=n) Replaces address with the value
n found at that address.

c@ (address—>n) Replaces address with the byte
value n found at that address.
(The high-order byte is set to 0.)

? (address—=) Prints the value found at
address.

' (n address—:>) Stores n at address.

¢! (n address—>) Stores the (low-order) byte of n
at address. The byte at address
+ 1 is not disturbed.

vector <hname:> Creates vector <name> within
(n-size—=) a TSA. n-size 2-byte elements
will be allocated when the
named TSA is execuled.

3-8

A A B LA B B EEEEEEEEEEEREEREER DR

DAL B B N N NN E R NN NN REE R R N Y

PP 909 00

PO B3 OO

cvector

(n-index—=n-
adr)

<name:=
(n-size—=)

(n-index—:=
n-adr)

In use, the address of the
n-index element will be left on
the stack.

Creates byle-array <-name:=.
n-size bytes will be allocated
within the TSA.

In use, the address of the
n-index byte will be left on
the stack.

3-9

3-10

0O 00T P PP RO PO ® OO0 0000 OO0 OO

j

O

P00V ODPPPPVPOOPOOPBLIOLOLOLOLOIOLOLOLIOLOLODOLOOLOYS

CHAPTER 4: THE EDITOR

Programming with SnapFORTH is never a one-shot
operation. Inevitably you will want to add or change something
later as you think about your work a second time or devise a
new purpose for your program. To keep you from having to
lype the entire program again, SnapFORTH allows you to use
the editor directly from the SnapFORTH capsule. This is the
same editor described in the File System chapter of the
instruction manual for your HHC. The editor lets you type
commands and definitions into a more permanent storage.

Iwo kinds of memory are available to you for storage of your
programs—intrinsic and extrinsic. Intrinsic memory, as its
name implies, is built in. Extrinsic memory is contained in
programmable memory peripherals which you can attach to
your HHC. SnapFORTH allows you to save programs in
memory in the form of files.

You can select the memory area that you want to save your
program in. You are now operating in intrinsic memory, the
default condition. To switch, press the I/O key, and you will
see these lines in turn (the numbers you see may vary):

I you have no extrinsic memory, you will see only line 1. If you
have exirinsic memory, select option #2 by pressing that
number; you will see line #2 briefly in inverse characters
(white on black). Return to intrinsic memory by pressing key
number 1. Now press the I/O key (a toggle key) again, and
SnapFORTH will return you to the program you were in.

4.1 CREATING A NEW FILE

Lotl's create a new file, one that you will call “utility.” First, get
back to the main menu by hitting CLEAR twice. Choose option
3, the file system. Within this option, choose option 1, NEW
FILE. SnapFORTH will prompt you:

IWFE L MErE . THER .
Lot's call your file “utility.” After you ENTERed, the file was
created; you can now input material. ask for the file system

(You may have a few more files than this which may occupy
other file numbers.) To get back into the file {open the file) for

4-1

more input or to edit what you have already input, you need
only to select the number of your file,

A simpler way to create or edit a file directly from SnapFORTH
is to use the word “edit.” Simply type the word “edit” followed
by the name of the file. As in the earlier method, the file is
created after you ENTER and is then ready for input. (If the file
already existed, this command would open it for editing.)

File names can be no longer than 80 characters. Do not
use blanks within the name of your programs.

_Let’s create a program using variables you have seen before
in chapter 3, Constants and Variables. This program will
create variables for rainfall and snowfall within the TSA called
“working.”

Enter this information line by line, making sure that you press
ENTER after each line. ’ e

After you have ENTERed the last line, extt the file by typing a
CLEAR. Now examine “rainfall” and see what you getx.{p :

But SnapFORTH doesn’t seem to recognize your new word:

Cab T FIMD raindall
What happened? As it turns out, even though you typed
ENTER for each line, your program has not really been
procgssed by SnapFORTH; instead, it is now contained in
what is called a source file. When you want the file contents to
be processed, you need to type the command “load” followed
by the name of the file:

1
B I

The file will be processed by SnapFORTH, Now if you
examine “rainfall,” you will get the result you were expecting:

U E e f
LR PR AT LA |

Now go back 1o the main menu. (remember, two CLEARS)
and ask for the file system with option 3. What do you get?

This is yet anoth_er proof that your file has been properly
entered. Select “utility.” The word “utility” will appear in inverse
characters to show that it is an “old” file.

4.2

> P ® OO ODOTTYOEPPOOOODO

™00

T EEEEEER

p—— — —

o ©

]

A EEEE B EREEEEREREEEREEREEEEENENEEEEEEEREREERE N

4.2 EDITING COMMANDS

To see your file's contents, you now need to know how to
move around within the file. First, let's establish basic cursor
movement commands.

Going Down
To move the cursor down one line, type a down arrow. Repeat

the command to move more than one line. The HHC will beep
at you and stop if you try to go below the last line.

Going Up
To move the cursor up a line, type an up arrow. You can repeat

this command also, but the HHC will beep at you and stop if
you try to go above the first line.

Going to the Right

To move the cursor to the right one character at a time, type a
right arrow. As with the up arrow, the HHC will beep and stop
when you hit the end of the line.

Going to the Left

To move the cursor to the left one character at a time, type the
left arrow. As with the other control commands, the HHC will
beep and stop when you hit the end of the line.

Before you go any further, try out these commands on your .
ulility file.

One important point: When you ENTER a normal line, only
those characters to the left of the cursor are interpreted. When
you ENTER a line from within the editor, however, it doesn't
maltter where the cursor is at that moment.

Now that you know how to get to the places you want to
correct in your file, here’s how to do the corrections.

Inserting Characters
Suppose you had typed the word

L b
and needed to fix it. First move the cursor so it is on top of the
“‘n." Type the insert key. (Notice the “checkerboard” cursor.)
Now type the missing “I' SnapFORTH will automatically move
the "'ng" over to make room for the new letter.

If you wanted to insert several characters at a time—say a
whole word—press the lock key before inserting. Now you
won't have to hold down the insert key for each new character
inserted. To get out of the locked insert mode, press the insert
key again. Remember that SnapFORTH can handle lines of
no more than 80 characters. If you insist on filling a line with

4-3

more than this, the HHC will beep at you and stop accepting
the characters.

Deleting Characters
This time, suppose you had typed the word

R

and didn’t think that acceptable either. Move the cursor so it is
above the unwanted character. Press the delete key (notice
the “hollow” cursor) and then a left arrow. The word will close
up from the right, erasing the extra “0” in the process. The
cursor will now be over the character that was to the left of the
one you deleted. Again, if you want to delete several
characters in a row, press the lock key first. Get out of the
delete mode by pressing the delete key again.

Inserting Lines

What if you wanted to add a new variable in “working” that
would occupy a whole new line? Let's try it with a variable
called “nightfall” that will appear after “snowfall” in the TSA
“working.” Position the cursor on the line below the one where
“nightfall” will appear—the line that says “endarea.” Type an
insert key and then an up arrow. A new empty line above
“endarea” will now open up. Type the new line
LE B R

and ENTER. The same effect could be accomplished by
positioning the cursor on “snowfall” (the line above), typing an
insert, and pressing the down arrow. If you wanted to insert

several lines at a time, press the lock key first. In that case,
press an insert again to get out of the insert mode.

Deleting Lines

Suppose you've decided that “nightfall” is a rather silly
variable and you'd just as soon be rid of it. Position the cursor
on the line “var nightfall” and press the delete key, followed by
a down or up arrow. The next or previous line will now move
up to close up the space.

Note: Even if you deleted all the lines in a file this way, you
would still have the name of the file in the menu. To delete an
entire file, see the section on deleting files.

4.3 COPYING FILES

When you are satisfied (for the moment) with the file you have
created, you may want to make a backup copy or save it for
future reference. The memory area within the HHC (intrinsic
RAM) may be too small for such permanent storage; in this
case, an external storage device such as a programmable

4-4

O OO O O " 2B BP0 0 00 OO 000D

ﬁ""’l*’*’*'i‘l"."..0000'000.0000008.

meaemory peripheral (extrinsic RAM) provides mass storage in
much the same way that a floppy disk does on a desk-top
compulter.

Return to the file system and select option "2 =COPY FILE.”
After the prompt “SELECT FILE,” you will be shown the
names of all the files in the active memory space (intrinsic or
oxtrinsic, whichever was selected last):

iy
gt

Let's make a backup copy of “utility” (press “4") in extrinsic

memaory:

Select extrinsic memory (press “27):
(NI 91

You may now press CLEAR, OFF, and disconnect the

programmable memory peripheral for safekeeping. If you wish

o reedit “utility,” reconnect the memory peripheral, select

extrinsic memory (with the ‘O key), and use the COPY

command with intrinsic memory as the destination.

Note: It is a good idea to have a copy of your files in extrinsic
memory. You can then make a working copy in intrinsic
memory and, when you are happy with the results, recopy the
file to extrinsic memory.

4.4 RENAMING AND DELETING A FILE

When you call for a file and see its name in inverse
characters, you can edit that name just as you would any line
in SnapFORTH, except that you cannot have any spaces in
the new name. Before attempting to delete a file, make sure it
is In active memory by selecting its area. Let's get rid of “utility”
in intrinsic memory for now. First, select “utility” for editing. As
before, its name will appear in inverse characters, signifying
that the file is indeed in memory. Now press the delete key.
and immediately press the down arrow. Return to the file
system and you will see that “utility” is no longer there:

bl FLLE

4-5

4-6

i

o> > ™ = P T T P > P T T 2T " P

™ ™ 0O & % 2 %> 000N

wm

———

00&000000000.0..000boooosoooooaat

CHAPTER 5: WORDS & THE
DICTIONARY

As you have already seen, words are essential to the
workings of SnapFORTH. All commands in SnapFORTH are
accomplished with words, each of which has a very specific
meaning and must be used in the right place in exactly the
right order. Where do these words come from? Basically, from
you. A certain number of words are provided for you in the
HHC itself. More are provided in the SnapFORTH capsule,
and the rest are written by the user. SnapFORTH is
extensible, in other words; you are given the basic tools with
which to create new words or delete old ones, and then you
are left with the freedom to define only those that suit your
OWn purposes.

As with any language, spoken or computed, words can be
combined to form more complex sentences. It is to your
advantage to plan ahead when you define words so as to
include words you have already defined. This is called
"modular programming,” and besides being logically and
aosthetically pleasing, it saves computer space. Be alert for
examples of this as you learn about defining words.

5.1 PRINTING MESSAGES

Bofore learning to define new words, you need to learn a
different type of print command. The dot you were using to
print numbers from the stack is one type of print command; to
print messages requires a different type. Perhaps you will
dofine a word called “greetings” which will respond with the
lyped message:

lo make SnapFORTH print this message, it must be
surrounded by special print commands:

(T I I S R 1])

Nolice that the message is preceded by the SnapFORTH
command . (“dot-quote”). Furthermore, a space separates
the ." from the “hello”. This space is necessary for
SnapFORTH to recognize the beginning of the printed
message, but it does not move the message over one space.
Notice also that this space is not required before the end
quotation mark.

5-1

5.2 DEFINING WORDS

The simplest kind of word neither requires arguments from the
stack nor leaves any results on the stack. The word
“greetings,” described above, is an example of such a word,
Let's see how we might define it.

Definitions always start with a colon (:). The colon’s meaning
is that a definition follows immediately; like any other word, it
is followed by at least one space. The next element must be
the name of your new word. So far you have entered the
following:

o L
Since your message starts on a new line, you must first tell
SnapFORTH tc wait and start a new blank display line. You
already know the word that performs this function,“cr.” Next,
you want to tell SnapFORTH what the printed message will be
and surround this by the print command you have just
learned. Your definition now looks like this:

i i i it .

The last instruction to be added is a semicolon (;), which lets
SnapFORTH know that the definition is over. Again, the
semicolon is a word and must have a space before it. Your
final definition looks like this:

R R Rk N S
When you press the ENTER key, SnapFORTH will compile
the new definition, responding with fts usual “ok.” (By
‘compile,” we mean that SnapFORTH has now stored the
word in its dictionary and will execute the word when you ask
for it again.) Now when you ask for “greetings,” SnapFORTH
will type the message as you intended.

5.3 VLIST

All the words in SnapFORTH, including the one you just
compiled, exist in a long list called, naturally enough, a
dictionary. You will often want to check this dictionary to see
whether a particular word has been defined yet. To do this,
simply type “vlist’. The name of the most recently defined
word is displayed; press any key to display the next word.
Press LOCK, right arrow to scroll the words in your dictionary
on the display. Your vlist may look like this:

nﬂﬂr“t‘t‘r‘O"D.‘D"ﬂ’ﬂﬂﬂﬂﬂﬂﬂ.“”"ﬂﬂﬂﬂﬂ

‘tooaoooooo_oo'.oooaouuuousuaa¢oaoi

Notice that the word most recently defined (“greetings”)
appears lirst—at the “top” of the dictionary. In many ways, the
dictionary works like a special kind of stack. New entries are
always stored at the top of the dictionary and are removed in
that order.

5.4 FORGET

Perhaps you dont like a word you have just defined. You
might have a better one now, or you might have found a lot of
errors and just want to start over. Maybe you were just
experimenting anyway and never intended to keep the word
permanently. The word “forget” is for you; your word will be
erased from the dictionary with this command. Why don’t we
get rid of “greetings”:
Fopiet @rast beds ok

Check to see that greetings no longer appears in the
dictionary:

3 Tk .
Special note: When you pick a word and ask SnapFORTH to
forget it, it will erase that word and every word defined after-it
as well. In other words, if you wish to add a variable to the TSA
“working” in the file “utility” (see Chapters 3 and 4):

ok
(P I A
The command “forget working” erases “snowfall” and “rainfall”
as well, Words that turn out to produce errors can also haunt
you later; be sure to forget all of them.

5.5 MORE DEFINITIONS

This section introduces the SnapFORTH command “random,”
which will be used within other definitions. Carefully type the
lollowing lines into the file “utility.” Don't worry about what they
mean just yet.

aw

EnForoR 3

5-3

If you have extrinsic memory, use the copy command from the
file system to save a backup copy of “utility.” We will shortly be
giving you other useful words to add to “utility.”

Next, load the utility file into the dictionary. Don't forget to
“forget” the previous TSA ‘working™ if it is already in the
dictionary:

If you make a mistake, “forget working,” reedit “utility,” and
“load utility” again.

Now test “random” by typing:

)

L8 rancom

After you press ENTER, SnapFORTH will print a number
between 0 and 9. (Specifically, n random will generate a
random number between 0 and n-1, replacing n with the
number.) Try this several times. The number printed will vary
in an apparently random manner.

Sometimes a word does not need arguments on the stack but
does leave results on the stack. For example, such a word
might use the command ‘random,” which generates random
numbers. The word “random” can be used to simulate chance
events, such as you might find in gambling. You can define the
word “dice,” for example, which will show you the numbers on
top of two dice each time you throw them. Think about your
problem for a minute. You must generate two random
numbers between 1 and 6; it will not do to generate 0, as
might happen with “random,” so you must think of a way to
eliminate this possibility. Here is one way:

6 puts 6 on the stack.

generates a number between 0 and
5, replacing the 6 with this number.

1+ adds 1 to the number you just
generated; instead of a number from
0 to 5, you now have a number from

1to 6.

prints the resulting number.
6 puts another 6 on the stack.
random generates yet another random

number between 0 and 5.

g

DL R N

™80 000 OO0 0000

AR B BB R R R EEEEEERENEEREREER.

14 adds 1 to this number.

prints this number.

ends the definition.

lhe word m“di-r.;e" can be embellished by adding a message
with the print command you learned earlier (.%):

LWL

When you compile dice a second time, SnapFORTH will warn
you that you have used a word twice with the message:

Fl D TR TR B ‘
You can still proceed with your second definitiorj; both will
appear in the vlist, but only the most recent definition (the

second one) will actually be used when you call for it. Try your
new word dice to see what you get:

T. bR of R oios A])
If you now forget dice, only the most recent definition (and any
words defined after it) will be forgotten:

e

el 1o
Another kind of definition both requires arguments on the
stack and leaves results on the stack. The arithmetic
operators you learned in chapter2 (+, -,) are examples_ of
this type. A more complex example might be a word like
‘dozens,” which will take a number you provide and tell you
how many dozens are in it with what remainder. Like the
preceding definition, this one will incorporate a message. After
you lype a number and “dozens,” you want SnapFORTH to
start a new line, print the number of dozens followed by the
message “dozen plus" and then type the rem_amder._ _You
already know all the words necessary to create this definition:

el

Be sure that you can identity the purpose of all the elements in
this definition:

: dozens

12 puis 12 on the stack.

/mod divides the number you specify by 12

and puts the quotient on top of the
stack with the remainder second, re-
placing the original number.

cr starts a new line.

prints the top number on the stack,

which is the guotient.
.* dozen plus” prints the message “dozen plus.”

prints the second number on the
stack, which is the remainder.

ends the definition.

Now try out your new problem-solver:

5.6 MULTIPLE DICTIONARIES

All of the words you have been creating have gone into the
dictionary “myown,” which you created in Chapter 1. A
dictionary is a file too, consisting of all the words you have
defined in it. When you reenter SnapFORTH from the main
menu, it will display the names of all the dictionaries currently
stored (in this case, we only have “myown”) and give you the
option of choosing one. When you choose a dictionary, all the
words in it will become available to you for use. You can create
separate dictionaries with option “1 = NEW FILE” at the start
of a SnapFORTH session.

To “empty” a dictionary of all words, select the dictionary from
the SnapFORTH menu and use vlist to determine which word
immediately precedes the word “FORTH.” This is the first
word in the selected dictionary. Forgetting this word forgets all
the words in the dictionary.

"

T O 60 8 O 00 OO0 0O 068 8OO0 0 000D

" ™

"

o 2 - 9 % = % ™ »

LA A R B AR R R R R EBREEREERE N EEEEEEEEENENEEEEEE D

TABLE 5.1 WORDS AND THE DICTIONARY
ACTION

Creates dictionary entry for the
word <-name>-. Begins
compilation.

WORD STACK

name-= ...

Terminates dictionary entry for
the word <<name=. Stops
compilation,

Prints text cceecee (up to). If .-
is included in the definition of a
word, printing will take place
when the word is later executed.

Meeeeec”

(—>)

lorget . <name>= ... Deletes the word <<name= from
(—=>) the dictionary. Also deletes all
words added after <name>.
vlist (—=) Lists the words currently in your
dictionary, starting with the one
most recently defined.

(This command must be added to ShapFORTH. See the text.)

Returns a random number
ranging from 0 to n-limit minus 1.

random (n-limit—=n)

5-7

5-8

mnnnaqfnnnnooanronnnoon-v

O 2 2 2 P B OROP A ™

v

'*DQQOOOOO'O..OO..UO..009.00000

CHAPTER 6: FLOW OF CONTROL

Now that you have learned how to create simple definitions,
you can a) build into them ways to make decisions based on
criteria you supply and b) repeat operations within limits you
specily. These are called flow of control operations: they can
only be used within definitions.

6.1 DEALING WITH DECISIONS

Many games, for example, use structured operations. Games
involving dice often have elaborate branched structures which
depend on the throw of the dice at each branch. Think of the
decisions involved in playing craps. Your first throw of the dice
could be a 2 or a 12 (snake eyes or boxcars), in which case
you would lose. Or it could be a 7 or an 11 (craps), in which
case you would win. If neither, the sum of the throw would be
recorded and you would continue to throw. If the throw
oqualed your previous sum, you would win; if it equaled 7, you
would lose. If neither, you would keep rolling until you won or
lost. Programming SnapFORTH to play craps would first
involve checking the sum of the dice for 2 or 12, 7 or 11, and
deciding what to do based on the result. SnapFORTH would
save the result, if neither condition were filled, and continue
rolling the dice until certain other conditions were filled,
checking each time before rerolling. Each time it checked it
would get a “yes” or “no” answer on which it would base its
noxt action.

In executing the decisions and limits you establish in your
slructure, how does SnapFORTH deal with yes and no
answers? By means of “logical operators” or “truth functions.”
Belore you proceed with flow of control problems, you must
understand how these operators work and how they differ
from each other.

6.1.1 Logical Operators

All the decisions that SnapFORTH makes are expressed as
lrue or false, yes or no, zero or non-zero. Logical operators
allow you to “test” numbers for various properties—same,
different, above zero, below zero—and always return an
answer of true or false.

Bolore we begin, let’s define a word which will print “true” if the
value on lop of the stack is true and “false” if the value is false,
removing the value from the stack in the process. Type the
following (don't worry what it means just yet; it will be

6-1

explained below):
T -

Any non-zero number is considered true; zero is the only
number that will give you a false response. .

The operator “and” can be used to test whether the two top
numbers on the stack are both true.

Note: The word “and” is a “bitwise” word, so it is not enough
for the numbers to be non-zero, as in truth; they must both be
ones. Since most logical operators leave a zero (false) or a
one (true) on the stack, this is seldom a problem:

1 feprigaam e g
i 3

Lt b Fa ok
will give a true response if either of the
arguments is non-zero. Try 1 and 0 again:

| A I TR T T R
o [

AT T =y

2.and 3 would yield the same answer:

203 or bruth true ok
because at least one argument is non-zero. The only way to
get a false response would be to try two zeros.

Incidentally,“or” is a “bitwise” “or.”

The commands << (“less than”) and > (“greater than”) will test
two arguments for their value relative to each other. The first
argument entered is compared to the second. Try 2 and 4:

SnapFORTH is telling you that 2 is indeed less than four. Try
the greater than symbol:

o , e R
LI | O N CCT R T O R S | e 1
P] - LRV I A P

Two is not greater than 4.

The word = (“equals”) will test for the equality of two
arguments. Test this with 1 and 3:
3= srunh fal i |

A

Gﬂl“(‘ﬂl‘(\nﬂﬁﬂﬂﬂl‘l‘ﬂﬁﬂﬂﬂﬂﬂ’

T R EEREREER

ooeooooootoooo..ooooouovtooooobbb

nnd 3 and 3:

S N L T A T Y
Tho word " <= " (“unequal”) will test for inequality, leaving a 1
on the stack if they are unequal. Try this out with some pairs of

numbers:

ot bt
et b Fotaes ok

I'he word 0 = is tricky at first because it reverses the answers
you have come to be familiar with. This word will tell you
whether an argument is equal to zero; if it is, your answer will be
lrue. You will want to be able to do this in future flow of control
operations when it is necessary to check for the presence of a
zero on the stack. See how this works:

Bopet b P
I'he operator 0< will tell you if an argument is less than zero—a
negative number. Negative numbers, then, give a true re-
sponse; numbers 0 and above give a false answer.

o] St b

Finally, SnapFORTH
see whether its argument is one or greater:

(SR AT A T oy
ncludes the command 0> , which tests to

1oLt b ik
Tt by
Tt b

6.1.2 Conditional Structures

Within conditional structures, SnapFORTH will make decisions
according to criteria you specify and perform operations based
on those decisions. SnapFORTH first looks at the argument
(condition) on top of the stack and examines it for its truth value;
il true, it does one thing, if false, it does another, and then it
moves on. The operations SnapFORTH performs could be
anything; if an argument is true, you could command
SnapFORTH to print the word “true” (or the word “panamahat”)
or store the value at a certain address or multiply it by
6...anything you want.

6-3

The form that this structure must take is strictly ordered,
however:

Be sure you know what is happening at each stage of this
structure:

: definition
condition you enter the starting information at
this point plus any manipulations that
will lead to a zero (false) or non-zero

(true) result on top of the stack.

if SnapFORTH tests the condition for
truth value. If true, it goes straight on
to “one thing.” If false, it checks to
see if there is an “else” (there may
not be) and executes it if there is. If
no "else” is present, a false value will
make the structure skip to “then.”

one thing SnapFORTH executes the command.

else if the condition was false,

SnapFORTH skips to this point.

SnapFORTH executes this second
command rather than the first.

after SnapFORTH has considered the
“if/else” choice, it stops the process.

other thing
then

move on SnapFORTH moves on to other

commands (if any).
Notice that the “else” section is optional: if the condition turns
outto be false, you may want SnapFORTH to ignore it entirely,
in which case SnapFORTH would simply move to “then” and
end the structure.

The word "truth” that you have been using up to now is a good
example of a conditional structure. Look at the definition again:

Examine this definition one step at a time:
s truth

(condition) the condition, in this case, is the
argument to truth, which is assumed

to be on the stack.

6-4

OO0 ™" 00000006068 0060000

T R Y

O"OOO0.0.D.UUODGUUUOOOOOOOU‘

3 099

I SnapFORTH tests the condition for
truth value. If it is true, it will execute
whatever appears after “if": if it is
false, it will proceed to "else” or
“‘then”. The condition is removed from
the stack.

" rue” if the condition was true (non-zero),

SnapFORTH prints “true”.

olse if the condition was false (zero),

SnapFORTH comes to this section...

" false” ...and prints “false”.

then ; the structure is finished.

A more complicated type of “if...else...then” structure involves
two or more mutually exclusive choices. It is quite possible to
order each choice independently, that is, to have SnapFORTH
look for one condition, execute a command you specify, then
look for another condition with a new operation, and so on.
However, with mutually exclusive choices, the first
"Il...else...then” structure limits the need for further checks. For
oxample, it you are checking to see if a valueis 5, 3, or 7 and the
value happens to be 5, there is no need to ask whether itis 3 or
/. For maximum efficiency, you would want SnapFORTH to
skip the next two questions. If you use three independent
"Il...else...then” structures, this economy is not possible.
Iherefore, you should learn to use a “staircase” or “case”
structure for these situations. If you diagrammed the process
SnapFORTH uses to implement such a structure, it would look
something like this:

11 (yes? then execute following command and go to
oulermost ‘then')

el ((no? then try second question)

11" (yes to second question? then execute second
command and move to innermost ‘then’)

vl (no? then execute third command and move
to innermost ‘then*)
I hwrn (stop innermost structure)
Il (stop outermost structure)

An interesting example of such a structure might be the word
“.dice." This word, like the word “dice” that you defined in
chapter 5, throws dice but also checks them for certain
combinations—snake eyes (1 and 1) and boxcars (6 and 6). If
the answer to either of these checks is 1 (true), it will tell you by
printing "snake eyes” or “boxcars.” If neither is true,
SnapFORTH will do nothing except print the throws

6-5

themselves. The throws of the dice will be left on the stack for
possible future use.

As you think about how to order your definition of .dice |
remember that many of the operations (arithmetic operators,
logical operators, “if”) that you will perform on the numbers you
generate will destroy these numbers. You must think ahead of
time about duplicating these numbers so that they will not be
lost. Also, it is a good idea to form the habit of ‘commenting” on
your definition. These comments will include notes on what is
added to and left on the stack and summaries of what each
section of the definition does. Comments should begin with the
word ((“paren”). Because (is a SnapFORTH word. it must be
followed by at least one space.

In addition, you can use a simple backslash (\) to simplify the
addition of comments. Anything to the right of a backslash is
considered to be a comment. If the comment occupies more
than one line, a backslash must start each new line.

Now try formulating a definition based on a new version of
“dice.” It might look like this:

Check to be sure you know the purpose of each word in the
definition:

. .dice
dice generates two random numbers

between 1 and 6 and places them on
the stack.

2dup copies the two numbers; now you
have two sets of two random
numbers, each in the original order.

cr starts a new display line.

prints the first set of numbers,
destroying them.

6-6

P
:I’
c{’
C[’
c"
¢ | B
er"
¢ ®

DO OO O OD OO NNAOEE L as S TE s o
..'..'.."‘.'."..'."U“U‘

——, ——— —

2dup

dup

'snake eyes”
drop

else 12

if

Mboxcars”
then then

creates another duplicate pair of
numbers.

adds the top two numbers, destroying
them and leaving the sum on the
stack.

makes a copy of the top number (the
sum).

checks to see if the sum is equal to 2;
if yes, then a true condition is placed
on the stack, destroying the sum and
the number 2.

removes the condition from the stack,
checking to see whether it is true. If
yes, it executes the next commands
(skipping “else,” if it appears) and
moves to the outermost “then.” If no,
it proceeds to “else.”

prints this message.

drops the top sum from the stack,
leaving only the original throw.
SnapFORTH now proceeds directly to
the outermost “then.”

checks the sum to see if it is equal to
12, destraying the sum and the 12 in
the process.

If yes, the next command is executed
and SnapFORTH moves to the
innermost “then”; if no, SnapFORTH
moves directly to the innermost
“then.”

prints this message.

stops the innermost and outermost
structures,

stops the definition.

6-7

Now try out your new word and add two dots each time so as to
clear the stack:

6.2 LOOPS

Loops come in two basic types: finite and indefinite. Finite loops
are set up to repeat a given number of times; indefinite loops
continue until a certain condition is fulfilled or a given event
occurs, regardless how many repetitions this takes.

6.2.1 Finite Loops: “do...loop.”

This control structure will repeat a given set of commands as
many times as you specify—from an initial value to an upper
limit.

For SnapFORTH to perform the usual stack operations and
printyour commands as well as keep track of how many times it
has repeated a given operation, another type of stack is
required. What we have been calling the “stack” is correctly
termed the “parameter stack”; the new stack we are introducing
now is usually called the “temporary stack” (“T-stack”).

One of the simplest kinds of finite loops is one that will print a
series of numbers between limits you specify. You could decide
to print a list of numbers from 1 to 10, for example. To do this,
you will need to do the following:

1. Name the definition.

2. Set up the initial loop value and upper limit.

3. Use “do” to move these loop parameters to the T-stack and
start the loop.

4. Move a copy of the top number on the T-stack, called the
“index”, to the parameter stack.

5. Print this number.

6. Use "loop” to add one to the index on the return stack.
If the index is now equal to the upper limit, “loop” will auto-

matically remove the index and upper limit from the T-stack
and exit.

Otherwise, the loop will be continued (at step 4).

6-8

P " " 2™ &§ O OO0 00 000 & O 0000 OO

OO ®T2APAEN
P PP IPPDPDPIOVODIIPPDIPI VPO O OO OOV T OOVODOOPPOPPETY

L\

For aesthetic purposes, it is also useful to start a new line
belore printing each number, by adding a “cr’, to make a
vortical list. Your result should look like this:

Pk e b
O L :
Why is your limit 11 instead of 10? SnapFORTH will stop
executing the commands within the loop when the current
number on top of the T-stack (the index) equals or exceeds the
upper limit. Always remember to add one to the limit when
setting up a list like this.

q i

Just to check, walk through the definition to be sure you know
what each element does.

: numberlist
11 puts 11 on the parameter stack.
f puts 1 on the parameter stack.

do moves the loop parameters to the T-
stack and starts the loop.

cr starts a new line to begin the list.

i copies the index from the top of the
T-stack to the parameter stack.

prints whatever is on the parameter
stack.

loop ; increments the index by 1. If the in-
dex equals 11, exits the loop and re-
moves the index (11) and the upper
limit (11) from the T-stack. Otherwise,
starts the process over.

Iry your loop and see what you get:

ke it

'I
Ll

A further variation on the “do...loop” procedure involves use of
the word "+ loop.” Instead of incrementing the index by one
each time the loop repeats, you can determine the increment

6-9

T .

_

¢ I e
.) : 1 "', 8 LA f f' i ;u'!: T d _I
yourself. For instance, you could do the list from 1 to 20 by ¢ > loop, In Iln-jmae, j"is themdgx of the first die; “i” will index the
e . innormost loop (the second die).
threes. The definition would be only slightly changed: ¢ |9 |
vl et B 1 e I Now you are ready to write the definition for “odds”:
Pl BEE I A B IR L Y S - | U8
o A bl § ook ¢ I K Geeds s o b b e
Note that the increment should immediately precede the ¢] L L
“+loop.” Your results will now look like this: l rob e & 3 looP 3
. é L) S . [S S TR T}
I;'ifn-il"t'll::flii' s I o bk El + o
. 0 0 ST V1 [B Y B = P B
i (R0
7 « } K ke
L | e
L ¢ @ e s L G I8 '
] I > L T A
Le ok < ' Hoveral elements of this definition are worthy of note:
A more complicated kind of loop is a “nested loop”™—a loop 2 ' X
i . ; , C :odds
within a loop. One thing such a structure could do is take a list I
and compare each item in that list to all the items in a second e ® 0 swap puts the count (0) on the stack and
list. One word that uses such nested loops is “odds,” which . I ' SWAPSs it with the sum you are look-
examines probabilities in dice-throwing. Taking the sum of the € I ing for so that the sum is again on the
numbers on the two dice, it is clear that some sums will occur ¢ B top of the stack. The count (0) is the
more often than others because there are more combinations I number of combinations found so far.
of numbers that can equal them. A sum like 2 could only be ¢ ' 9 This count will be incremented by the
formed one way (1 + 1); on the other hand, 7 might be formed I . number of possible combinations you
several ways. The word “odds” will tell you how many possible ¢ I find later.
ways there are to make a given sum out of the 36 possible oy _ ,
combinations of numbers (6 x 6) on the two dice. Y | 71do Ef%;[?tglI‘tileEJ?EEFHPIE;??‘?’EE|§D?: and
The word “odds” must do several things, then. It must first € I » _
compare a sum that you provide to every possible sum of dice e @ /71 do establishes the parameters of and
values. The first time it finds a combination that leads to the | " starts the innermost (“i") loop
same sum as yours, it will put a 1 (true) on the stack. Each ¢ _ : :
successive equality it finds will increment this stack number by | ® dup AL LR s T
one. The final count on the stack will be the total number of « |] takes the first die (") and second die
possible combinations. After you print this, there will be nothing P) (“i") and adds them.
left on the stack. l e |0
. | ‘ -~ checks if this is the sum you are look-
How do you use nested loops in this word? You have two lisls, « | ing for (true or false).
one for each die, each from 1 to 6. You must compare a 1 on the ¢ |® :
first die to every possible number on the second die, then a 2 1o | If tests the condition and removes it
every possible number, and so forth. You cannot increment tho - l i from the stack. If true, cc}ntlnugs with
first loop until you have completed the second loop entiraly, > the next statement. If false, skips to
Therefore, the second loop is “nested” inside the first. To hand: " I the nearest “then”.
le two lists at the same time, you will need one additional 2
command. The word “i,” which you already know, copies tho ~ * I swap 1+ ﬁ;’” EPEUTF Sﬁfghﬂ!“d cnuntﬁ T‘dds f1 ﬂtf
Index of a loop to the parameter stack for manipulation; if you G| ® te f{ﬂ Ll AR @il e
have two loops being operated on at the same time, howevor, l AL,
you must have another command to get at the index of the i1 « I ® swap moves the sum you are looking for
loop, which is put on the T-stack first and is therefore further - back to the top.
down. Stack manipulation commands do not work on the T- % I
stack. The command “j" will work for this second oulermoul C I
e 1
6-10 |
c

then ends conditional structure.

loop loop ends " and ‘" loops.

drop cr drops original sum and starts a new
line,
prints number of possible combina-
tions.

'out of 36 prints this message.

ways”

, ends definition.
What do you get when you try “odds”?

AT

S T | T e

6.2.2 Indefinite Loops

Indefinite loops also come in two types: those with a test
performed at thelb 1l f a loop (“begin...until”) and those
with a test performed a lend] of the loop
("begin...while...repeat”). Because this latter kind of loop waits
to perform the test, it always executes at least once.

6.2.3 “begin...until”

This loop will repeat a given operation until a certain cond ition is
“met"—that is, until it sees a true (non-zero) condition on the
stack. Between the words “begin” and “until” are words which
manipulate the stack contents and ultimately lead to this true or
false result. The word “until” removes this condition from the
stack and either repeats or goes on.

An example of a task this loop might perform is something we
will call “doubles,” which will “throw dice” (generate random
numbers) until it gets doubles and will then stop. The word will
first announce its intention (by printing “let's throw doubles™)
and then start generating and printing pairs of random
numbers. After each throw it will check to see if the two
numbers left on the stack are equal; if yes, it will stop, and if no,
itwill return to the beginning of the loop. Here is the definition ol
doubles:

6-12

A A B B AR EEREEEEE A E EE EERE EEREREE R

>
..'..’
‘o

|
|
|
|
|
|
I
I

¢
¢
¢
¢
¢
v
.
¢
b
C
G
-
-
€
¢
3
3
L
€
G
(&
"
“
L)
.
“
“
w
«
«
€
c
L~

8

Nole thal the message is not included in the loop. If it were, it
would be printed each time a new pair of numbers were
goneraled; all you want it to do is print at the beginning of the
soarch, Now try out “doubles”:

NV VN Y v TR e
.".'.

' | il

W |
el | e,

ol T

T N 5 o vt w] O
A slightly more complicated task for “begin...l.!ntil" to
accomplish is to check the throw of the dice to see if their sum s
an even number. See if you understand all the elements in the
definition:

g L TR oo Lk B L hieow s e D
Laniar | by
N el i
o el . . 2P b 3 mood B
LAF 1| .
o EEEy R Rt s i e A
Note that "checking for evenness” can be expressed as ‘2 mod
0~ "—that is, dividing by two and checking to see if the
remainder is 0. Now try out your new definition:

R i

Fanes oty
i B

o

.::|. L1

gtErr L hrow bE 4 4 ok
It's a good habit to check the stack after you define a word to
see whal is left there. Type a new word, “.s ,” to display the
contents of the stack without destroying them:

N G R v

Where did all these numbers come from? They must be all the
dice throws that were rejected, the ones that added up to odd
numbers. The definition works, of course, but you don't want to
clutter up the stack with rejected numbers. The parameter
stack is quite small, and if it “overflows,” you W|!I g:ei an error
message. Something should be built into the definition to drop

these numbers.

then ends conditional structure.

loop loop ends " and ‘" loops.

drop cr drops original sum and starts a new
line,
prints number of possible combina-
tions.

'out of 36 prints this message.

ways”

, ends definition.
What do you get when you try “odds”?

AT

S T | T e

6.2.2 Indefinite Loops

Indefinite loops also come in two types: those with a test
performed at thelb 1l f a loop (“begin...until”) and those
with a test performed a lend] of the loop
("begin...while...repeat”). Because this latter kind of loop waits
to perform the test, it always executes at least once.

6.2.3 “begin...until”

This loop will repeat a given operation until a certain cond ition is
“met"—that is, until it sees a true (non-zero) condition on the
stack. Between the words “begin” and “until” are words which
manipulate the stack contents and ultimately lead to this true or
false result. The word “until” removes this condition from the
stack and either repeats or goes on.

An example of a task this loop might perform is something we
will call “doubles,” which will “throw dice” (generate random
numbers) until it gets doubles and will then stop. The word will
first announce its intention (by printing “let's throw doubles™)
and then start generating and printing pairs of random
numbers. After each throw it will check to see if the two
numbers left on the stack are equal; if yes, it will stop, and if no,
itwill return to the beginning of the loop. Here is the definition ol
doubles:

6-12

A A B B AR EEREEEEE A E EE EERE EEREREE R

>
..'..’
‘o

|
|
|
|
|
|
I
I

¢
¢
¢
¢
¢
v
.
¢
b
C
G
-
-
€
¢
3
3
L
€
G
(&
"
“
L)
.
“
“
w
«
«
€
c
L~

8

Nole thal the message is not included in the loop. If it were, it
would be printed each time a new pair of numbers were
goneraled; all you want it to do is print at the beginning of the
soarch, Now try out “doubles”:

NV VN Y v TR e
.".'.

' | il

W |
el | e,

ol T

T N 5 o vt w] O
A slightly more complicated task for “begin...l.!ntil" to
accomplish is to check the throw of the dice to see if their sum s
an even number. See if you understand all the elements in the
definition:

g L TR oo Lk B L hieow s e D
Laniar | by
N el i
o el . . 2P b 3 mood B
LAF 1| .
o EEEy R Rt s i e A
Note that "checking for evenness” can be expressed as ‘2 mod
0~ "—that is, dividing by two and checking to see if the
remainder is 0. Now try out your new definition:

R i

Fanes oty
i B

o

.::|. L1

gtErr L hrow bE 4 4 ok
It's a good habit to check the stack after you define a word to
see whal is left there. Type a new word, “.s ,” to display the
contents of the stack without destroying them:

N G R v

Where did all these numbers come from? They must be all the
dice throws that were rejected, the ones that added up to odd
numbers. The definition works, of course, but you don't want to
clutter up the stack with rejected numbers. The parameter
stack is quite small, and if it “overflows,” you W|!I g:ei an error
message. Something should be built into the definition to drop

these numbers.

That something is the “detour” section of the structure, called
“while.” It functions like “else” in the “if...else.. then” structure; it
performs a second command whenever the condition does not
fulfill your criteria. This command could be to drop the offending
numbers, to print out an explanatory message, or to perform
any other task.

There are a few notable differences in this new structure, called
“begin...while...repeat.” Mostimportant, the test is performed at
the beginning of the loop. The “while” section will be executed
(and the loop repeated) only if the condition puts a true
condition on the stack. Like “begin...until,” the condition is
always removed from the stack.

You can use “while” o dispose of the unwanted (odd) throws in
‘evens.” You might remove the offending numbers from the
stack by printing them; you might also simply drop them. In this
case, you will print them with an explanatory message. Study
the following definition carefully:

s O throw oics unt il % hro i &
ST 0
o ol
T v A Y P I S
P, _
GEw T EEr b hroms fwm 3

Be sure you understand what is on the stack at each point. After
the “2 mod” section, there is either aone or a zero on the stack,
If it is one (meaning an odd number), the “while” section will be
executed and the loop repeated. Ifl zero (meaning an even
number), the structure will skip the ‘repeat” section and print
the message following it.

Now try out the definition and check the stack to see if anything
is left there.

o EMFTY i
It works! Congratulations on fixing your first bug.

6.3 ANOTHER DUP

Because the word “loop” (or “+loop”) lies at the end of tho
“do...loop” (or “+loop"} structure, you will always execulo n

6-14

ﬂﬂﬂ”'l"l“l’l“t‘\ﬂ(‘?“"/‘*r‘_.“ﬁnn.ttutmmm&m

S U P e P EOIOIIOSOOPOSTE

5}

v e

loop al least once, even if the initial lower limit already equals
(0r oxceeds) the upper limit:
s, i looP s ook

lo prevent this, you can usually rewrite your loop so that if the
initial lower limit of the loop is zero, the loop is skipped. For
example, the following word “countup” counts (and prints) up to
whatever limit you push on the stack, starting with one. If the
limit is zero, it does nothing:

el i -

R N W A N ;
: (DR = S B

_ 1:_;|1~.|j!11‘ e iF

Notice the need for an “else” clause to “drop” the unwanted
initial zero. This construction, and its variations, are so
common in SnapFORTH that a special command Is provided 30
optimize them. This command, called “?dup” (*query-dup”),
duplicates the number on top of the stack, provided that it is not
a zero. The previous example can now be simplified:

LA L
T

H*E 5
O D B

ke

BT o 1 8 S O N S

Bl oozt ok o
The word “?dup” can be used in other flow of control situations,
such as “begin...repeat.”

"
T

6.4 THE RETURN STACK

You should now know how to use the parameter stack easily
with “drop,” “dup,” “swap,” and so forth. You have alsc,J‘ learned
that another stack (the T-stack) is used by “do...loop” 1o keep
indices and limits. You can also use a third stack, 1Pe “return
stack,” with the SnapFORTH words >r (“to-r"), r (r"), and r>
(“r-from”). The command >r removes the top item from the
parameter stack and pushes it onto the return stack. The
command r> removes the top item from the return stack and
pushes it onto the parameter stack. These commands should

6-15

only be used within definitions. For example, one way to swap
the second and third item on a parameter stack is this:

il

wolk

P 1 & ik (instead of 32 1)

The command “r” copies the item on top of the return stack and
pushes it onto the parameter stack. A word such as “doit,”
which adds 3 to a number and multiplies the result by itself,
would use all three return stack commands:

Y Tl 1.

FLITR I A S T L B
2oodoit . 18 ok
' This is useful if you need a number several times in a definition
but do not want to keep it on top of the parameter stack. Also
remember to drop any numbers you push on the return stack

before ending a definition (using the sequence “r> drop” as
necessary).

6.5 FINISHING EARLY

6.5.1 Leaving a “do...loop”

What do you do if you are in the middle of a “do...loop” and
decide that you are done? For example, suppose you are
searching an array for a certain element and have found it. Why
should you have to continue looking? In fact, you can exit a
“do...loop” at any time with the command “leave.” “Leave” sels
the upper limit of a loop to its current index (the index is not
changed). When you reach the end “loop” or “+loop,” you will
exil the loop. For example:

Fomarly 166 3
cho OB =
T
& | -
T by k
Tooi 8 ol ¥

LEE R R S W e N
When “i” equals 5, you exit the loop via “leave.”
6.5.2 Exiting a Word
SnapFORTH also provides for immediately finishing the

execution of a word with the command “exit.” “Exit” is especially
useful if you encounter a condition while executing a word

6-16

>

ia\ﬁ’@frtcacttoont.ﬂﬂrfr-rﬁon'--‘*'ﬂ*

o000

b T R A A A __ a4, AL AL B W) A
T T T PN MOeE ST oo S com

A R R R EEEEEEEE E E E R EEE R EEEEEE Y

which makes executing the rest of the word pointless. For
oxample, you may be deep inside your flc_mw of control structure
whaon you delect that you are about to divide by zero. What yog
would like to do is to print an error message and exit the word:

W '::".,“..:il:::‘ nowon
[

iFon ol
R S A

LI 3

K T 4

e
oo e DI

1. Fipy

LA =T
U =T
(TR

Be sure to clear the parameter stack and return Stacb b(_ezo_re
you “exit.” You must “leave” a “do...loop” rather than “exit” it.

6.6 CASE STATEMENTS

“Case” statements resemble “staircases” of dependent
“if...else...then” clauses, such as we have seen in section 6._1 2.
Case slatements are easier to read than multiple
“if...else...then” statements, especially if there are more than
two dependent clauses.

The case structure begins with the word “docase” and ends
with the word “endcase.” Each dependent clause within the
case begins with a “selector” (a number), followed by the word
“case” and ends with the word “else.” If the argument that is on
the stack when “docase” is entered equals one of the selectors,
lhe dependent clause of that selector is executed, and
SnapFORTH then skips to the “endcase” word. If the argument
fails to match any of the selectors, execution will comlnue"at th%
first SnapFORTH word (if any) following the last “else

(sometimes called an “otherwise” clause). Here is a simple
example:

vombe | brambee e

I g
crgr o
R A A | s
ot B

el ss

6-17

Now try “spellnumber”: '

bbomPe] b rmbe e mero ok

LosPed D numbesr ome ol

o oEPe L Db So b

There are also ways in which to use “if” within case statements.
In the following example, for instance, you want SnapFORTH
to check the temperature of some water and display a message
telling you what form the water is in—ice, water, or steam. You

could accomplish it this way:

Wbt O foaml el
L,
et 15 AT 1 1 A ¥
ol A E".,-J_E_HH - P
M (1
e o e L e

Give “h20" some temperatures and see what happens:
~1eb b TDE ol

st P WETER ok

ol heer STEAM ok

6-18

oS .Nn &2 & & & & =

L

r“{‘ﬂﬂﬂh‘mr‘ﬂﬂ{tﬂﬂ-ﬁﬁti&ﬁn.‘

A A B E R NEE B EEEEEE N R EE EEEEE EE R T

TABLE 6.1 FLOW OF CONTROL

WORD STACK

and

O

if

else
then

do

loop

+loop

(N1 N2—>=> n3d)
(n1 n2—=> n3)

(n1 n2—=> t/f)
(N1 n2—=> t/f)
(N1 n2—=> t/f)

(n1—=> t/f)
(N1—= t/f)
(n1—=> t/f)
(tf—=>)

(N1 n2—=>)
(n—>)

ACTION

Leaves bitwise “and” of n1 and
ne.

Leaves bitwise “or" of n1 and
ne.

True if n1 is less than n2.
True if n1 is greater than n2.
True it n1 equals n2.

True if n1 equals zero.

True if n1 is less than zero.

True if n1 is one or greater.

Used in a definition in the form
t/f “if...else...then” or simply

t/f “if...then.”

It condition is true, the words
following “if" are executed (but
the words following “else” are
skipped). If false, the words
following “else” are executed (if
the “else” part exists).

Used in a definition in the form
“do...loop” or “do...+loop.” The
words within the loop will be
repeatedly executed (in order)
until the loop index (initially n2)
equals or exceeds the loop
upper limit.

If the word “loop” ends the

the loop, the index will be
incremented by 1. If the word
“+loop” ends the loop, the index
will be incremented by whatever
number is currently on top of the
stack. If the increment is
negative," + loop” will decrease
the index until it is less than the
the limit.

6-19

Now try “spellnumber”: '

bbomPe] b rmbe e mero ok

LosPed D numbesr ome ol

o oEPe L Db So b

There are also ways in which to use “if” within case statements.
In the following example, for instance, you want SnapFORTH
to check the temperature of some water and display a message
telling you what form the water is in—ice, water, or steam. You

could accomplish it this way:

Wbt O foaml el
L,
et 15 AT 1 1 A ¥
ol A E".,-J_E_HH - P
M (1
e o e L e

Give “h20" some temperatures and see what happens:
~1eb b TDE ol

st P WETER ok

ol heer STEAM ok

6-18

oS .Nn &2 & & & & =

L

r“{‘ﬂﬂﬂh‘mr‘ﬂﬂ{tﬂﬂ-ﬁﬁti&ﬁn.‘

A A B E R NEE B EEEEEE N R EE EEEEE EE R T

TABLE 6.1 FLOW OF CONTROL

WORD STACK

and

O

if

else
then

do

loop

+loop

(N1 N2—>=> n3d)
(n1 n2—=> n3)

(n1 n2—=> t/f)
(N1 n2—=> t/f)
(N1 n2—=> t/f)

(n1—=> t/f)
(N1—= t/f)
(n1—=> t/f)
(tf—=>)

(N1 n2—=>)
(n—>)

ACTION

Leaves bitwise “and” of n1 and
ne.

Leaves bitwise “or" of n1 and
ne.

True if n1 is less than n2.
True if n1 is greater than n2.
True it n1 equals n2.

True if n1 equals zero.

True if n1 is less than zero.

True if n1 is one or greater.

Used in a definition in the form
t/f “if...else...then” or simply

t/f “if...then.”

It condition is true, the words
following “if" are executed (but
the words following “else” are
skipped). If false, the words
following “else” are executed (if
the “else” part exists).

Used in a definition in the form
“do...loop” or “do...+loop.” The
words within the loop will be
repeatedly executed (in order)
until the loop index (initially n2)
equals or exceeds the loop
upper limit.

If the word “loop” ends the

the loop, the index will be
incremented by 1. If the word
“+loop” ends the loop, the index
will be incremented by whatever
number is currently on top of the
stack. If the increment is
negative," + loop” will decrease
the index until it is less than the
the limit.

6-19

Now try “spellnumber”: '

bbomPe] b rmbe e mero ok

LosPed D numbesr ome ol

o oEPe L Db So b

There are also ways in which to use “if” within case statements.
In the following example, for instance, you want SnapFORTH
to check the temperature of some water and display a message
telling you what form the water is in—ice, water, or steam. You

could accomplish it this way:

Wbt O foaml el
L,
et 15 AT 1 1 A ¥
ol A E".,-J_E_HH - P
M (1
e o e L e

Give “h20" some temperatures and see what happens:
~1eb b TDE ol

st P WETER ok

ol heer STEAM ok

6-18

oS .Nn &2 & & & & =

L

r“{‘ﬂﬂﬂh‘mr‘ﬂﬂ{tﬂﬂ-ﬁﬁti&ﬁn.‘

A A B E R NEE B EEEEEE N R EE EEEEE EE R T

TABLE 6.1 FLOW OF CONTROL

WORD STACK

and

O

if

else
then

do

loop

+loop

(N1 N2—>=> n3d)
(n1 n2—=> n3)

(n1 n2—=> t/f)
(N1 n2—=> t/f)
(N1 n2—=> t/f)

(n1—=> t/f)
(N1—= t/f)
(n1—=> t/f)
(tf—=>)

(N1 n2—=>)
(n—>)

ACTION

Leaves bitwise “and” of n1 and
ne.

Leaves bitwise “or" of n1 and
ne.

True if n1 is less than n2.
True if n1 is greater than n2.
True it n1 equals n2.

True if n1 equals zero.

True if n1 is less than zero.

True if n1 is one or greater.

Used in a definition in the form
t/f “if...else...then” or simply

t/f “if...then.”

It condition is true, the words
following “if" are executed (but
the words following “else” are
skipped). If false, the words
following “else” are executed (if
the “else” part exists).

Used in a definition in the form
“do...loop” or “do...+loop.” The
words within the loop will be
repeatedly executed (in order)
until the loop index (initially n2)
equals or exceeds the loop
upper limit.

If the word “loop” ends the

the loop, the index will be
incremented by 1. If the word
“+loop” ends the loop, the index
will be incremented by whatever
number is currently on top of the
stack. If the increment is
negative," + loop” will decrease
the index until it is less than the
the limit.

6-19

TABLE 6.1 FLOW OF CONTROL (continued)

WORD STACK

' (—>n)
[—=hj
K (—=>n)

begin

until (tf—=>)

while
repeat

(tf—=>)

?dup (n—=> n (n))

r (—>n)

ACTION

Used within a “do...loop” or
‘do... +loop.” The word “j"
leaves a copy of the loop index
on the parameter stack.

Used within a nested “do...loop”
or "do... +loop.” The word i
leaves a copy of the index of the
next-outermost loop on the
parameter stack.

Used within a nested “do...loop"
or “do... +loop.” The word “k”
leaves a copy of the index of the
third-outermost loop on the
parameter stack,

Used in a definition in the form
“begin...until” or
“begin...while...repeat.” The
words following the “begin” will
be repetitively executed (in
order) and must leave a t/f
condition on stack.

If the loop ends with “until.” the
loop will terminate when a trye
condition is left on the stack.

If it ends with “while,” the loop
will terminate when a false
condition is left, and the words
between “while” and ‘repeat” will
be skipped. Otherwise. the
words between “while” and
‘repeat” will be executed and
the loop will repeat. If you use
“while,” the test will occur before
the loop is entered. If you use
‘repeat,” the loop will always be

entered at least once.

Duplicates n if it is not zero.

Transfers n to the return stack,

Copies the number on top of the
return stack to the parameter
stack.

6-20

-

~ e .

(TR & B & B B 6 & 6 € v & & o

v 0 @

WORD
> -
s |
L leave
-
>
B
- exit
R
> docase
? case
»

2 endcase
3
-
-
k|
B
|
>
D
S
A |
.]
| D
I -
:
)
l
= °

STACK
(—> n)

TABLE 6.1 FLOW OF CONTROL (continued)

ACTION

Transfers n from the return stack
to the parameter stack.

Forces termination of a
“do...loop” or a “do... +loop” by
setting the upper limit of a loop
to its current index. The index is
unchanged. Execution continues
until the end “loop” or “+ loop.”

Forces termination of a word.
Should not be used within a
“do...loop” or “do... +loop.”

Used in a definition in the form:
docase

selector1 case words1 else
selector2 case words2 else
otherwise-words

endcase.

A selector is an expression
leading to a number. If the
selector equals the number n,
the words within the respective
‘case...else” will be executed,
and execution will continue
following the “endcase.’ If no
selector matches n, the
otherwise-words (between the
last “else” and “endcase”) will be
executed.

6-21

Now try “spellnumber”: '

bbomPe] b rmbe e mero ok

LosPed D numbesr ome ol

o oEPe L Db So b

There are also ways in which to use “if” within case statements.
In the following example, for instance, you want SnapFORTH
to check the temperature of some water and display a message
telling you what form the water is in—ice, water, or steam. You

could accomplish it this way:

Wbt O foaml el
L,
et 15 AT 1 1 A ¥
ol A E".,-J_E_HH - P
M (1
e o e L e

Give “h20" some temperatures and see what happens:
~1eb b TDE ol

st P WETER ok

ol heer STEAM ok

6-18

oS .Nn &2 & & & & =

L

r“{‘ﬂﬂﬂh‘mr‘ﬂﬂ{tﬂﬂ-ﬁﬁti&ﬁn.‘

A A B E R NEE B EEEEEE N R EE EEEEE EE R T

TABLE 6.1 FLOW OF CONTROL

WORD STACK

and

O

if

else
then

do

loop

+loop

(N1 N2—>=> n3d)
(n1 n2—=> n3)

(n1 n2—=> t/f)
(N1 n2—=> t/f)
(N1 n2—=> t/f)

(n1—=> t/f)
(N1—= t/f)
(n1—=> t/f)
(tf—=>)

(N1 n2—=>)
(n—>)

ACTION

Leaves bitwise “and” of n1 and
ne.

Leaves bitwise “or" of n1 and
ne.

True if n1 is less than n2.
True if n1 is greater than n2.
True it n1 equals n2.

True if n1 equals zero.

True if n1 is less than zero.

True if n1 is one or greater.

Used in a definition in the form
t/f “if...else...then” or simply

t/f “if...then.”

It condition is true, the words
following “if" are executed (but
the words following “else” are
skipped). If false, the words
following “else” are executed (if
the “else” part exists).

Used in a definition in the form
“do...loop” or “do...+loop.” The
words within the loop will be
repeatedly executed (in order)
until the loop index (initially n2)
equals or exceeds the loop
upper limit.

If the word “loop” ends the

the loop, the index will be
incremented by 1. If the word
“+loop” ends the loop, the index
will be incremented by whatever
number is currently on top of the
stack. If the increment is
negative," + loop” will decrease
the index until it is less than the
the limit.

6-19

6-22

-~ .

DO P e e e ¢ 6 ¢ & o L I R e N,

T O N o e A e -

b

"EEE R

X

Q0000009060600 0bbs0OLLLLLES GG

CHAPTER 7: MORE ABOUT
NUMBERS

S0 lar we have been working with the familiar decimal (base
10) humber system. In the decimal system, each digit in a
number can have one oftenvalues: 0 1 2 3 4 5 6 7 8or
9. This system seems natural to us. After all, we each have
ton lingers (and toes). When you first begin a session with the
SnapFORTH language, the numeric base is initialized to
decimal. You can return to decimal at any time with the word
‘decimal.” Computers, however, have essentially one finger
(or loe) each and count in the binary (base 2) system. In this
syslem, each digit can have one of two possible values: 0 or 1.

7.1 INTERNAL REPRESENTATION

[-ach zero or one in computer memory is called a “bit" or is
sald to contain one “bit” of information. But, practically
speaking, working with individual bits is both tedious and
confusing. Instead, computer memory is organized into
groups of eight bits called “bytes” of information. Each byte in
memory has a location or “address.” You can think of each
byle as a cubbyhole or post office box containing eight zeroes
or ones, Bul please don't confuse the address of a byte with
Its contents. The byte at address 27 could contain the number
18

/7.2 HEXADECIMAL NUMBERS

The hexadecimal (base 16) number system (usually
abbreviated "hex") lets you work with groups of four zeroes or
ones. Each of the 16 possible groups corresponds to a single
hexadecimal digit:

HEX BINARY DECIMAL

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

CoOo~NOUOEWN—=0O
O O~NOONbEWN —=O

o
o

HEX BINARY DECIMAL

b 1011 11

C 1100 12

d 1101 13

e 1110 14

f 1111 15

The word "hex” lets you work in the hexadecimal system:
clc ol 14 hey e ok

clenes frc | ks

You remain in whatever number system you typed last (in this
case, decimal); it is a good idea to finish in decimal whenever
possible. The contents of any byte can be represented by two
hexadecimal digits. Hex numbers are more readable if you
precede them with an extra zero: “0ab” instead of just “ab.”

7.3 BYTES AND WORDS

How many different patterns can you store in each byte? Well,
the smallest pattern you can store is hex 0 (decimal 0). The
largest pattern you can store is hex 0ff (decimal 255). This
makes 256 possible patterns. Each pattern can represent a
decimal integer, but it can also represent almost anything
else. For example, the hex pattern 41 can mean “A” or even
‘don’t forget to see your dentist tomorrow.” As long as

everyone agrees what each pattern means in a given
situation, there will be no confusion.

Since 256 possible patterns just aren’t enough, two adjacent
bytes are usually combined into one 2-byte "memory cell.”
One of the two byte addresses, usually the lower one, is
chosen to be the address of the memory cell. The rightmostl
byte is called the “least significant byte” and is usually found at

the lower or cell address. The leftmost byte is called the "most
significant byte."

A 2-byte memory cell can hold one of 65536 possible
patterns. This normally gives you a possible address range
from O to 65535, (With the HHC's “bank-switching,” you can
reach a much larger memory. For details, consult the
SnapFORTH Reference Manual.) The meaning of each
pattern depends on the context in which it is used. For
example, the contents of one 2-byte cell might represenl tho
address of another 2-byte cell (or single byte). This gives yoll
a possible address range from 0 to 65535. Since many
microcomputers use 2-byte addresses, they are limited 1o

65536 bytes of usable memory and are said to have a “65/¢
address space.”

[

. Y

Fa. . «® i - - - - -

) o 00 &
S 0000000000000 0¢0OLVLOLOLOLOLOLOLOEOD® PO

i‘ﬂ*"""li“'ﬂﬂ#ii-i##

[ty the way, ten bits of memory can hold 1024 different
pattorns:

o, EVEEF ocdec imo b W LERZE Ok 15
[ho number 1024 is so close to 1000 that it is usually called

“1K." You will often find that 65536 bytes of memory are simply
called "64K" of memory.

7.4 SIGNED INTEGERS

other way of interpreting the 65536 possible E—byte
:}:lllterns IS toydivide them into half positive an half n,;egatwe
integers. To accomplish this, you will have to “sacrifice” one of
wn.ﬁ 16 binary bits, giving you a reduced range from + 32767
o -32768. That 16th bit (which would have given you 65536
positive bits in an unsigned system) will now be used to mark
the number for positiveness or negativeness. If the bit farthest
lo the left (the most significant bit or MSB) is zero, then tEe
remaining 15 bits are interpreted as positive integers. If the
MSB is one, the numbers are negative integers. The largest
possible positive integer is then:

Pugee B F S ol imo] o ARl
which would look like this in binary:

v e e e B 0 S G
(This number is also often called “32K.”)

o form negalive integers, we can subtract positive integers
[rom zero:

cleges i] B - o1 0k |
Notice what the result would have been if you had typed that
In binary: Py

o R T T T T v v O 1 105010 i T R ERE ow

1150 0 e O e B .

Now you can see that -1 (decimal) equals Offff in hex. Check
and see if it's true:

o EFFFE o 1 0l

checs fw b ook . —_

1] ol 4 Ll - er

Even though you “sacrificed tha 16th b‘lt as a sign marker,
still included in any computations. This can Iea;i to strange
results if you happen to exceed the allotted 15-bit range. For
instance, if you try to create a positive integer larger than
32767, this is what will happen:

AL N TR it S
TR Py o -TEIRIED ok

clesc il ol

/-3

T

Any 2-byte number (or “single-number integer”) larger than
32767 will have a MSB of one and will be treated as a
negative number. In fact, by adding one to the largest positive
number (32767), we have “wrapped around” within the
number space to the largest negative number (-32768). In
SnapFORTH, this “wraparound” is simply the normal
consequence of having 2-byte “signed” integers and is not
considered to be an error (by SnapFORTH).

SnapFORTH actually allows you to enter much larger
numbers, but this can lead to some surprising results:

DN -2l ok

Also surprising are the results of arithmetic calculations
producing intermediate values of more than 16 signed bits:

B 1 T 3 S 1 T 0 S

7.5 RATIONAL ARITHMETIC

Many operations with numbers require multiplication by
fractions or ratios. In other words, these operations can be
done as a multiplication followed by a division. For example, to
find 2/3 of 1000, you can type

Lengin 2w 3 o L BBE ok
To multiply 20 by pi to two decimal digits of accuracy (3.14), try
ol S 15 B 1 7 R 5

For greater accuracy (3.1415) try
il 5 T I A R 1 T i S

Woops! What happened? The intermediate product of 20 *
31415 was larger than 16 signed bits, and the extra bits were

discarded.

To protect these intermediate products, you can use the
SnapFORTH operator “*/mod” (“star-slash-mod”):

ol 3l LEEEd #emoo 82 ok (the answer)
s meaidit ol ((the remainder)

This operator multiplies the second and third stack items o
form a larger intermediate product (20 31415 * vields 628300),
(This product, called a “double number,” will be discussed In
the next section.) A “/mod” is then done between tho
intermediate product and the number on top of the stack o
leave the single-number remainder (second item) and
quotient (top item) on the stack. Using “*/mod,” you are
guaranteed that your calculations will be fully accurate, as
long as the final result does not exceed the limits of n
single-number integer. The “*/mod” operator is especially

7-4

E E B EBEME B ENEEENNENENENEEERENFEEEEEEEEE T

" N H» » » & o =

y

uualul In conversions, such as feet to meter and Fahrenheit to
Cantigrado

7.6 DOUBLE NUMBERS

Homotimes even single-number results are too small. For
oxnmple, If you want to keep track of a checking account in
ponnles, you would be limited to amounts no larger than 327
dollars and 67 cents. Because of this, ShapFORTH provides
‘double-number” 4-byte signed-integer numbers and
operators. With them, you may now put up to $21474836.54
Into your checking account.

Any number ending with a comma is considered to be a double
number. To print a double number on the stack, use the word

"d." as follows:

L (L L N
i, IR 1 1 Y

ol ks

SnapFORTH actually splits the double number into two single
numbers: the most significant number is kept on the stack
above the least significant number. To see how the two
numbers divide, display the result with a conventional print

commeand instead of a "d.”:

WL b
S Tt I L el
P T | PR =

% LD I (YD e

This suggests that a single-number integer can be increased to
a double-number integer by pushing a second number over It
on the stack. Positive numbers can be extended by pushing a

zoro: negalive numbers by pushing a -1. The SnapFORTH
word which does this is “s>d” (single to double number):

o R BN R N S R E o
To convert a double number back to a single number, simply
“drop” off the most significant part:

do ok o4 ok

----- | SE A T ol S
Of course, if the double number doesn't fit the single-number
format, the exira bits will be lost.

Most of the single-number arithmetic and stack words have a
double-number equivalent. For example, “2drop” drops a
double number from the stack. These double-number words
are briefly described in table 7.1. The double-number stack
operators can also be used to manipulate single-number
numbers two at a time—for example, the phrase “over over”

becomes “2dup.”

=5

7.7 UNSIGNED INTEGERS

Sometimes It is better to use a number as a 2-byte unsigned
number [rangl_ng from O to 65535) rather than a 2-byte signed
number (ranging from -32768 to -+ 32767). For example, you

may need to check if one address in memory is lower than
another:

L
St Foak L1 ok (true)

conks RWEFE O B ok (false!)

el fmes | e

Why did SnapFORTH return a false in the second example?
The hexgdeclmal number 8072 is treated as a negative number
by the signed comparator <. SnapFORTH provides a handful
of arithmetic words (u* u< and u.) which treat numbers as
unsigned 2-byte numbers. SnapFORTH also provides an
unsigned mixed-number word “m/mod" (“m-slash-mod”)
which 's briefly described in table 7.2 Try the abnvé
comparison again with the unsigned comparator “u<":

coE SRR w1 ok (true)

7.8 MORE MIXED-NUMBER OPERATORS

You may have noticed that SnapFORTH provides no
double-number multiplication command. This would lead to
double-double-number results, which would be difficult to use,
SnapFORTH does however provide two mixed-number words,

m anf::l ‘m/,” which allow you to obtain double-number results
from mixed-number arithmetic.

The word “m*” multiplies two signed single-number integers to
form a signed double-number product:

II -.:-l -.::J r.::I I. |-: |-|r. III: i ol ok .2 I.‘I e - IIII. LIl - -
Pldiabd DEHARKD pase o 1 PUSPRALY b

The wnrd. ‘m/” divides a signed double-number divisor by a
signed single-number dividend to produce two signed
single-number results: the quotient (on top of the stack) and the

remainder (underneath it). The remainder takes its si
the dividend: €s Iits sign from

VEIRERACNS . 1880 me L L 1800 B b

-6

QO 99OV O e PN

L

LN . B .
TR EEREEEEEEEEEEEEEEEETEE Y

i

7.9 FLOATING POINT

Lining a new sel of floating point commands, you can deal with
numbaors other than integers—entering, transforming, and
computing with them. By adding a dotto a number (within it or at
tho ond), Il automatically becomes a floating point number.
L ach floating point number uses eight bytes apiece, twice that
ol o double number. Numbers entered in scientific notation
automatically become floating point numbers. Here are some
valld floating point numbers:

S A N 10
o display them, you need the new command “ g. ”
RPN TR e 2
v 1 1 e R SIS o st e
PR 10 A = e S 1 e

Simple arithmetic commands have their floating point
analogs—"f+," “-," "f*," and “t/.” Try a few examples to see
whal you get:

|" L B | B Badi. Ty I £

[1 ¥
TS| '-u-l e 0F fimt B e

A lloaling point variable also exists—"“fvar.” It is created within a

| SA just like any other variable, except that it allocates eight
byles instead of two. The floating point commands “fc” and “f!”
operale on such variables. Floating point constants, on the
other hand, must be contained within definitions. For example,
If you wanted a constant for the value of pi, you could create a
word which would contain the floating point value thus:

Feoi G Db L35 a0 ek
Then you could call for "pi" and use it as you would any
constant:

Fopos e DRl o
onapFORTH already includes a floating point comparator,
‘f<_." You can define other comparators yourself, such as “f =":

fae L FRF$L F PR e LOF

P i ool odrok e i o
Finally, four stack manipulation analogs exist for floating point
numbers, “fswap,” “tdup,” “fdrop,” and “fover.” These work just

like their conventional counterparts.

7=7

TABLE 7.1 DOUBLE-NUMBER WORDS

WORD
d+

dabs

dnegate

2t
2drop
2dup

2over

2rot

2swap

dvar

STACK

(d1 d2—>

d-sum)

(d1—=>ud2)
(d1—>d2)

(d1—>)

ACTION
Adds d1 to d2.

Forms the absolute value of di.
Reverses the sign of d.

Prints a double number.

(d1 d2—=d-diff) Subtracts d1 from d2.

(d1 d2—=>1/f)

True if d1 equals d2.

(dnaddress—=)Stores dn at the address.

(address—>dn) Fetches dn from the address.

(dn—>)

(d1—=d1 d1)

(d1 d2

—=>d1 d2 di1)

(d1 d2 d3
—>d2 d3 d1)

(d1 d2—=>=d2

di)

Drops dn from the stack.
Duplicates d1 on the stack.

Leaves a copy of the second
double number on the stack.

Rotates the third double number
to the top of the stack.

Swaps di and d2.

The double-number equivalent
of "var,” used only within TSAs.

7-8

- - - _— - - — P =

Fg

i

e - -

i d P 2 2 o s a

& & & o ™

S 0000090900 OVUVOGEOLOLOLOLOLOLEOGSOGOGEOLDOIOODGOTGE DS

[ABLE 7.2 MORE ARITHMETIC WORDS

WORD

docimal

hex

bhase

"/mod

L

m/mod

m/

STACK

(n1 N2 N3—>

n4 nb)

(unt

un2—=>un3)

ACTION

Sets the SnapFORTH number
base to 10.

Sets the SnapFORTH number
base to 16.

Character variable containing
the current numeric base,

Multiplies n1 by n2, then does a
“/mod"” by n3. The intermediate
result of the multiplication is a
double number.

Performs unsigned multiplication
of uni by un2.

(un1 un2—=t/f) True if unsigned un1 is less than

(unl—=>)

(ud1 un2
—>=>un3 ud4)

(1] lig=—>

d-prod)

(dn1 n2—=

n3 n4)

un2.

Prints an unsigned number.

Performs unsigned division of
double number ud1 by single
number un2, leaving the
single-number remainder un3
and double-number guotient
un4.

Multiplies n1 by n2, leaving a
double-number product.

Divides double number dn1 by
single number n2, leaving
single-number remainder n3 and
single-number quotient n4.

7-9

« 1.
TABLE 7.3 FLOATING POINT WORDS Cq®
(I'
WORD STACK ACTION I.
¢
9. (fp#—=>) Prints a floating point number. I’
¢
1+ (1 f2—=f3) Adds two floating point numbers. l’
(
f- (f1 fo—=13) Subtracts 2 from f1. l.
4 ¢
(1 f2—>18) Multiplies f1 and fo. |'
i (f1 f2—=>13) Divides 1 by f2, : I
- | | -.
f< (M f2—=>t/) Leaves a true if f1 is less than ‘ l
f2; otherwise |eaves a false. . l‘.
fswap (f1 fo—=t2 f1) Swaps the two top floating point £ (™
numbers on the stack. l.
k . ¢
fdup (f1—=f1 f1) Duplicates the top floating point
number on the stack. = ®
fdrop (1 f2—=>f1) Removes the top floating point “ .
number on the stack. P 2P
fover (f1 fo—= Pushes a copy of the second
f1 2 1) floating point number on the Cr®
stack onto the stack. ‘$ '®
fvar <pame= (—=>) Creates floating point variable of ¢ 9
name <name> within a TSA.
fier (addr—=>f-va|) Replaces address with the value [l
f-val found at that address. G | ™
fI (f-val addr—=) Stores f-vg at address. « | ®
(This command must be added to SnapFORTH. See the text.) \ I 3
f= (f1 fo—>tf) Leaves a true if f1 is equal to f2: . | o
otherwise leaves a false.)
VAl
. o
. I *
« I >
¢ I >
« I o
.« I °®
¢ I E
7-10 = l p
-

CHAPTER 8: STRINGS

Jliinge allow you to enter, manipulate, store, move, and print
chintactors in almost all the ways you do numbers. You must
oA 0 now and slightly different set of rules to master strings.

8.1 STRING CONSTANTS

Bolore a string is used or stored, it must be created and
namaod. One way to do this is to put the characters into a string
constant whose contents do not change. Enter the word
lring” followed by a quotation mark and a space, type your
slring plus quotation mark, space, and give the string a name.
Follow this example:

Aot ok ool Phokeet ol
What exaclly have you done? Well, you now have a “box” of

sorts called “alphabet” in memory that contains several
oloments;

SO O LT
First, your constant has a name, "alphabet.” Second, it has a
longth, 3. Each character is one byte long, so you have three
byles in your string. Notice, however, that the number 3 takes
up Its own byte; your total string “box” is actually four bytes
lonNg.

Now that you've put the string into a constant, how can you
getthe information back out again? Invoke “alphabet” and see
what happens:
o1 ket o TEEE ok

Ihe number you got (we're using 1000 as an example) is
certainly not the string that you typed in; it is the address of
‘alphabet.” (Specifically, it is the address of the constant’s first
element which, as you remember, is not the first letter of the

slring—-but rather the current length, 3.) You have to do a little
more before you can see the contents of “alphabet.”

First, you need to use the word “count.” Try typing it after
“alphabet” with two dots:
ol Fhdkest count . . 3 1BEL ok

Now what's on the stack? The first (top) number, 3, is the
current length of “alphabet”; the second is the address of
“alphabet” plus one, which is the address of the first character
("a”) of the string. The initial address, 1000, is no longer on the
stack. These two arguments, in this order, are required for
another word, “type,” to display the contents of “alphabet.”

That is, with these instructions, “type” knows to display three
characters starting at address 1001. See if this is true:

8-1

o Fhset count L uaPe ok ol
Often you will want to know just the length of a string. Here's
one way to write a word (“len”) that would accomplish this:

B o T T U T o BT T I SO

cA T S ol N |
Try it out:

o PRkt count lensth . B ook

How does it work? You invoke the name of your constant
which leaves the initial address of its string on the stack. Thé
word “count” increments the address by 1, giving you the
first-character address, and puts the current length of the
string on the stack above it. These two arguments are passed
to the word “length.” The word “swapdrop” reverses the

position of the length and address and drops the top elem
(the address), leaving the length. P P ent

8.2 STRING VARIABLES

For strings that will be changing frequently, you will need to
employ string variables, which are contained in TSAs just like
nrd_rnary_ variables. Let's set up a new TSA called “strings”
which will contain a string variable (called “letters”) of no more
than 20 characters:

S e
shEihsds ool ok
You will probably want to type these lines into a source file for

futpre use, using the commands given in chapter 4, “The
Editor.” Don’t forget to “load” the file.

8.3 STRING MANIPULATION COMMANDS

8.3.1 s! and cmove

One way to put information into “letters” is with a string
constant, using the new command “s!” (“s store”). You should
add this definition to the same source file that you used for the

TSA “strings™
s B0 Loaokdef o Deed rom ocdcdirto
EETL e

X L | O L - Y P e T e y

8-2

B B B B

y

k.
(Y]

.
e

|- i it i

e

- 5 »

& O > -

A "

T A » » = » =
T Y EEEEEEEEEE E E T EE T Y Yy

i

[0 ume sl you must provide a “from” string (address and
langth) and a "to" string (address and length). Now try to store
Iho contents of "alphabet” into “letters”™

o] ekt oot Tetters oot 21 ok
Chook the contents of “letters” to see if the operation worked,
ualng the same commands you did with the string constant

!

"nlphabet”:
Lol s et b PE b ol

'he command you have just used in “s!"—“cmove’—has
olhor independent uses. It will move sequences of bytes (such
ag slrings) from one address to another, starting with the
loftmost byle (with the lower address). All you need to tell
SnapFORTH is the from-address, the to-address, and the
number of bytes being moved.

8.328S

e command s= (“s equals”) will compare two strings
(whether in variables or constants) for equality. It needs the
usual current length and first-character address for each
siring to make the comparison. Depending on the resuli, a 1 or
a 0 will be left on the stack, and all the other arguments will be
destroyed. Let's compare “letters” and “alphabet”:

IR P P R o 1% | o N PO 8 L TN o A o 1

U i 3

8.3.3 S+

The command s+ ('s plus”) is useful when you want to get at
just part of a string and ignore the rest of it. For example,
suppose you wanted to see just a few letters, say the last two,
of “letters.” The word s+ requires first-character address,
current length, and an offset as arguments to single out part of
the string. Your operation would look like this:

et ters oot Losd LHPe ook
Check to be sure you know what each element in this
operation did. Typing “letters count” put 3 and 1001 on the
stack. Typing “1” added an offset. Typing “s+" incremented

the first-character address by the offset, and “type” displayed
the characters beginning at that address.

If you wanted to get at just the middle character, the operation
would be slightly more complicated. Let's try a longer string to
show how this might work. First, set up a string constant called
“days$” containing abbreviations for the seven days:

b i mort ueselt hof i sot s’ o eE

8-3

I{\fnw you want to define a word (we'll call it “dayofweek” for
day of week”) that will accept a number from the user (1 for
Munda}_r, 2 for Tuesday, etc) and create a string containing the
abbreviation for that day. The word must get at the

abbreviation and also cut off any abbreviation that
' : a
later in the string. Here’s how: ppears

O [e s R) PO

clonda® count rotb f I - Y O
Walk through this definition (paying particular attention to the
stack contents at each point) to be sure you know what each

1eBEDrEent does. We're assuming that the address of “‘days$” is

3 user enters offset for
“Wednesday”.
- dayofweek starts definition,
1000 days$ puts initial address of constant
3 on stack.
21 count adds first-character address and
100; current length to stack.
3 rot moves third element (offset) of
21 stack to the top.
1001
2 1-

subtracts 1 from offset. (You
21 must do this because the con-

1001 stant is numbered starting with 0
but we number the days of the
week starting with 1.)
S 3 puts 3 on the stack.
21
1001
5 *

multliplies top two numbers, re-
21 placing them with the answer.

1001 (There are three letters for each
abbreviation, so s+ needs an
offset of 6 to get to the third
abbreviation.)

21 s+ accepts offset, n .

o P . number of char

acters, and first-character
address and increments the lat-
ter by the offset (destroying the
offset in the process).

8-4

i » » » == =2 = =

"

T EEEEEEEREEE EE EEE E R E T E T T T T T EN " y yymymvw

1007 drop eliminates the number of char-
acters from the stack.
3 3 puts a 3 on the stack to take its

place (the number of characters
in the abbreviation “wed”).

100/

: ends definition.
You now have the requisite arguments on the stack to display,
move, or store the string "wed.”

o e pgeses e M e g

8.4 CHARACTER & STRING CONVERSIONS

Single characters are internally represented by the ASCII
slandard. (A chart listing ASCIl character codes is in the
SnapFORTH Reference Manual. To convert a character to
its ASCII equivalent, immediately precede the character with
an ampersand (“&”"). The ASCII value is left on the stack:

Be sure notl to use a space between the ampersand and the
character. If you wish to use the ASCI| value for a blank, use
lhe constant “bl” (“blank”), which obviates the need for a
separate ampersand:

i ARG T
Note for the advanced user: preceding the character with a
caret (“~") instead of an ampersand gives you the
corresponding control-character:

5
o | - |
e 1 s Lt

Ok

BT

8.4.1 Strings to Numbers

A string may be converted to a double-number with the word
“val.” “Val" needs a string variable as a working area. You

should add such a variable (we’ll call it “scratch”) to the TSA
“strings” when you enter the definition of “val” into your source
file:
R T - ol 1 R
ml o shring sorotoh

T T i (o 1

8-5

dow O gy e e ol
garatoh wduPo o oowsr ol sualP omoes
st obh dooree et deoR B 8

g B A T T
Conversion operates in the current numeric base. It will stop

when it encounters the first non-numetic character (exceps
sign). Notice how the second example is altered because of

the comma:
B Ty
T SO o s [e

o R e
A T T ok

i o L R R B

LA R v I T & AT I I

I O I e R Bt e =
SO e] of,

ol CLITRL

o I
gt R B AT = R

8.4.2 Numbers to Strings

Suppose you have to print the number in a left-justified field or
with an imbedded decimal point? Here's how you can

completely control the format of the number as you convert it
to a string.

First, you should “dup” the number and put it in a safe place (in
a variable or deeper down on the stack). Next convert the
number to a double number if necessary (see chapter 7). Now
use “dabs” to leave the unsigned double number on the stack.
Finally, execute the word “<#" (“less sharp”). This word has
no effect on the stack; it sets up a temporary area to store the
characters you form as you convert the number for printing.

The word “#” (“sharp”) converts one digit of the number in the
current base and saves it in the temporary holding area. This
digit is “removed" from the number. For example, suppose the
double number 123 is on the stack. After the first “#", the
character 3 would be added to the nolding area and the number
12 would be left on the stack. The word “#8" (“sharp s")
converts all of the remaining digits of a number to characters in
the holding area, leaving a double-number zero on the stack.

The word “sign” adds the character - (“minus”) to the holding
area if the number on top of the stack is negative. The number
Is removed. Remember the original copy of the number keptin
a safe place? Now is the time to push it on the stack, right over
the double-number zero. “Sign” checks (and destroys) this
number, leaving the double-number zero.

Finally, the word “#=" (“sharp greater”) ends the conversion
process. The double-number zero is dropped, and the starling
address and current length of the holding area are left on the

8-6

. T

]

i* & 2 » 2 2 ® & =

B

s & oD > >~ B .

O S S SOV Oe T

—_'_‘—_—_—_

T D D D DS S SIS S S S s—
OO PS> P P 0 F 0 VIV IO G SITN OO VOYY

ﬁ

atacle Theno two arguments look like a source string (“Trmm”
alting) and can be used by any of the string functions. This
altlng e stored Ina volatile holding area and should be
medintoly "type"d or else saved in a string variable.

Fore n tho delinition of a simple word (“string dollar”) which
converts o double number to a string:

b ool s acdedre el 3 =

L CAON R T [SRR - ¢ o A = I f T - S
Iy It oul on some double numbers:
Ltatel o toed LR atid ol

wlbIRIENRY s e moratoh ot s ook
e P et b BT SRR ok

Al any time in the conversion process you can insert special
characlers into the holding area with the word “hold.” For
oxample, to insert a decimal point use “ &. hold.” Suppose you
want to print a decimal point in the hundred's position:

¥ |-"E:'I'I..~EI'|'ii£;-il‘:|'l'- , i
b W . hold #s # s

Il would work like this:

TR T T B T R e b L T e TS e S
Perhaps you have some money in the bank and want to see
the amounts in a readable form:

1 e Tt

DT = S e LT R 1 o Y= B
St [H e (R , :
obf OB E. Pl s Lens. 3

T A ST R X . | _

el chal s P8 0 mimus mors sy

)

Lo Rl 45 o

el e PR 111 i B P 3 B 2 R B

With a little more work, you could expand this to put a comma
in the thousand's position, and so forth.

E. JE (L !....I !“i
=
BERE e

8-7

TABLE 8.1 STRINGS

[

i an slring) Ends conversion. Drops dn,
leaving the starting address and
length of the character string in
the holding area.

-

WORD STACK ACTION

- B

string “ceccc” Creates string constant
<name= <name=>=. When executed, the
(—=>addr) starting address of the beginning
of the string memory area (the
length byte) will be left on the
stack.

(Ihono commands must be added to SnapFORTH. See the
Xl)

longth (slr—>n-len) Finds current string length.

gl (addr1 lent Stores source string (addr1
addr? len2—=) len1) into target string (addr2
len2).

vall (addr len—=dn) Converts a string to a double
number.

string <name> Creates a string variable with
(n-max-length—=)<name> and maximum length
n-max-length.

e - &]

<name=> (—>st-adr n-len) When executed, the starting
address of the beginning of the
string memory area (the length
byte) will be left on the stack.

sir (d-num—=>str) Converts a double number to a
temporary string held in the
string variable “scratch.”

™ ™ e

type (st-adr n-len—=>) Types the character sequence at
starting address st-adr and
current length n-len on the
display.

s+ (addr1 len1 pos Forms a substring from the
—>addr2 len2) string specified by addr1 lenf,
starting at position pos. The new
string has address addr2
(=addr1 + pos) and length
len2 (=len1-pos).

s= (addrl len1 Returns “true” if the first string
addr2 len2—=1/f) (addr1 len1) equals the second
(addr2 len2). Otherwise returns
false.

<# Prepares a temporary holding
area to use for converting a
number to a string of characters.

(udl—=ud2) Converts a digit to a character.
The ud1 is then divided by
“base” to produce ud?2.

#s (ud—=00) Converts all remaining digits of
ud until only a double-number
zero is left on the stack.

sign (n—=) Adds the ASCII char “-” to the
holding area if n is negative.

T N A 2 & & &2 & B &5 5 & £S5 O > P o™ ™

8-8 8-9

AT E N EERNEEEREEEEEREEEEEEEEEE EE T " "

B

CHAPTER 9: USER INTERFACE

Consldor the user, who will be sitting at the keyboard at some
lnlor dato, trying to use the program you have written. Often
you will noed 1o communicate with him or her through the
words In your programs. In addition, your programs may need
nutructions from the user, “How many pages should | print?”
or "Which item are you looking for?" are typical questions a
program might need to ask. This means the program must
nllow you to enter numbers and strings directly from the
koyboard,

- B, s B s B W a s

9.1 SINGLE-CHARACTER INPUT AND
OQUTPUT

lhe SnapFORTH command “key” accepts a character from
lhe keyboard. When “key” is executed, SnapFORTH will
patiently wait for you to type a character on your keyboard. As
s00n as you do, SnapFORTH will translate this key into its
ASCIl value and push it on the stack. For example, try typing

o
and ENTER. The cursor will wait patiently for the next key you
press, Nolice that you do not see the usual “ok.” Now press “a”
and ENTER, You should now see:

"L A & T 3

S I]
The “a" is not printed, but its ASCII value is now on the
stack—check just to see:

You can now write a program that shows you the ASCI| value
for any key on your keyboard:

G e
e oY EkY SR B T 1
2 g s
S R Lo A S R
el b
B P e 0 1T
sz s

BEMYE e & BERTER
Since “key" does not display, you could use it for entering
secret passwords. You can also use “key” to select among
different action alternatives:

5 0 0 0 09 5 9 8 VIO VIV W BT EITOVDOOYOVDY YD

ready? f fire ou ready for this?
G R gyl 5 ‘11-’.::' B B
T B 'E C 1& = [=0]

8-10 9-1

L B B B IR R DR S B SR T WL S U S S

el T aEe e e B T e s e mm—— e
&

A ERK.

HHC to “beep.” This word is already defined in ShapFORTH,
where it is called "beep.” It can also be useful to be able to

Noxl, define a word which will use “get$” to get the users
name—we'll call it “signature”

"
prEcicd T L L HPee Ue” b s leol O ‘ l 0.2 INPUT STRINGS AND NUMBERS
Pl l L ChERTER Y ok .
ook ¢ I Homolimos questions can't be answered with single
Y G Bress BMTER when azsked o ¢ charaotors. What if you want to get a user's name or a number
!-=::i::.i-'-i=.L!'-H! CEMTER Y ol , I lrgor than nine? You would want to allow the user to WDE‘- a
« 1 ik ¢ ulring ol characters or numbers, perhapg backspacing to
The word “ready?” leaves a “true” result on the stack if you I muko corrections. When the user was finished, he or she
press ENTER. If you hit any other key, it leaves a “false” ¢ would hit the ENTER key. SnapFORTH wnulq then accept the
result. ‘ l onlire string or number and continue execution.
The word “emit” is opposite in action to “key.” “Emit" removes | o clue lo making this operation successful is the word
an ASCII value from the stack and prints it: ¢ I ‘qold.”" I will wait for and then accept a response from the
Son e b oo ol ‘ usor, leaving this response as a temporary st:jir!g on the staqk.
s e R . , lypo the code for "get$” at this point (and put it in the same file
Emitting a character of your choice can be very useful: ¢ thal you used to load your string words from in chapter 8):
'u’ |! ':."1 F' | 2 .I..i E" FH I | :; c. p“ N |_ l |' I| 'll.-E | i E" |! [
“Bell” emits a “bell character” (control-g) which causes your O R T AN T L 8 " S 10 O e PR
€
3

emit a tone of a pitch and duration of your choosing. To
accomplish this, you need the word “squeak ," whose
arguments are a numbered pitch from 0 to 36 (approximately
by half tones) and numbered duration (about 200 per second).

Try this:
LR afgeals ol

If you want, you can compose little tunes by stringing together
“squeaks.”

The word "key” can be effectively combined with “emit.”
Here's a simple word you can use to get single-digit numbers
from the user:

Fat g 0 - o
" OB MRS ke cdup
ETER I 1
et o L Press 3 owhen oskes
HOB P ok
wa e
Check to see if you understand each element in the definition
of “get#.” “Key" accepts the next kets ASCI| value on the
stack. “Dup emit” displays the key and retains a copy of it on
the stack at the same time. If the user types a “numbered” key
(from 0 to 9), the ASCII value of the key will be converted to
the actual number and left on the stack. This is done by the
phrase “&0 -,” which subtracts the ASCI| value of 0 (48) from
the key. For example, typing a 4 puts the ASCII value 52 on
the stack; 52 48 - then yields 4.

o T AT T SR o i O =

e mIGH T PLEASES T SetE o
Now play user yourself with the new word. First type
‘signature” and ENTER. The window will now display the
prompt, and the cursor will be waiting at the end for your
answer,

R e Y 2
socond, type your name:

Notice that as soon as you started to type your name,
SnapFORTH erased the prompt and moved to a fresh line.
What is on the stack now? The address and length of the
temporary string with your name in it. With this address and
length, you can store your name in another variable—let's use
“scratch,” which you still have from chapter 8.

s i oPot e soroteh oot st ook

Check to see if your name is actually there:

o et et n P Deme e

With your knowledge of “get$” (and “val” from chapter 8), you
can rewrite “get#” so as to accept a larger number from the
user. “Val” will convert the string obtained by “get$” to a double
number, which is then left on the stack. Try it this way:

B | T T T |

ot R L b 11 of LG = € O I T)

S @ @ & 0@ 0 0 0 VIV B VUV UV E T T E TRV OOV

o 9

9-2 9-3

AL L O B N T O T O S S S S S .

s

€ & &0 0V V6 9 UV U VU E S CTE T OVIPOOEON

Now play user again and try out your word:
Hent 4
HOLE Fepey

o 1

The word "get#" takes a single number from the user,
converts It to a double number, and leaves it on the stack. Use
a "d.” to check what's on the stack:

Bla R (el

9.3 FILE STORAGE

It is hu_afpfm when collecting data to have a system for
organizing it and storing it all in one place. It can then be used
by your programs. Let's suppose, for example, that you
needed to set up a file of all your valuable household goods
and their value for homeowner's or renter’s insurance. You will

first need to create a list of the goods themselves—uwith the
help of the following commands.

Note: Before proceeding, decide which memory bank you
want to store the file in, and make sure that's what you have

by using the I/O key. The dictionary must be in the same bank
as the file.

9.3.1 Creating a File

To create a file, you need the word “make.” The address and
length of a string containing the name of the file are nhecessary
arguments for “make.” The string can come from a string
constant, a string variable, or perhaps even directly from the
user via the word “get$” (see above). For now, we'll use a
string constant to create the file “inventory”:

ELEimE” vt or EveErh e ok
drdEn e ot moke L1 ok
sl Wk M ! e

lee phrase “Jotext get-type c!” informs SnapFORTH that we
will be using this file to store text strings. The word “make”
leaves either a true (1) or a false (0) on the stack. A 1 means
that the file has successfully been created: a 0 means that

there was not enough room for it. This flag is useful to check if
anything went wrong.

9.3.2 Opening a File

Thf command “open” will make an existing file the “current
file”; the file manipulation commands you are about to learn

9-4

L

AL L B B B B

- & & N 0O O ™ "™ ™™ ™M™

|

&

> ® PP

¢ 0

will npply only to a current file. This command also requires
addrons and current length as arguments; the name of the file,
‘Inventory," supplies this information. Let's open “inventory":

NS T T W Y 02 T
Al thin point you have a true or false on the stack; true if the file
han boon successfully opened, and false if SnapFORTH could

nol tind such a file,

9.3.3 Accessing a File

ho contents of a file are stored in separate lines, or “records.”
[nch record is numbered, and you must specify where you
wanl your information to go by calling for this number. The
way lo gel the number is by using a word called “rec-cnt”; it
linds the number of lines currently in the file and adds 1 to that
number, leaving it on the stack. (The 1 is necessary because
lInos are numbered beginning with zero.) If you ask for a
"roc-cnt” on “inventory” now, you will get this:

T P O L 1 PR -1 i e S S
You are now in a position to use the word “insert.” This
command will take your string and put it in the first record,
which is record #0. Let's invent a string constant for one of

your household goods, say your television, and add it to
record #0: |

ato i L e s onT Ly Ok
o ot et hmert W1 Ok

The word “insert” leaves a 1 or a 0 on the stack—-1 if the
insertion was successful, and 0 otherwise. Let's add a few

more names to the file:

RO 1 AT =
ol ol

...... a= o g e L s pe
LEIRAFTE. R L

ch e iers” Poimt ime” Pairnt jne
(T T O L e e T PR ="t W I e o
el ok
ah it stersn abered ok
o e O a1 = it o A B P-4
el ok \
ran-nih o3 ok

You can read any record of the file with the word “read.” You
must provide “read” with the address and length of a buffer
which it can use to save the record. You can use the string
variable “scratch,” provided no record in the file is more than 80
characters long. We can assure SnapFORTH that there are 80
characters in “scratch” with this phrase:

zopotoh 1+ 86

9-5

Let’s read the second record of iInventory into scratch:

sordtoh 1+ BB 2 preac L1 ek
"‘Read” returns a “true” if successful and a “false” otherwise.
Furthermore, if “read” succeeds, it will also leave the length of
the record on the stack. You should save this length where it
belongs—at the beginning of the string “scratch”:
scratoh ol ok
BEPALCH Coumh o
Pt i me ok
Here is a word which will list the contents of a text file. See if you
can figure out how it works:

i

A
Tt o) A 5 B
i ol SO
goratah L BEA 0 reod oo
A s e el T
sSnratoh coumt b uPe e

el S I S Ry 1y

] psd

B foes be |2] o
Loomidcop oo e
Pl = B S A BT

i

The command “space” is used to display a blank between the
number and the record. “Space” is equivalent to “bl emit.”

9.3.4 Altering a File

Now suppose that you want to add something to the file that will
be between “microwave” and “painting.” How would you do
this, and what would happen to the information already in that
position? The word “insert” can also take care of this for you. If
you give as an argument the number of the record where you
want the information to go, “insert” will move all the records of
equal or higher number out of the way, renumbering them in the
process, and make space for your record. Now you can set up
your new string constant and insert it as record #2:

L oot comsra ok
(PR == O v I FEert .1 o b
Check “painting” to see what its new record number is:
D I
A R = T R R
LT e e
LTI p
S Poimh i

G ostaren ok

9-6

-, " es

- .

i > S & & & 2 & & =

- & & OH 2 BB ™S ™™ ™

® & O 9V 0O S UV VU B P T E SOV OOOYSIOYVPOVDPREYT YD

I - -

TEEE X,

i

Maybo you don't have a painting anymore and want to replace
ln tocord with another possession—perhaps a c!lshwafhe_r.
For this you will need a new word, “write.” Like “insert,” this
cornmand also requires the string (address and length) you
winh to wrlte and the record number you wish to replace:

ol s s e ™ ol Fas s e Ok
B owrite .1 ok

A W
0 I A T T v I | #

O A
0 0 LT o e
T RO O D R
S N [
O I T T
‘| N T e |
[he word “write” will leave a 1 or a 0 on the stack—1 if ’ghe
oporalion was successful, and 0 if SnapFORTH could not find

such a record number.

9.3.5 Deleting From a File

Maybe you don't have a dishwasher anymore either, but you
have no possession in mind to replace it with. You would like to
delote Its record and move up the ones above it o fill its space,
ronumbering them in the process. In that case, use the word
"dolete.” It only needs to know the record number:

] Tl T T | CR A ain ;."I
i l..-||:::' I L=t |.- et o | NN Y

A
S A N R
R T A T T
e 1] [0
As with the other file manipulation commands,“delete” leaves
either a 1 or a 0 on the stack, depending on whether it found a

record of that number.

If you're tired of “inventory” now, let's get rid of it with
‘delete-file.” As with all other file manipulation commands,
‘delete-file” will work only on a file that is already open, as
“inventory” is now. It requires as its argument the adcjreuss of tP?
current file, which you can provide with the word “cfile” (the “c

stands for “current”):

ches Debogsd 1 [L 1

Now if you go back to the file system you will see that
“inventory” is no longer there.

Not all files contain text. Some, which are us:.ed just_ to store
numeric data, are called “binary files.” Full details on this type of
file can be found in the SnapFORTH Reference Manual.

-7

9.4 GETTING IT TOGETHER

Now it's time to put together what you know about user
Interface and the file system. Just to show what you can do with
this knowledge, why don't you design a word (called “getitem”)
which will ask the user for the names of particular items, accept
as many as he or she enters until the word “stop” is typed, and
will store each as a record in a file. Before starting, remember to

recreate the file “inventory” which you just learned how to
delete:

p N T T S I e Do iy R I SO P L AR

PP e et e boe o e
P I VL 1S B A o I

You also need to establish a string constant called “stop.”

R Ul I R A

Now you're ready to write the definition for “getitem’:
:oet i tem

N BT e T o PO

e P

b i o W0 TTEMEY Sedd
atUF ST OP count oss B
Wi e rec-ort insert deod

e W
You're ready now to play user again and see what your new
word does. When you ask for “getitem,” here's what you'll see:

et e

ITEH:
Enter your firstitem and continue to make a list as SnapFORTH
prompts you until you are ready to say “stop”:

shi P

PR

et O I " S T T
I This

i ko

|
1

P e T

g mp 4T s e
H S R et
pea hm m e erm it
u

1l =
i

ke

Now ask for a “tlist” o see what's in “inventory”:
O A
6, B
1 seal imd sy

ol A Lo D =

¢
¢
¢
¢
¢
3
«
]
€
¢
&
€
£
¢
¢
¢
¢
€
€
C
«
«
'
‘
L
L
&
"
¢
¢
C
«
-

TE—— — TEEEEEEEN TEEEESS EEE— E— E— —

@ & 0 F 6 G P PV G RBUVU VUV WV E TRV

CHAPTER 10: ADVANCED TOPICS

iy this tinal ohapter, wo will touch on some of the more
powatiul but complex aspects of the SnapFORTH language.
[teat oach of thoso In detall would require an additional
valuime an large an this one, If you are interested in continuing
vour sludy of SnaprOHTH, we urge you to read carefully the
Snapl ONTH Reference Manual,

10,1 EXCEPTIONAL CONDITIONS

You can lerminate the execution of a word at any time with the
comimand "exit, On a somewhat larger scale, you can
lorminnlo the execution of all words and return to the
oxoculion (keyboard entry) mode with the command “clear.”
"Cloar” clears the relurn stack, changes to execution mode
(noo bolow), and returns control to SnapFORTH.

he command “"abort,” like “clear,” clears the return stack,
changes to execution mode, and returns control to
SnapFORTH."Clear" is normally used to terminate execution
ol a program when a task is completed (or determined to be
unnecessary). "Abort” is normally used to terminate execution
ol a program which has encountered a serious error.

10.2 CREATE AND DOES=>

One of SnapFORTH's most powerful features is the ability to
creale new classes of objects with the commands “create”
and “does>.” These objects can be viewed as intelligent data
structures, or perhaps as words with data storage. The
command “create” specifies what actions will be taken when
an object of a given class is created. The command “does=>"
specifies what actions will be taken when an object of a given
class is executed. You can find a detailed discussion of
“‘create” and “does>=" in “Forth extensibility: Or how to write a
compiler in twenty-five words or less” by Kim Harris in BYTE
(August 1980, pp 164-184).

Consider the definition of “cvector” which was used in chapter
3 to create vectors of bytes:

fooohEchor L oorsate obaschs of oloss
LT ol o B G
ol T T O e

i DT R T S

10-1

Using 1000 as an example of an address for the first byte, you
would get:

P cvasctor items ok

B hemes o TEENE ol

Sl tems L TEED ok
The word “create” in the definition of “cvector” creates objects
of class “cvector.” Whenever the word “cvector” appears, a
new word is created in the dictionary whose name is the word
which follows “cvector.” In this case, the word is named
“items.” The words which follow “create” are then executed. In
this case, the single word “allot” is executed. “Allot” takes the
number currently on the stack (10) and allocates that many
bytes of storage at the end of the dictionary. So “10 cvector
items” puts a ten on the stack and creates the word “items.”

The “allot” then executes and creates storage space for 10
bytes.

The command “does>" ensures that when any word created
by the preceding “create” is executed, the address of the
parameter field of that word will be pushed on the stack and
control will transfer to the SnapFORTH words following the
“‘does>." In the above example, “3 items” will first push a three
and then the parameter field address of “items” on the stack.
Control then transfers to the + operator, which adds the two
arguments. The result is the address of the third byte in the
byte vector “items.”

10.3 EXECUTION AND COMPILATION

When you are typing commands from the keyboard (or
LOADiIng them from files), SnapFORTH executes each word
as soon as you hit the return key. This is called the “execution”
mode. If you enter a definition by typing a “:" (“colon™),
SnapFORTH will compile the words you type until you finish
the definition with a " (“semicolon”). This is called
‘compilation” mode. The words within the definition are not
executed until you type the name of the definition (in
execution mode). In fact, the “” changes the mode from
execution to compilation and the “;" changes it back again.

A third class of words in SnapFORTH is called “‘compiler
words.” These words are executed instead of compiled when
used within a definition (that is, in compilation mode).
SnapFORTH uses these words to control the compilation
process itself. Words like “if,” “begin,” “do,” and so forth are
examples of compiler words. You can turn any word into a
compiler word by following its definition with the command
“immediate.”

10-2

T O NH A & 4 P B 2 EE SR DY ®ERPRODETESRE BSOS ™A

ﬁﬁ@fi

e,

(LA R E B EEEEREEEREEE R EE NN E S EEEEEEE Y

-

otoao’aaccoooaaonna..'.:.I_.w.,_,a.,_.wlL

IIIIlIIIIIIIIIIIIII[5

e W W W e e Y Y U Y W W e e d e WU U O O RS e e 9 Y e U U DL

FRIENDS AMIS, INC,

o program describad (i this deoument s furnished under alicense
and may bo used, coplad and disclosad only In accordance with the
tarmn ol suoh loanae

FRIENDS AMIS, INC, ('TA") EXPRESSLY DISCLAIMS THE IM-
PLIED WARIANTIES OF MERCHANTABILITY AND FITNESS
FOR USE FOR A PARTICULAR PURPOSE RESPECTING THE
HHG SOFTWARE PHOGHAM AND MANUAL. THE PROGRAM
AND MANUAL ARE SOLD "AB 18" THE IMPLIED WARRANTIES
OF MERGHANTABILITY AND FITNESS FOR USE FOR A PARTIC-
ULAR PURPOSE AS TO THE MEDIUM ON WHICH THE SOFT-
WARE 16 FECORDED ARE LIMITED TO SIXTY (60) DAYS FROM
THE DATE OF LIGENSING BY THE INITIAL USER OF THE PROD-
UGT AND ARE NOT EXTENDED TO ANY OTHER PARTY.

USER AGHEES THAT ANY LIARBILITY OF FA HEREUNDER, RE-
GARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED
THE LICENSE FEE PAID BY USER TO FA, FA SHALL NOT BE
LIABLE FOR INDIREGT, SPECIAL OR CONSEQUENTIAL DAM-
AGES, SUCH AS, BUT NOT LIMITED TO, LOSS OR INJURY TO
BUSINESS, PROFITS, GOODWILL, O FOR EXEMPLARY DAM-
AGES, EVEN IF FA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMACGHE S,

FA will not honor any warranty whon the product has been subjected
Lo physleal abuse or usod indaefective or non-compatible oquipment.

The user shall be solaly responsible for detormining the appropriate
uso 1o bo made of the program and establishing the limitations of the

program in the usors own oporation,

An Important note; Good data processing procedure diclates that
the user test the program, run and lest sample sels of data, and run
the system in parallel with the system previously in use for a period of
lime adequate to insure that roesults of operation of the computer or
programs are salisfactory,

N E NN N EEEEEE E E E E T T

MO PSSO R REEPHLEOE®DDB o™

r"‘.

USA

Panasonic Company
Division of Matsushita Electric Corporation of America
One Panasonic Way;
Secaucus, New Jersey 07094

Panasonic Hawaii Inc.
91-238 Kauhi St. Ewa Beach
P.O. Box 774
Honolulu, Hawaii 96808-0774

Panasonic Sales Company
Division of Matsushita Electric of Puerto Rico, Inc.
Ave. 65 De Infanteria, KM 9.7
Victoria Industrial Park
Carolina, Puerto Rico 00630

CANADA

Panasonic Canada
Division of Matsushita Electric of Canada Limited
5770 Ambler Drive, Mississaugo,
Ontario L4W2T3

OTHERS .
Matsushita Electric Trading Co., Ltd.
32nd floor, World Trade Center Bldg.,
No. 4-1, Hamamatsu-Cho 2-Chome,
Minato-Ku, Tokyo 105, Japan
Tokyo Branch P.O. Box 18 Trade Center

e O /A B N N N N O L O N N © B M B DO O & € £ €6 B M B M A & ™

