
S H A R P
POCKET COMPUTER

MODEL

PCiE220

INTRODUCTION
Your new SHARP PC-E220 Pocket Computer was designed with state-of-the-art
technology, and incorporates many advanced features and capabilities:

• Built-in assembler: The PC-E220 comes standard with a built-in assembler, so
that you can make yourself familiar with machine language programming by first
writing your source program in TEXT mode, then assembling it in machine code.
The PC-E220 uses a CMOS Central Processing Unit (CPU), which is equivalent
to the popular Z80 processor.

• Scientific calculations: You can perform scientific calculations with ease and
efficiency.

• Statistical and regression calculations: You can perform single- and two-variable
statistic calculations or linear regression calculations.

• Engineer Software: The Engineer Software is resident in the computer, and lets
you recall mathematical formulas, physical constants and calculate metric conver
sions and complex numbers.

• Compatibility with existing software: Software packages developed for our pre
vious pocket and portable computers are compatible with the PC-E220.
See Appendix H.

• RAM disk: Part of the internal memory can be used as a RAM disk, which lets
you save and load your programs just as you would using a diskette.

• Serial I/O interface: You can transfer data directly between the PC-E220 and a
personal computer.

Z80 is a registered trademark of Zilog, Inc.

NOTICE
• SHARP strongly recommends that separate permanent written records be kept

of all important data. Data may be lost or altered in virtually any electronic
memory product under certain circumstances. Therefore, SHARP assumes no
responsibility for data lost or otherwise rendered unusable whether as a result
of improper use, repairs, defects, battery replacement, use after the specified
battery life has expired, or any other cause.

• SHARP assumes no responsibility, directly or indirectly, for financial losses or
claims, such as the loss of or alteration of stored data, etc., from third persons
resulting from the use of this product and all of its functions.

• The information provided in this manual is subject to change without notice.

The Protective Cover (Hard Cover)
Your computer is supplied with a cover to protect the operation panel when the com
puter is not being used.

When the computer is to be used, remove the protective cover from the computer,
as shown below.

When the computer is not being used, slide the protective cover over the operation
panel, as shown below.

TABLE of CONTENTS
INTRODUCTION .. i
USING THE PC-E220 FOR THE FIRST T IM E .. 1
USING THIS MANUAL...4

PART 1 HARDWARE
1. HARDWARE: OVERVIEW.. 6

2. HARDWARE: IN DETAIL.. 8
Turning on the Computer.. 8
Auto O F F .. 8
Key Notation in this Manual ...8
Selecting M odes..9
The D isplay.. 10
Battery Replacement.. 12

3. PERIPHERAL DEVICES ... 16
CE-126P Thermal Printer/Cassette Interface..16
Cassette Interface...17
Using the Cassette Interface.. 17
Using the CE-126P Printer/Cassette Interface...19

PART 2 DIRECT INPUT OPERATION
4. CAL MODE ... 22

Calculations... 22
Basic Operations...26
Scientific Calculations... 27
Use of Parentheses...31
Decimal P laces..31
Modify Function...32
Priority Levels..32

5. ENGINEER SOFTWARE M ODE...34
Engineer Software L is t.. 35
Factorization .. 36
Trigonometric Function... 38
Integration.. 40
Greek... 42
Physical Constant.. 43
Metric Conversion...45
Complex Number...48

6. STAT M O DE... 50
Selecting and Cancelling the STAT Mode ...50
Single-Variable Statistical Calculations..50
Two-Variable Statistical Calculations... 54

iii

7. RUN MODE...58
Some Helpful H in ts .. 58
Simple Calculations...59
Compound Calculations and Parentheses...59
Recalling Entries.. 60
Errors..62
Serial Calculations... 62
Constant Calculations ...63
Using Variables in Calculations.. 64
Last Answer Feature.. 65
Maximum Calculation Length.. 66
Scientific Calculations...66
Priority in Direct Input Calculations... 70
Printing of Direct Input Calculations..71
Calculation Errors.. 71

PART 3 PROGRAM OPERATION
8. CONCEPTS AND TERMS OF BASIC... 74

String Constants .. 74
Hexadecimal Numbers...74
Variables...75
Program Files (RAM d isk)...80
Filenames...80
Extension..80
Expressions...80
Numeric Expressions...80
String Expressions... 81
Relational Expressions..81
Logical Expressions.. 82
Parentheses and Operator Precedence..83

9. PROGRAMMING ... 84
Programs..84
BASIC Statements.. 84
Line Numbers ... 84
Labelled Programs... 85
BASIC Commands.. 85
Direct Commands... 86
M odes... 86
Beginning to Program ...86
Storing Programs in Memory .. 92

10. DEBUGGING ..94
Debugging Procedures..95

iv

PART 4 ASSEMBLER OPERATION
11. TEXT MODE (TEXT EDITOR).. 98

Text Mode Functions...98
Selecting the TEXT M ode..99
E d it..99
Program Editing ... 100
Deleting a TEXT Program (Del) ... 101
Printing a TEXT Program Listing (P rin t)..101
Saving, Loading, and Verifying a TEXT Program with

Cassette Tape (C m t)...101
Serial I/O (S io)... 104
Program File (File).. 107
BASIC Converter (Basic)...109

12. MACHINE LANGUAGE MONITOR.. 111
Using the Machine Language Monitor..111
Machine Language Monitor Command Reference... 112
Error Messages in Monitor M ode.. 117

13. ASSEMBLER ... 118
Let’s try Assembling..119
Source Program Coding and Editing.. 122
Assembling ... 126
Pseudo Instructions of the Assembler...130
Assembly Errors... 134

PART 5 BASIC REFERENCE
14. SCIENTIFIC & MATHEMATICAL CALCULATIONS.. 136

Calculation Ranges.. 145

15. BASIC COMMAND DICTIONARY ... 147

PART 6 APPENDICES
A CE-T801 DATA TRANSFER CABLE...210
B ERROR MESSAGES...212
C CHARACTER CODE CHART.. 214
D KEY FUNCTIONS IN BASIC.. 216
E TROUBLESHOOTING .. 219
F MEMORY M APS..221
G SPECIFICATIONS..222
H USING PROGRAMS FROM OTHER SHARP COMPUTERS................... 224
I CARE OF THE PC-E220 .. 226

COMMAND INDEX
INDEX

USING THE PC-E220 FOR THE FIRST TIME
Installing Batteries
~ - .e PC-E220 uses two types of batteries: four AA batteries to power the computer
tseif, and a lithium battery for memory backup.
“stall the four AA operating batteries and one memory backup lithium battery which
a s supplied, as follows:

' . Place the computer face-down on its
protective cover, and loosen the screw
securing the battery compartment lid
-sing a coin or flat-head screwdriver.

2 Remove the battery compartment lid
by sliding it in the direction of the
arrow.

3. Using a small screwdriver, unscrew
the battery holder securing the backup
rthium battery, and remove the holder.

- Wipe the supplied lithium battery with
a dry cloth, and insert it into the com
partment with the positive side down.

5. Replace the lithium battery holder in
the compartment and secure it with
the screw.

z. Set the Memory Backup switch to
position A.

1

7. Insert the AA batteries into the com
partment, negative end first.

8. Replace the lid of the battery compart
ment, secure it with the screw, and
tighten it firmly so that it will not
loosen.

Note:
Insert all four AA batteries
in the same direction.

Resetting
Just after you have installed the batteries into the PC-E220, the internal status is
not set. You have to initialize the PC-E220 to make it ready for use:
1. Press the I ON I key and then press the RESET button next to the I OFF I key with

a ball-point pen or any other appropriate device. Release the RESET button.

Use only a ball-point pen or other
similar device to press the RESET but
ton. Do not use a mechanical pencil
with the lead exposed or a device with
a sharp point, such as a sewing
needle.

Immediately after the RESET button has been pressed, the following display will
appear. If any other display appears, perform the above operation again.

The PC-E220 will prompt you to confirm that you wish to clear the memory.

MEMORY CLEAR O.K.? (Y/N)

2. Press the I y | key, and the following message will flash on the display, indicat
ing that the computer has been initialized and all of its memory contents have
been cleared.

| ALL RESET |
■■■■■■■■■■■■■■■■■■■■■■■a

2

3 Press any key, and you will see the following display:
RUN MODE

Checking for Normal Computer Operation
confirm that the PC-E220 is functioning normally, enter:

r~R ~i r~ r~ i RUN MODE
FRE

30435.

■ r e display appears as shown above, the PC-E220 is functioning normally and is
■ r e Command Prompt mode.

- - e number “30435.” indicates the memory capacity available for program or data.

Hcte:
* r e PC-E220 display does not appear as shown for any of the steps above, read
*e description of the relevant step again and try to perform correct operation for
r r step.

■ r e <33H indicator is on, see page 12.

3

USING THIS MANUAL
This manual is design to introduce you to the capabilities and features of your PC-
E220 and to serve as a reference tool. It has been divided into six parts, each of
which introduces a particular aspect of the PC-E220. Although the manual is intend
ed ultimately as a reference, we suggest that you carefully read the introductory
parts, Part 1 (Hardware) and Part 2 (Operation), before use. The PC-E220 is a
powerful tool and has many valuable and time-saving functions that even the
seasoned computer use will be pleased to discover!

Part 1: Hardware
The first chapter in Part 1 provides an introduction to the features of the
PC-E220. Chapter 2 describes basic handling of the computer, the opera
tion of keys, and the meanings of various display symbols. Both chapters
1 and 2 are essential reading. Subsequent chapters explain use of
peripheral devices (such as the printer and cassette tape recorder).

Part 2: Direct Input Operation
Part 2 is devoted to use of the PC-E220 as a calculator (scientific,
engineering, and statistic) or "direct input” computer. Direct input refers to
the independent use of BASIC commands (that is, commands not used
within a BASIC program).

Part 3: Program Operation
Part 3 introduces the BASIC programming language as implemented on
the PC-E220. Even if you have programmed in BASIC before, we hope
you will read this part thoroughly, since there are many versions of the
BASIC language. This chapter also contains time-saving information in the
form of programming shortcuts and debugging techniques.

Part 4: Assembler
Part 4 explains the PC-E220’s monitor and assembler functions, which are
designed to help you learn machine language programming. The
assembler running on the PC-E220’s CPU, which is equivalent to the Zilog
Z80, will help make you proficient in Z80 machine language

Part 5: BASIC Reference
Part 5 is an alphabetic listing of the numeric functions and BASIC com
mands used in programming on the PC-E220. Many of these commands
can be used in the direct input modes of the PC-E220.

Part 6: Appendices
Part 6 mainly contains reference material, such as code tables, error mes
sages and specifications. You will also find tips on how to keep your PC-
E220 in good condition.

This manual is not intended to be a textbook for teaching yourself BASIC, which is
beyond the scope of this manual. If you have never programmed in BASIC before,
it is recommended you buy a separate book or attend a class on the subject before
trying to work through this manual.

4

PART 1

H
AR
DW
AR
E

HARDWARE

The first chapters of Part 1 introduce the
features of the PC-E220*, explain the
handling of the computer, operation of the
keys, and meanings of the various display
symbols. Subsequent chapters explain the
use of peripheral devices (such as the
printer and the cassette tape recorder).

* The PC-E220 is hereafter referred to as
“the computer”.

5

1. HARDWARE: OVERVIEW

The SHARP computer features a QWERTY keyboard layout that is similar to con
ventional typewriters, a liquid crystal display (LCD) with adjustable contrast, and an
11 -pin interface connector.

The following pages describe the individual parts of the computer to acquaint you
with their location and functions.

IIIN

S H A R P POCKET COMPUTER PC-E22O E N G N E E R S O F T W A R E S A S S E M B L E R

_______ _________ ___________________ I ______________ __________________ __ _____ ______

The I on I and I of f I keys have been recessed into the keyboard so that they will
not be pressed by mistake.

1. Keyboard
The keys on the keyboard are laid out like those on a typewriter. There is also a
numeric keypad, for a total of 82 keys.

2. LCD Screen
The display has four lines of 24 characters each. The characters are extra-large
and the contrast is fully adjustable for comfortable viewing.

3.11-Pin Connector
The 11-pin connector can be used to link the computer directly to optional
peripheral equipment, such as the printer (CE-126P) and the cassette tape
recorder.
The PC-E220 can also be connected to a personal computer using the optional
CE-T801 data transfer cable.

4. LCD Contrast Dial
Use this dial to lighten or darken the display to suit viewing conditions.

6

RESET Button
■ the computer “hangs up” for some reason during operation, the keyboard will
ze inoperative. It may be impossible to use the power switch or I br eak I key to
'estart the computer. Press the RESET button to clear the memory and restore
•__e computer to the condition at power-on. Use this button with caution as you
' sk losing data and programs. See Appendix E for details on the use of this
zjtton.

Operating Battery Compartment
_ - s compartment houses the four AA batteries required to power the computer.
See Chapter 2 for details on replacing batteries.

Backup Battery Compartment
_ - = compartment houses one lithium battery required to backup the internal
- e~ory.

7

2. HARDWARE: IN DETAIL

Turning on the Computer
Press the I ON I key, which is located on the left of the computer keyboard. The com
puter will be in the RUN mode when turned on.

When the computer is turned on or off, the display may black out, or dots, lines, or
symbols may appear on it momentarily. This is not a mulfunction.

If the c s b indicator is on, see page 12.

Auto OFF
To conserve battery power, the computer automatically turns itself off if no key has
been pressed for about eleven minutes. Press the I ON I key to bring the computer
back up to power if it has turned itself off.

The Auto OFF feature is disabled when the computer is executing the INKEY$ com
mand. However, it is enabled when the computer is executing the INPUT command.

If the computer is left unused for a long period with the Auto OFF feature disabled,
battery power will eventually be consumed, causing any stored programs or data to
be lost.

Key Notation in this Manual
1 1 _J -------------- 1 ON 1 : Turns the power on.
LQ1L1—1__----------- 1 BREAK| : Interrupts an operation or calculation.

T̂XT, ---
L C A L J ^ ------------ 1 CAL 1 : Sets the computer to the CAL mode.

- 1 SHIFT | + | TEXT I : Sets the computer to the TEXT mode.

1 s,.n > l_ l— --------------- I Sin | : sin key
1 sm !—! _ — 12nd F11 Sin11 : sin'1 key

When numerals, characters, or symbols printed on the keys or just above each key
are referred to in this manual, only letters that are relevant to the explanation will ap
pear, with key boxes or the I shif t I key omitted, as shown in the following example:

r~s~i n h i~a~i r~R~n s h ar p

[W t i + i~r ~i r~ 4 ~ i r~ 5 ~ i-> $45

In the explanation of the CAL mode, the key will appear as I = I , while in
explanations of any other mode it will appear as | « 11.

8

----------------- The Difference between the I shif t | and 12nd f I Keys-----------------------
shif t | and 12nd f I keys are functionally identical. The only difference is that

s h if t ' key must be pressed and held down when you press any other key,
■ ~e'e=s the 12nd f I key is pressed and then released before any other key is
zmssed. In this manual, the 12nd FI key is used in explanations of calculations in

Z mode and calculations of functions, whereas the I shif t | key is used for
l m~=r explanations.

-e-e = space must be entered with the I space I key, it is indicated by symbol —,
z - e : ample:

"SHARP^EL-865^_W N-104"
sin’’

= = -= y appear in their full boxed image in this manual, such as I sin I, whenever

~z c“ ='entiate the number zero from the capital letter “O”, zero appears as “0 ”
z- me computer’s display. In explanations in this manual when necessary to
i : c confusion, the number zero will also be shown as “0".

Selecting Modes
starting to use your computer, you must decide which mode to use. The

;z _ c_*.e' has six operational modes.

= IS O mode: The BASIC mode is subdivided into the RUN and PRO modes.
- C ZI mode:
- JN mode:

Allows you to write or correct a BASIC program.
Allows you to execute a BASIC program or BASIC commands.

Z -_ mode: Allows you to use the computer as you would an ordinary
calculator.

mode:
“ mode:
~EX~ mode:

Allows you to use the Engineer Software.
Allows you to do statistical and regression calculations.
Allows you to enter, edit, delete, save, or load text programs
in ASCII format, or to convert them to BASIC, and vice versa.

j-SWEL mode: Allows you to assemble a source (text) program into an object
(machine code) program.

.able
- ac e showing the keys that call each mode is provided below.

Press | BASIC I twice to switch
to the PRO mode from within
any mode but RUN.

7ode to select Key operation

- _ ode I BASIC |

- z Z --ode I BASIC | or I BASIC 11 BASIC I

' ~ zee |_CALJ

£ ■ Z ~ :d e I SHIFT | + | ENG |

z - - - —ode I SHIFT | + | STAT |

T ~ o d e I SHIFT I -b I TEXT |

-£ <£_ —ode I SHIFT I + lASMBLl

9

The Display
BUSY CAPS 2ndF DEGRAD CONST El E

RUN PRO TEXT S TA T P R IN T

The computer has a four line 24-character dot-matrix liquid crystal display with a
status line above and below. Each character is made up of a 5 x 7 dot matrix. The
display shows key labels, and calculation processes.
Display examples in this manual show only the symbols relevant to the explanation
of the function.
In BASIC mode the display shows:

> This symbol is the prompt that appears when the computer is waiting for
input in the BASIC mode. As you type, the prompt disappears and is
replaced by the cursor.

8 The Cursor is the symbol that shows you the location of the next charac
ter to be typed in. As you begin typing, the cursor replaces the prompt.
The cursor can be positioned over particular characters when using the
INSert and DELete functions. The block cursor changes to an underline
cursor when not positioned over an existing character.

The status lines consists of:

BUSY Displayed while the computer is executing a program or command.

CAPS Indicates that the computer is in the CAPS Lock mode, in which all
alphabetic characters are entered in uppercase. When this indicator is
not on the display, all alphabetic characters are entered in lowercase.
The I caps I key lets you select or deselect the CAPS Lock mode.

2ndF Displayed when the 12nd f I key is pressed and disappears with subse
quent key entry. Remember, the 12nd f I key must be released before
pressing any other key if that key’s second function is to be used.

DEG Indicates that the Degree mode is selected for angular functions.

RAD Indicates that the Radian mode is selected for angular functions.

GRAD Indicates that the Gradient mode is selected for angular functions.

CONST Indicates that a constant is stored in the computer for constant calcula
tion (see page 63). When this symbol is displayed, the computer perfor
ms constant calculation every time you press the N — 11 key. When the
constant is no longer needed, clear it using I s h ir I + I ca |.

10

□ Indicates that a number other than 0 is in memory for manual calcula
tions.

Indicates that an ERROR has occurred.

Indicates that the operating batteries are low and should be replaced as
soon as possible.

Indicates that the computer is in the RUN mode.

Indicates that the computer is in the PROgram mode.

Indicates that the computer is in the TEXT mode. To select the TEXT
mode, use the I shif t I + 1 t ext I keys.

Indicates that the computer is in the STATistics mode. This mode is alter
nately selected and deselected each time you press the 12nd F11 st at I
(or I shif t I + I st at I) keys.

Indicates the computer is ready to send data to the printer in the RUN
mode. Press I shif t | + IMP I keys to toggle on and off. (Only available
when the optional printer is connected.)

- mode, “<CAL>,” “HYP," “FIX,” or other symbols will be displayed on the
r -e. "<CAL>” indicates that the computer is in the CAL mode. See the

- ~ z.~=zzr. on page 24 regarding “FIX.”

«OE
1 -3 _ ’ cr the Japanese symbols “ *? • ” and “ 4' ” may appear faintly on the top
— r ~e display. These symbols do not affect any function or operation of the

Is o e y s that Exceed four Lines
- t =y consists of four lines (24 character per line). Key entries or calculated
2 “ =-= displayed from the top line. If the characters to be displayed exceed four

r e displayed contents will be scrolled up by one line (the first displayed line
ff the top of the display).

Lznrsst Control

Contrast control
(LCD contrast dial)

Turn the control in the direction of the
arrow for darker display, and in the
opposite direction for lighter display.
Adjust the display so that it is easy to read.

11

Battery Replacement
The computer uses two types of batteries: four AA batteries for powering the com
puter itself, and a lithium battery for memory backup.
If the operating batteries are discharged when the CE-126P printer is used with the
computer, power will be supplied from the CE-126P, so the current drawn from the
operating batteries will be reduced.

Operating Battery Replacement Timing
If the CEffil indicator appears in the upper right corner of the display, it indicates that
the operating batteries are discharged. Immediately replace them with new ones. If
you continue to use the computer with the G m warning on the display, the com
puter will eventually turn off. After this, the computer cannot be turned on even if
you press the I ON I key.

If an optional peripheral device is connected to the computer, the computer power
may be supplied from the device. Note that, in this case, the <3SH warning will
remain off even if the computer’s operating batteries are discharged. Before use,
temporarily disconnect the peripheral device and check to make sure that the <£Hi
warning does not appear on the display.

Note:
While you are replacing the AA batteries, the memory is backed up by a lithium bat
tery. However, if you have purchased an optional peripheral device, it is advised
that you save the program in the computer’s memory to the storage device.

Replacing Operating Batteries
If the AA batteries require replacement, follow the replacement procedure below. If
the procedure is not followed, the computer may remain inoperative or the life of
the memory backup battery may be shortened.

You will need the following types of batteries:
Operating battery: Four AA batteries (R06)
Memory backup battery: One lithium battery (CR2032)

1. Press I ON I then I of f I to turn the computer off.

2. Using a coin or flat-head screwdriver,
loosen the screw securing the battery
compartment lid on the back of the
computer, and remove the lid.

Note:
When removing the lid, be careful not
to accidentally press the I ON I key on
the front of the computer. If this
occurs, turn the computer off with the
I of f I key. If you proceed to the fol
lowing step 3 with the computer
turned on, the contents of memory will
be destroyed or completely lost.

compartment lid

12

S r —9 Memory Backup switch to posi-
- ■

soee:
■ r e batteries are replaced with the

left in position A, the contents
z— emory will be destroyed or com-
z e:e y iost.

-~z ace the four operating batteries
:e s_re to replace all four batteries at
re same time). Insert them negative

*rs t

~e- porarily replace the battery corn
ea.— .ent lid over the compartment.

the computer over, press the
-ESET button on the front with the tip
r a ball-point pen or similar pointed
z aect, and make sure that nothing
azcears on the display. If anything
ascears, press the RESET button

= e~cve the battery compartment lid,
l ' c set the Memory Backup switch to
acstcn A.

= ec ace the battery compartment lid
=-c secure it firmly with the screw.

■ r e computer is turned on with the
■*e— cry Backup switch left at position
= will remain inoperative. If the

is at position B, remove the
ra re ry compartment lid and set the
SArch to position A.

13

Backup Battery Replacement Timing
The memory backup battery has a backup capacity of about five years at room
temperature (20°C/68°F). The contents of the memory remain intact for this duration
even when the operating batteries are discharged or are being replaced. Note, how
ever, that the backup battery will discharge quickly if the operating batteries are left
discharged or are removed.

Note:
The battery life may be shortened under harsh operating environments with, for
example, temperature extremes.

Replacing the Memory Backup Battery
When replacing the memory backup battery, check to make sure that the four AA
batteries in the computer are not low (no c m warning appears). If they are low,
first replace the four batteries before replacing the backup battery. If you remove
the backup battery when the AA batteries are low, contents of the memory may be
lost.

Follow the replacement procedure below:
1. Press I ON I then I of f I to turn the computer off.
2. Using a coin or flat-head screwdriver, loosen the screw on the back of the com

puter securing the battery compartment lid, and remove the lid. _
(When removing the lid, be careful not to accidentally press the I ON I key on the
front of the computer. If this occurs, turn the computer off with the I of f I key. If
you proceed to the following step 3 with the computer turned on, the contents of
memory will be destroyed or completely lost.

3. Set the Memory Backup switch to position B.

4. Using a small screwdriver, unscrew the battery holder that secures the backup
lithium battery, and remove the holder.

5. Wipe the replacement lithium battery with a dry cloth. Remove the old battery
from the compartment and insert the new one with the positive side down.

Note:
Be careful that the operating AA batteries
do not pop out of the compartment while
replacing the backup battery.

14

-■=o=ce the backup battery holder in the compartment and secure it with the
3.275*.
S-r _r e Memory Backup switch to position A.
-sca re the battery compartment lid and secure it firmly with the screw.

z x b t i Handling Notes
H - misused, can explode or cause electrolyte leakage. Pay special atten-
: - * r e -'ollowing points:

He 5._'s to replace all four AA batteries at the same time.
_ ~: - c: n ix new batteries with old batteries in the same unit.

-e c a re re n t batteries should be of the same type as those to be replaced.
-.res of batteries are rechargeable, while other types are not. Read the

aescraton on the battery carefully and choose the unrechargeable type.
- *s= r r e batteries in the correct position as indicated in the battery compart-

«-sec batteries out of the reach of children.
■ used batteries from the compartment. Otherwise, the computer may be

r a r acet from electrolyte leakage.
■ Z -<z". r row batteries into a fire as this may result in an explosion.

15

3. PERIPHERAL DEVICES

The computer can be used with the following optional SHARP peripherals:

MODEL DESCRIPTION CONNECTOR
CE-126P Printer/Cassette Interface 11-pin connector
CE-T801 Data Transfer Cable 11 -pin connector

A brief description of each device is given below. For detailed information, refer to
the individual operation manuals. The CE-T801 data transfer cable is an available
option that will enable the PC-E220 to transfer data to and from a personal com
puter. (See Appendix A.)

A cross-reference of I/O commands that can be used with different types of devices
is provided in the table below.

• Program

RAM disk Cassette tape SIO
SAVE
LOAD O X X

CSAVE
CLOAD

X o X

PRINT #
INPUT# X 0 o

Data
(Requires an OPEN command)

O: Can be used x: Cannot be used

When in the TEXT mode, text programs in ASCII format can be transferred to the
RAM disk, cassette tape, or through the SIO.

CE-126P Thermal Printer/Cassette Interface
The optional CE-126P Printer/Cassette Interface allows you to add a printer and to
connect a cassette recorder to your computer.

The CE-126P features:
• 24-character wide thermal printing.
• Convenient paper feed and tear bar.
• Simultaneous printing of calculations, if desired.
• Easy control of printer output from BASIC programs.
• Built-in cassette interface with remote function.
• Manual and program control of recorder for storing programs and data.
• Battery powered for portability.

To connect the computer to the CE-126P, refer to the operation manual supplied
with the CE-126P.

16

Cassette Interface
: j= . ce is required when interfacing the computer to a cassette recorder to

. e - r : icad programs to tape (unless the built-in interface on the CE-126P
s _sed). It plugs into the 11 -pin connector on the computer and into the

and EARphone jacks of the recorder. Use a cassette recorder that
' t -e z r e following specifications:

Item Requirements

-e-x-der Type Any standard cassette or micro cassette recorder

_ “ -'-.ack “MIC" mini input jack (never the “AUX” jack)

. impedance Low input jack impedance (200 - 1000 ohms)

■-“ _m Input Level Below 3 mV or -50 dB

: Z_“ -’ Jack EXTernal, MONITOR, or EARphone mini output
jack, or equivalent

• Z '-x -t Impedance Below 10 ohms

Z_— Level Above 1V (maximum practical output above
100 mW)

i Z rz 'zo n Within 15% (range: 2 kHz to 4 kHz)

• 7A and Flutter 0.3% maximum (WRMS)
~ - Stable speed recorder motor

.s ng the Cassette Interface
^eccring (saving) onto magnetic tape
. T-e “ are Notes on page 19.

’ . :a. = = program to magnetic tape from the computer, use the following proce-

I - re - off the REMOTE switch on the CE-126P.
. a program into the computer.

_zec the tape in the recorder. Advance the tape to the position where you want
~e c'ogram to be recorded, being careful to avoid the clear tape leader (non-
_ ac_ etic mylar material) and any programs previously recorded.

- :--■=€■ the red plug on the interface to the MIC jack and the black plug to the
z HVote jack on each device.
z • on the REMOTE switch.
z — _<=neously press the RECORD and PLAY buttons on the tape recorder.
E~=- recording instructions (CSAVE command), and press the l-«— ‘ I key to
ra.- execution, as follows.
- — set the computer to the RUN or PRO mode. Next, enter the following key
:e?_erce:

Z1 - = filename” |-«— »|
example: CSAVE “AA” |Z ^ T]

17

The tape begins to run when you press the N — 11 key, leaving a non-signal
blank of several seconds. The filename and contents are then recorded.
To output data, enter statements in the program, as shown in the following
example:

100 OPEN “CAS:DATA” FOR OUTPUT
110 PRINT #1, AB,C$,D(5)
120 CLOSE #1

8. When recording is completed, the PROMPT symbol (>) will be displayed and the
tape recorder will automatically stop. Now you have your program on tape (it
also remains in the computer).

Use the tape counter on the recorder to locate programs on tape.

Verifying a Saved Program
After transferring a program to or from tape, you can verify that the program on
tape and the program in the computer are identical (and thus be sure that data is
correct before continuing programming or running programs) using the CLOAD?
command.

1. Switch off the REMOTE switch.
2. Position the tape just before the file that you want to check.
3. Connect the gray plug to the EARphone jack and the black plug to the REMote

jack on each device.
4. Switch on the REMOTE switch.
5. Press the PLAY button.
6. Enter the CLOAD? command and start execution with the |-<— 11 key, as follows.

First, set the computer to the RUN or PRO mode. Next, enter the following key
sequence:

The filename you entered previously.
CLOAD? “AA"

The computer will automatically search for the specified filename and compare the
contents on tape with the contents in memory.

When the specified filename is found on the tape, an asterisk^) is automatically ap
pended to the line typed in on the screen. This indicates that checking has started.
The PROMPT symbol (>) is displayed if the programs are identical.
If the programs differ, execution will be interrupted and an error message displayed.
If this happens, try again.

Loading from Magnetic Tape
See Tape Notes below.

To load a program from magnetic tape into the computer, use the following proce
dure:

1. Switch off the REMOTE switch.
2. Load the tape in the tape recorder. Position the tape just before the portion to be

read.

18

~ e z t me gray plug to the EARphone jack and the black plug to the REMote
> z" each device (if the recorder has no REMote socket, use the PAUSE

:z control tape movement manually).
■ z~ the REMOTE switch.
esc ma PLAY button on the tape recorder (playback mode).
■ me . OLUME control between middle and maximum.
■ to maximum treble.

ra rs fe r instructions (CLOAD command), and press the N — 11 key in the
:< -*c manner:
r me computer into the RUN or PRO mode. Then press the following keys:

.1 -2 ~ ename" — 11
e : =-c:e: CLOAD “AA”

a zce-z.'ed filename will be automatically searched for and its contents trans-
~=-z tc the computer.
•-= me specified file is found on tape, loading begins. This is indicated by an
e m * that is automatically appended to the line typed in on the screen.

■e_ me program has been transferred, the computer will automatically stop the
:e rnz cisplay the PROMPT (>) symbol.
m occurs, try loading again from the beginning. If an error occurs again,
z e r -me process after adjusting the volume up or down a little. If no error code
zzz =_.ed but the tape does not stop, something is wrong. Press the I br eak I

z r.zp the tape and try again.

* t = _se the same tape recorder for checking or loading that was used for
: ~ z me program. Using a different model may generate errors.
:e ■ z~ quality cassette tapes only. Standard audio tapes should not be used.
-~z AC adaptor for the CE-126P interface can occasionally cause hum
■ zm v affect the recording signal. If this occurs, switch to battery use.
-e* -e_s:ng an old tape for recording programs, erase all old programs on the
ze zem'e recording.

the CE-126P Printer/Cassette Interface
c me Printer
. me _=mg the computer for direct input calculations (in the RUN mode only),
~e _=e the CE-126P to simultaneously print your calculations. Press the
L ar.d then the — 1| key (P<->NP) while in the RUN mode.

z .~e ■<——11 key at the end of a calculation. This will print the contents of the
z~e line and the results on the next.

Paper

3 0 0 / 5 0
6 .

19

You may use the printer from within BASIC programs by using the LPRINT com
mand (see the BASIC COMMAND DICTIONARY for details). Use LPRINT in the
same format as the PRINT command.

You may also list your programs on the printer with the LLIST command (see the
BASIC COMMAND DICTIONARY for details). If used without line numbers, LLIST
will list all program lines currently in memory in ascending numerical order by line
number. A line number range may also be specified with LLIST to limit the number
of lines that will be printed. When a program line is longer than 24 characters, two
or more lines may be used to print one program line. The second and succeeding
lines will be indented so that the line number will clearly identify each separate pro
gram line.

Notes:
• When the printer is exposed to strong external electrical noise, it may print num

bers at random. If this occurs, press the I br eak I key to stop the printing. Switch
the CE-126P off, then on, and then press the I c«ce I key. Pressing the I c«ce I key
will return the printer to its normal condition.

• When not in use, switch off the CE-126P to prolong battery life.

20

PART 2

DIRECT INPUT
OPERATION

The PC-E220* allows direct input calcula
tions in the CAL (calculator), ENG
(Engineer Software), STAT (statistics), and
RUN modes (as opposed to calculations
made as part of a program in PRO mode).
PART 2 of this Operation Manual describes
the use of these modes.

Since there is some overlapping of func
tions between modes, PART 2 starts with
an overview of PC-E220 operation and
mode selection. The PRO mode is then
discussed in detail in PART 3.

*The PC-E220 is hereafter referred to as
“the computer”.

D
IR
E
C
T
 I
N
P
U
T

O
P
E
R
A
T
IO
N

21

4. CAL MODE

You can use the computer as a 10-digit function calculator. To do this, you must
first set the computer in the CAL mode. Press the I cal I key.
The “<CAL>” indicator will appear in the upper left corner of the display.

Note:
In the CAL mode, the results of calculations cannot be output to the printer.

Calculations
Now try some simple calculations. Press the following keys while watching the dis
play:

Enter Display

123 123.

E Z J 123.

654 654.

Did you get the correct answer? If you didn’t, press the I c»ce I key, and try the same
calculation again.
Now call up the value of pi (k).
The symbol V is printed in brown above the I n! I key. The functions identified by
brown letters can be used by first pressing the brown 12nd f | key, and then pressing
the required function key.
Now press the 12nd f 11 n! I keys.

Enter Display

f2iid~Fir^~l 3.141592654

22

What you see in the display is the value of n.
Next, compute 104. For this calculation, you should use the function 101. This func
tion is also identified in brown, so the 12nd f | key must be pressed.

Enter Display

4 12nd F111OX | 10000.
(10* = 10000)

An outline of some the major key functions:

’ i c«ce I (clear/clear entry) (red key)

if this key is pressed immediately after numeric data is entered or the contents of
the memory are recalled, that data will be cleared. In any other case, operation of
the I c»ce | key will clear the operators and/or numeric data that have been entered.
The contents of the memory are not cleared with the I C»CE I key operation.

Enter Display

1231 4- 1456 456.

1 C«CE | 0.

7891 = 1 912.
(123 + 789 = 912)

6 lX * | 2 | + 1 12.

Ic«c e | 0.

6 I + • / I 2 I + I 3.

5 1 = 1 8.

The 1 c«ce I key may also be used to clear an error.

Enter Display

5L±/JoL_=_ l
Error symbol

<CAL> E

0 .

1C»CE | <CAL>
0 .

23

* I f se I (display mode switch)

This key is used to switch the display mode for the result of a calculation from the
floating point decimal system (normal mode) to the fixed point decimal (FIX), scien
tific notation (SCI), or engineering notation (ENG) system, or vice versa.

(ENG)

Enter Display

23 | X » | 1000 I = I < C A L >

2 3 0 0 0 .

(Normal)

I FSE I < C A L > F I X

2 3 0 0 0 . 0 0 0

(FIX)

LfSEj < C A L > S C I

2 . 3 0 OE 0 4

(SCI

I FSE I < C A L > ENG

2 3 . 0 0 0 E 0 3

* I dig it I (specifies the number of decimal places)

This key is used to specify the number of decimal places when used in conjunction
with a numeral key. Turn the power switch off and then on again. Press the I f se |
key and the display will show “0.000” (FIX mode).

Example:
1. Specify 2 decimal places.

Enter

jaiidFlipiGiflI 2 I

5 [^] 8 E Z J

Display

< C A L > F I X

0 . 0 0

< C A L > F I X

0 . 6 3

24

2. Specify 5 decimal places.

12nd F11 DIGIT] | 5 I <CAL> FIX
0.62500

* I dr g I (specifies angular unit)

This key is used to specify the angular units for numeric data used in trigonometric
functions, inverse trigonometric functions, or coordinates conversion.

Enter Display

12nd F11 DRG I

(Radians)

(Grads

(Degrees

180° = n (rad) = 2009 DEG: Degree [°]
RAD: Radian [rad]
GRAD: Grad [g]

25

* I o I to I 9 I , I • I , I Exp I , and I +/- I

I Exp |: Used to enter a number in exponential form (the display shows “E” follow
ing the number entered).

Enter Display

I C«CE | 4 l~2nd~F~| |~ExH 3 4.E 03
(4 x 103)

m 4000.

-4000.

I +/- I: Used to enter a negative number (or to reverse the sign from negative to
positive).

Enter

1.23 n T n

Display

-1 .23

|~2nd~F~| |~~Exp~~1 5

[3

-1 .2 3E -05
(-1.23 x 10~s)

-0.0000123

0.0000123

Basic Operations
1. Addition and Subtraction
Enter: 12 T~| 45.6 | ~ n 32.1 |~V~| 789 C ZU 741 | ~ H 213 P H

Answer: 286.5

2. Multiplication, Division
Enter: 841 [x T I 586 Z 7 1 12 l~^~l

Answer: 41068.83333
Enter: 427 |T ~ I 54 [x T I 32 A T I 7 P ~ | 39 [x 7 | 2 FV~I

Answer: 595.8571429

Note:
Multiplication and division have priority over addition and subtraction. In other
words, multiplication and division will occur before addition and subtraction.

26

Constant Multiplication: The first number entered is a constant.
Enter: 3 I Xac I 5 I = I Answer: 15
Enter: 10 I = I Answer: 30

Constant Division: The number entered after the division sign is a constant
Enter: 1 5 1 •*■/13 I = I Answer: 5
Enter: 30 I = Answer: 10

Note:
The computer places some calculations in pending status depending on their
priority levels. Accordingly, in successive calculations the operator and numerical
value of the calculation last performed in the computer are handled as a calculation
instruction and a constant for the next calculation, respectively.

a + b x c = + be (Constant addition)
a + b -i- c = c (Constant division)

a b x c = a
b x (Constant multiplication)

a x b - c = - c (Constant subtraction)

3. Memory Calculations
The independent memory can be accessed using the I x-»M|, I r m I, I M+ I, and I m- I
keys. Before starting a calculation, clear the memory by pressing I c«ce | and I x-»M|.
If a value other than 0 is stored into the memory, “ Q " will be displayed.

Enter: 12 I + I 5 I M+ |
Answer: 17

To subtract, enter: 2 | + I 5 12nd F11 M- |
Answer: 7

Enter | r m I to recall memory: 10 is displayed.
Enter: 12 I Xx I 2 I = 112nd FI |x-»M|

Answer: 24 (Also takes place of 10 in memory)
Enter: 8 I -?-/ | 2 I M+ I

Answer: 4 | r m 1: 28

In CAL mode, 26 memories, specified with I st o 11 a I through I st o 11 z L are
available, as well as the memory specified with the |x-*M| key.
Pressing the I st o 11 a I keys assigns data to BASIC numeric variable A.
To read this data, press the I r cl 11 a I keys.
In RUN mode, pressing the I A 1|-«— »I keys is identical to pressing the I r cl I

a I keys in CAL mode.

Scientific Calculations
To perform trigonometric or inverse trigonometric functions, and coordinates conver
sion, designate the angular unit for the calculation. The angular unit DEG, RAD, or
GRAD is specified using the 12nd F11 dr g I keys.

Note:
The section on Errors in Appendix B deals with the calculation limits of the com
puter.

27

1. Trigonometric Functions
Set the angular unit to DEG.
Calculate: sin 30° + cos 40° =
Enter: 30 I sin I + 40 I cos 11 = I

Answer: 1.266044443
Calculate: cos 0.25tc
Set the angular unit to RAD.
Enter: 0.25 IX * 112nd F11 K 11 = 11 cos I

Answer: 0.707106781

2. Inverse Trigonometric Functions
Calculate: sin-1 0.5
Set the angular unit to DEG.
Enter: 0.5 12nd F11 sin1! Answer: 30
Calculate: cos'1 -1
Set the angular unit to RAD.
Enter: 1 I +/- 112nd f I Icos'1! To enter a negative number, press the I +/- I key

after the number.
Answer: 3.141592654 (value of jc)

The calculation results of the respective inverse trigonometric functions will be dis
played within the following limits:

0 = sin-1 x, 0 = tan-1 x
DEG: -90 £ 0 £ 90 [°]
RAD: -n l2 £ 0 £ id2 [rad]
GRAD: -100 £ 0 £ 100 [g]

0 = co s"\
DEG: 0 £ 0 £ 180 [°]
RAD: 0 £ 0 £ k [rad]
GRAD: 0 £ 0 £ 200 [g]

3. Hyperbolic and Inverse Hyperbolic Functions
Calculate: sinh 4
Enter: 4 I hyp I |~siii~l Answer: 27.2899172
Calculate: sinh-1 9
Enter: 9 12nd F11 archyp 11 sin | Answer: 2.893443986

4. Power Functions
Calculate: 202

Enter: 20 [x 5"!
Calculate: 33 and 34

Enter: 3 [T ~ l 3 l~T~|
Enter: 3 I y* 14 1 = I

5. Roots
Calculate:
Enter: 25 I «r~ I
Calculate: Cubic root of 27
Enter: 27 12nd FI | 3v~|
Calculate: Fourth root of 81
Enter: 81 l^iidTl f ^ y] 4 |~T~|

Answer: 400

Answer: 27
Answer: 81

Answer: 5

Answer: 3

Answer: 3

28

6. Logarithmic Functions
Calculate: In 21, log 173
Natural Logarithms:
Enter: 21 I in I
Common Logarithms:
Enter: 173 I Ion I

Answer: 3.044522438

Answer: 2.238046103

7. Exponential Functions
Calculate: e304 4 5 ___
Enter: 3.0445 12nd F11 ex I

Answer: 20.99952881 (21 as in Natural Logarithms above)
Calculate: 10223B______
Enter: 2.238 12nd FI Ho*]

Answer: 172.9816359 (173 as in Common Logarithms above)

8. Reciprocals
Calculate: 1/6 + 1/7
Enter: 6 | l / x | I + I 7 |1 /x | I = I Answer: 0.309523809

9. Factorial
Calculate: 69!
Enter: 69 I /?! I

Answer: 1.711224524E 98 (= 1.711224524 x 109a)
Q|

Calculate: 8P3 = .(o — oj!
Enter: 8 P F] [P71 f~T~18 l~ P 3 F T " ! [P F I |P ~ I

Answer: 336

10. Percentage Calculations
Calculate: 45% of 2,780 (2,780 x ^)

Enter: 2780 | Xx I 45 12nd F11 a% |
Answer: 1251

S47 - 47?
Calculate: - x 100473
Enter: 547 P P 473 [2nd~Fl

Answer: 15.6448203

11. Angle/Time Conversions
To convert an angle given in the sexagesimal system (degrees/minutes/seconds)
to its decimal equivalent, a value in degrees must be entered as an integer and
values in minutes and seconds as decimal fractions, respectively.
Convert 12°47'52" to its decimal equivalent.
Enter: 12.4752 F deg]

Answer: 12.79777778

29

When converting an angle in decimal degrees to its sexagesimal equivalent
(degrees/minutes/seconds), the answer is broken down as integer part =
degrees; 1st and 2nd decimal digits = minutes; 3rd and 4th digits = seconds; and
the 5th digit and up = fractions of seconds.
Convert 24.7256 to its sexagesimal equivalent (degrees/minutes/seconds)
Enter: 24.7256 12nd FII-H1MSI

Answer: 24.433216 or 24O43’32"

A racehorse has track times of 2 minutes 25 seconds, 2 minutes 38 seconds,
and 2 minutes 22 seconds. What is the average running time of the horse?
Enter: 0.0225 pDEGl m 0.0238 IMJEG] |~T~| 0.0222 FDEG]

Answer 1: 0.123611111
Enter: I ■?■/1 3 I = I

Answer 2: 0.041203703
Enter: 12nd FI RrMS]

Answer 3: 0.022833333 or the average time is 2 minutes 28 seconds

12. Coordinate Conversion
Converting rectangular coordinates to polar (x, y -> r, 9)

r = ^ r + y2 DEG: 0 £ | 9 | £ 180

P(r,«) RAD: 0 £ | 9 | £ n
9 = tan-1 1 GRAD: 0 £ | 9 | £ 200

x

Solve for x = 6 and y = 4
Angular unit: DEG
Enter: 6 !_► I (or b *1 I) 4 12nd F11 -»r9~| Answer: 7.211102551 (r)
Enter: !"►"! (or) Answer: 33.69006753 (9)
Calculate the magnitude and direction (phase) of vector i = 12 + j9
Enter: 12 I ► I (or I |) 9 12nd F | |-»r0 | Answer: 15 (r)
Enter: (or |~^~|) Answer: 36.86989765 (9)

Converting polar coordinates to rectangular (r, 9 -> x, y)
Solve for P(14, n/3), r = 14, 9 = rt/3
Angular unit: RAD

Enter: 12nd F11 114-/| 3 I = 11 ► I (or | < |) 14 | ► | (or I -< I) 12nd FI [^ 1
Answer: 7.000000002 (x)

Enter: | ► I (or I I)
Answer: 12.12435565 (y) In the above example, 9 = n/3 is

entered first and is replaced with
r = 14 by pressing the I ► I (or
I I) key after r is entered.

30

Use of Parentheses
The parentheses keys are needed to cluster a series of operations when it is neces
sary to override the priority system of algebra. Calculations in parentheses have
priority over other calculations. When parentheses are in use in the computer, “()”
will be displayed. Parentheses in the CAL mode can be used up to 15 times in suc
cession. The calculation within the innermost set of parentheses will be performed
first.

Calculate: 12 + 42 ->(8 - 6)
Enter: 12 |~T~| 42 [^71 l~T~1 8 P H 6 [~ j~] l~T~l

Answer: 33

Calculate: 126 + {(3 + 4) x (3 - 1)}
Enter: 126 FF7| [~(~1 m 3 |~ i~ l 4 |~ T ~ IIx T] l~T ~ l 3 m 1 m m E Z J

Answer: 9

Note:
The I) I key operation located just before the I = I or | m+ I key operation can be
omitted.

Decimal Places
The 12nd f | and I dig it | keys are used to specify the number of decimal places in the
calculation result.. The number of decimal places after the decimal point is specified
by a numeral key (I o I - 1 9 I) pressed after the 12nd f I and I dig it I keys. In this
case, the display mode must be fixed decimal point (FIX), scientific notation (SCI),
or engineer notation (ENG).

12nd F11 DIGIT] | 0 |

12nd F11 DIGIT] | 1 |

I 2nd F | [DiGif] | 9 I

12nd F | [DIGIT] | • |

-» Designates 0 decimal places.
(The number is rounded to the nearest integer.)

-> Designates 1 decimal place.
(The number is rounded to 1 decimal place.)
Designates 9 decimal places.
(The number is rounded to 9 decimal places.)

-> Clears designation.

Decimal place designation is also cleared when the computer is turned off or
another mode is selected. The display will now be in the normal display mode.

Example:
12nd F11 DIGIT] | 9 I
0.5 r m 9 r m

l~FSE~|

12nd F | [DiGif] | 3 I

l~FSE~|

-> 0.055555556 (FIX mode)
(The number is rounded to 9 decimal places)

-> 5.555555556E-02 (SCI mode)
(The mantissa is rounded to 9 decimal places.)
5.556E-02 (SCI mode)
(The mantissa is rounded to 3 decimal places.)

-> 55.556E-03 (ENG mode)

31

|~FSE~| -»0.055555555
This is held by the computer in the form of
5.55555555555 x 10-2 . Rounding the 11th digit of
the mantissa results in 5.555555556 x 10-2 . When
the display mode is changed to the floating decimal
point mode, the rounded part may not be displayed
as in this example.

This function cannot be used for statistical or regression calculations.

Modify Function
While the Decimal Place function lets the computer display only the specified num
ber of decimal places, the computer internally stores data in a full 12-digit length, so
the display data may have some departure from internal data. To match the internal
data with the display data, use the Modify function.

Example:
2nd F11 DIGIT] | 2 I
C4E] 5 [+ 7 1 9 H H
X?1 9 |~T~|
C«CE | 5 |-+ z | 9 | = I I MDF |
~xt i 9 i~t ~i

Display: 0.56 (FIX)
Display: 5.00 (FIX)
Display: 0.56 (FIX)
Display: 5.04 (FIX)

Priority Levels
The computer is provided with a function that judges the priority levels of individual
calculations, which permits keys to be operated according to a given mathematical
formula. The following shows the priority levels of individual calculations.

Level Operations
1. Functions such as sin, xz

2. / ,
3. x, 4- (Calculations which are given the same priority level are executed in their

sequence of input.)
4. +, —
5. =, M+, A%

Example:
Key operation and sequence of calculations in 5 + 2 x sin 30 + 24 x 53 =

5 m 2 rx n 30 ra n m 24 5 r m 3 □ □
' ® @

® ®

®

The numbers © - ® indicate the sequence in which the calculations are carried out.
When calculations are executed in sequence from the higher priority level function,
a lower priority one must be set aside.

32

Note:
The computer has a memory area for up to three pending operations for calcula
tions without parentheses.
As the memory area can also be used for calculations including parentheses, cal
culations can be performed according to a given mathematical formula, unless the
levels of parentheses and/or pending operations exceeds eight in total.

Single-variable functions (x2, 1/x, nl, ->DEG, ->D.MS, etc.) are calculated immedi
ately after key operation without being stored in memory.

Calculation without Parentheses

Example:
1 pending calculation

V W W W W

®

2 pending calculations

1 n ~ l 2 1x71 3 Fr~l 4 1~T~]
V A W A V W V W W W V A V A W

® ® ®

3 pending calculations

1 n ~ i 2 rxTi 3 4 n n 5
\ A W v W A W 7 / A W V v W v W .

® ® ®

®

After I yx I is pressed, 3 calculations remain
pending. Pressing the I -?■/1 key executes the
calculation of “y x" highest in priority level and
“x” identical in priority level. After I -t-/ I is
pressed, the other 2 calculations remain pend
ing.

Calculation with Parentheses
Example:

i) 1 m 2 rx n 3 rr~ i r~r~i
A M V A W W A W M W / M W

® ® ®

4 numeral and calculation instructions are left
pending.

4EE15

2

ii) 1 | j- 12 |_X_x | L J , J 3 | - J Pressing the |) I key executes the calculation
\/'AAAAA'V'v * ’

®

4 r ^ / i
v W A W A

®
Note:
Parentheses can be used if pending calculations do not exceed eight. However, a
maximum of 15 parentheses can be used in succession in a calculation.

of 3 - 4 -s- 5 in the parentheses, leaving 2 calcu
lations pending.

Example:
a x (((b - c x (((d + e) x f) -r g

Up to 15 parentheses may be used in succession.

33

5. ENGINEER SOFTWARE
MODE

The Engineer Software allows you to view mathematical formulas and physical con
stants or to calculate metric conversions and complex numbers.

Selecting a Program
The Engineer Software has a two-page program menu screen. You can select either
page with the I I ' I o r | t | key. To select and execute a program, type in the program
number on the menu screen.

An Engineer Software program must be loaded into the program data area before it
can be executed. When you select an Engineer Software program for the first time,
the computer will ask if you are sure you want to overwrite any BASIC program in the
program data area (the inquiry will not appear if there is no BASIC program in the pro
gram area). If you do not want to overwrite, press I N I to exit the Engineer Software
mode, then save your BASIC program to the RAM disk or cassette tape. If you are
sure you want to overwrite the BASIC program, press I Y I at the prompt, and the
computer will execute the program you selected. The initial display for the selected
program will appear after a brief delay, during which "G O T0100” is displayed.

Note:
Data associated with the BASIC program will also be lost if the program is overwritten.

If you wish, for example, to use the FACTORIZATION program when you are currently
using the INTEGRATION program, first press the I br eak I key once, then the | SHIFT | +
I eng I keys, and the computer will display the Engineer Software program menu. Then
press the appropriate numeric key to select the FACTORIZATION program.

You can view or modify the contents of any Engineer Software program in the Pro
gram mode, and store the modified contents to the RAM disk or other media. Since
the original contents of the program are stored in ROM, you can restore them at any
time.

The explanations in this section assume that you are already in the Engineer Software
mode, accessed with the I shif t I + 1 eng I keys. In the Engineer Software mode, you can
sequentially recall formulas with the I I I o r | t | key. The formulas can be succes
sively recalled by holding down these keys.

Notes:
• If you make a typing error during numeric data entry, delete the wrong entry with the

I c»ce I key, then enter the correct data.
• When the computer is in the Engineer Software mode, you may find the I of f | key

ineffective in turning the power off. In such an event, press the I br eak I key before
pressing the I OFF I key.

34

Once you execute any of the Engineer Software programs, any BASIC program and
all values assigned to BASIC variables will be cleared.

For fractions or square roots) contained in formulas, the computer uses the follow
ing display notations:

(e.g.) • t a n 2 0 = - ^ - t- ~ — tan 20 = 2 tan 0 / (1 - tan2 0)
' 1 — tan 3

4- = ± c o s -^— —» sin (0 /2) = ±7 x (1 — cos 3) /2)
Lt J Lt

• Physical constants appearing in this manual are subject to change.
• The Engineer Software may not yield as much data accuracy as the user expects.

Carefully check the accuracy you wish for calculation results and that of the data
you use for the calculation.

Engineer Software List

Approximate size refers to the number of bytes used by the program. (Variables are excluded.)

Program Name Approximate Size (bytes)
FACTORIZATION 5,800
TRIGONOMETRIC FUNCTION 10,100
INTEGRATION 7,900
GREEK 2,000
PHYSICAL CONSTANT 8,200
METRIC CONVERSION 6,700
COMPLEX NUMBER 3,200

35

FACTORIZATION

The FACTORIZATION program displays any of the following 26 factorization formulas:

(1) a2 —b2= (a+b) (a—b)
(2) a3± b 3 = (a±b) (a2+ab + b2)
(3) a4 — b4 = (a + b) (a -b) (a2+ b 2)
(4) a4 + b4 = (a2+]/ 2ab + b2) (a2 — •/ 2ab + b2)
(5) an — ba= (a—b) (a""1+an“2b+a', - 3 b2 ++ bn-1)
(6) a*+b rt= (a + b) (a ^ - a * 2b + a n- 3b2 -+ b tt”1) (n: an odd number)
(7) a2±2ab + b2= (a ± b)2

(8) a3±3a2b + 3ab2± b 3 = (a± b)3

(9) (a ± b)2+4ab= (a + b)2

(10) a2+ b 2 + c2 + 2bc + 2ca + 2ab= (a + b + c)2

(11) a4 + a2b2 + b4= (a2 + ab + b2) (a2- a b + b2)
(12) a3 + b3 + c3 —3abc = (a+ b+ c) (a2 + b2 + c2 —be—ca—ab)
(13) (ac—bd)2 + (ad + bc)2 = (a2 + b2) (c2 + d2)
(14) (ac + bd)2+ (ad —be)2 —(a2 + b2) (c2 + d2)
(15) (ac + bd)2 - (ad + be)2 = (a2 — b2) (c2 —d2)
(16) (ac - bd) 2 - (ad - be)2 = (a2 - b2) (c2 - d2)
(17) a2(b -c) + b2 (c -a) + c 2 (a -b) = - (b -c) (c -a) (a -b)
(18) (b - c) 3 + (c -a) 3 + (a - b) 3= 3 (b -c) (c -a) (a -b)
(19) a4 + b4 + c4 —2b2c2 —2c2a2 —2a2b2 = (a + b + c) (b —c —a) (c —a —b) (a —b —c)
(20) x2 + (a+b)x + ab= (x + a) (x+b)
(21) acx2 + (ad + bc)x+bd = (ax+b) (cx + d)
(22) x3+ (a+b + c)x2 + (bc + ca+ab)x+abc= (x + a) (x+b) (x + c)
(23) a2 —b2 —c2 —2bc= (a + b + c) (a—b —c)
(24) (a+b + c) (bc + ca + a b)-a b c = (b+c) (c + a) (a+b)
(25) (a+b + c)3- (a3 + b3 + c3) = 3 (b+ c) (c + a) (a + b)
(26) a3(b -c) + b 3(c -a) + c 3(a -b) = - (b -c) (c -a) (a -b) (a+b + c)

36

Operation:
LLJ * FACTORIZATION *

1:a 2-b 2 = (a+b) (a-b)

rn rn m * FACTORIZATION *
4 : a 4 +b 4

= (a 2 +<T 2 • ab + b 2) (a 2 -<T 2 •
ab + b 2)

Use the following keys to recall a specific formula:
: Recalls the first formula.
: Recalls the 26th (last) formula.
: Recalls the following formula.
: Recalls the previous formula.

37

TRIGONOMETRIC FUNCTION

The TRIGONOMETRIC FUNCTION program displays any of the following 49
trigonometric function formulas:

(1) sin2#+cos2# = l
(2) l + tan 2# = sec2#
(3) l+ c o t2# = cosec2#
(4) sin (a ± £) = sin a - cos cos a • sin fl
(5) cos(a±j9) =cos a-cos /9 + sin a-sin ft
(6) ta n (a ± ^) = 1

t2 " a ± t ^ d1 + tan a «tan £
(7) c o t (a ± ^) = “ L V C°-t j 9 - 1

r COt£±COta
(8) sinCa + jfl) -sin(a — £) = sin2a - s i n 2£
(9) sin(a + /9) -sin(a — fl) = cos2/9 —cos2a
(10 cos(a + £) -cos (a — £) = cos2a —sin 2/9
(11) cos (a + £) - cos (a —fl) = cos2£ — sin2a
(12) sin (a± £) *cos(a+£) = sin a-cos a ± s in £*cos £
ftQ) _sin_(a + £) _ tanjx + tan/9

sin (a — fl) ~ ta n a —tan X
(14) cos (a+/3) _ J. — tan a^tan fl

cos(a —j3) “ 1 + ta n a - ta n ^
(15) sin 2#=2 sin # • cos #
(16) cos 2#=cos2#—sin2#
(17) cos 2# = 1 -2 sin2#
(18 cos 2#=2 cos2#-1
(19 t a n 2 ^ -]

2^ .

(20) si.n #
£

(21) 0
c o s 2"

1 — cos d
2 ~

1+ cos e

(22) t a n ^ + . / l - 0 0 3 *
2]/ 14- cos #

(23) tan - ' = A - C°s*
2 sin #

(27)

(28

(29

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(39

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

Co t | = v s i n ^ fl2 1—cos#
_ t # 1+cos#

2 sin #

cot =cosec #+cot #

sin 3#= —4 sin3# + 3 sin #
cos 3# = 4 cos3# — 3 cos #

tan 3#= 3 tan #—tan 3#
— 1 -3 tan 2#“ ’

sin o-cos S= s in (a + f l+ s in (a -£)
r 2

cos a -s in 3 = sin(a + £) - s in (a - £)
2

cos a-cos3= cos(a + 5)+cos(a-jg)
2

sin a-sin/?= - c o s (“ + £)-c o s (a -£)

sin a + sin/3 = 2sin^ ? + A).c o s (a ~ ^

sin a —sin/9 = 2 cos(-a + ̂ y s in ^)

cos a + cosp=2cos^ a ^) * c o s (

cos a -co s - 2 sin(') ’s i n (a 2 ”

tan a ± ta n 9̂= sin(a±j3)
cos a-cos j9

c o ta ± c o t jr8 = sin a-sin
cos a ± s in a = vz 2 sin (45° ± a)
cos a ± s in a = p z 2 cos (45° + a)
tan^45° ±) = s e c 0± tan #

tan(45°± *) = 1-± -s i " *
\ 2 / cos #

(24) tan-| s in &
1 + cos B (47) tan(45°±-!’ ') = cot(45°+!?

(25)

(26)

tan

c o t£ = ± I/X+5oL*
2 Y 1—cos 0

= cosec 6—cot 6 (48 tan(45°+ 0) = |+ £ - " J

(49 cot(45»-0) = i+-“ JJ-

38

Operation:

z n m m

* T R I G O N O M E T R Y *
1 : s i n 2 0 + c o s 2 0=1

* T R I G O N O M E T R Y *
4 : sin (a±p)

= s i n a « c o s p + c o s a , sinp

Use the following keys to recall a specific formula:
I : Recalls the first formula.

► | : Recalls the 49th (last) formula.
4 | : Recalls the following formula.
t I : Recalls the previous formula.

39

INTEGRATION

The INTEGRATION program displays any of the following 42 integration formulas:

(1) » a x= x+ c

1
x-dx= n + 1 +C (n + 1^0)

(3) Jx = :lo g |x |+ C

(4) J dx = Io g |x ± a | +C

(5) ^ e I dx=e*+C

(6) ^ e n*dx= + C

(7) ! a ’< z x = i o i a
+ c

(8 j J w x = n a "g a + C (« > 0 ,a # l)

(9) J log xdx=x(log x —1)+C

(10) J ^ • 1°g x d x = ^ V i (1 0 g x - M + l) + C

S f
x
fn
e
t
n

sdx = n 2 -(wx —1)+C

(12) j sin xdx= —cos x + C

(13) j sin axdx — — & *cos ax + C

{14) j cos xdx = sin x+C

Q5) J cos axdx= | -sin ax + C

(16) j tan xd x— -lo g |co sx] + C

(17) j tan axdx= — log cos ax+ C

(18) J cot x d x = lo g |s in x | + C

(19) j cot a x d x - log sin ax+C

(20) j sec axdx= * log ta n (* + flX)+ C

(21) (sec axdx=% logfj + ®JBflX ') + c
J 2a s \ l — sin ax/

(22) J cosec axdx = + log tan +C

(23) (cosec axdx= - J log (J + c o s a x) + C

(24) 1 sin 2xdx= J x — -J sin 2x+C
J ^ 4

(25) \ cos2xdx= -Jx + J sin 2x+C
J 2 4

(26) J sec2axdx = - tan ax + C

(27) cosec2axdx— —-A *cot ax+C

® j sinxJ x = l o g t a n 2’ + C

® J co1sx'/ x = l o g t a n (4 + 2) + C

(30) tf"’sin Z»xdx= w 2^ 2en i(«*sin dx-d-cos bx) +C

!) (31) enxcos frxdx=w 2^ 2en’ (M*cos/>x + ̂ *sin £x)+C

(32) s in ’ l xdx = x s in - 1 x + iA 1—x2 +C

(33) cos ^xdx —x cos- 1 x —x / 1— x2 +C

(34) sinh xdx=cosh x+C

(35) j cosh xdx= sinh x + C

(36) tanh xdx = log cosh x + C

(37) v /a2 - x 2 ' d x = s i n ' a + C <lx K fl)

»») a ^ ^ J a ^ ' a t x : ^

® 5 a i ^ a ^ ' a + C

(40) v/ x2± a 2 d x = l o g <x + ± fl2) + c

(41) t i / a 2 — x2 d x = -l Y x i/a 2 —x2 + a2 s in ’ 1 x ^ + C

® ! x2 —a2 ^ X = 2al o g (x + a) ^ ^ <x > a >

Notes:
• “log" means natural logarithm (/oge)-
• All trigonometric functions are in radians.

40

Operation:
3]

~ni~nn~i

* INTEGRATION *
1 : j dx = x + c

* INTEGRATION *
4 : J 1 / (x ± a) dx

= log | x±a I +C

Use the following keys to recall a specific formula:
I : Recalls the first formula.

► I : Recalls the 42nd (last) formula.
4 I : Recalls the following formula.
t I : Recalls the previous formula.

41

GREEK

The GREEK program displays the following 24 Greek letters in both capital and small
letters, their pronunciation, and corresponding Roman characters:

A a Alpha (a) A7 V Nu (n)
B V Beta (b) £ Xi (x)
r r Gamma (g) 0 0 Omicron (6)
A d Delta (d) II 71 Pi (P)
E e Epsilon (e) p p Rho (r)
Z c Zeta (z) E a Sigma (s)
H V Eta (e) T T Tau (t)
e 0 Theta (th) Y U Upsilon (u)
i c Iota (i) <D Phi (Ph)
K K Kappa (k) X Z Chi (ch)
A Lambda (1) p- <P Psi (ps)
A/ Mu (m) Q (t) Omega (5)

Operation:
m m

m m m

* G R E E K *
A a Alpha (a)B P B e t a (b)
r y G a m m a (g)

I t l o t a (i)K K K a p p a (k)A X L a m b d a (1)M Mu (m)

Use the following keys to recall specific letters:
I I : Recalls the first screen.
I ► I : Recalls the last screen.
I 4 I : Recalls the following screen.
I t I : Recalls the previous screen.

Note:
Each operation of either key scrolls the screen 3 lines upward or downward at a time.

42

PHYSICAL CONSTANT

The PHYSICAL CONSTANT program displays the following 47 physical constants:

Name and Symbol Value Unit

(1) Speed of light in vacuum c 2.99792458x10 6 n rs 1

(2) Gravitational constant G 6 .67259X 10 '" N-m2 -kg 2

(3) Gravitational acceleration g 9.80665 n r s 2

(4) Electron rest mass mc 9.1093897X 10 31 kg
(5) Proton rest mass mP 1.6726231 X 10 27 kg
(6) Neutron rest mass m„ 1.6749286X 10 27 kg
(7) Muon rest mass 1.8835327 X10 28 kg
(8) Atomic mass unit u 1.6605402X10 27 kg
(9) Electric charge e 1.60217733X10 19 c

(10) Planck constant h 6.6260755X 10 31 J ’S
(11) Boltzmann constant k. 1.380658X 10 2:1 J-K 1

| (12) Magnetic permeability po 12.566370614X10 7 H Tn 1

(13) Dielectric permittivity Eo 8.854187817X10 12 F-rrT1

(14) Electron charge to mass ratio e!me 1.75881962x 10" C-kg 1

(15) Classical electron radius = e2l4i^mcc2 2.81794092x 10 15 m
i (16) Fine structure constant a = e2J4nfyfc 7.29735308X 10 3

(17) Quantum of circulation h!2me 3.63694807X 10 1 J-s-kg 1

; (18) Bohr radius ao = 4ji£o/f/znce2 5.29177249X 10 " m
(19) Rydberg constant fa* = e2!16i^wdk; 1.0973731534 x10 7 m 1

(20) Flux quantum h/2e 2.06783461 X 10 Wb
(21) Bohr magneton pB = eh!2mc 9.2740154x 10 21 J-T 1

| (22) Electron magnetic moment 9.2847701 x 10 24 J-T 1

j (23) Free electron g-factor 2\l J\l b 2.002319304386
(24) Nuclear magneton pw = eti/2mP 5.0507866X 10 27 J-T 1

(25) Proton magnetic moment 1.41060761x 10 26 J-T 1

(26) Proton g-factor 2p/>/|ijv 5.585694772
(27) Gyromagnetic ratio of proton yP 2.67522128 x 10s s l -T 1

(28) Neutron magnetic moment 9.6623707X 10 27 J-T '
(29) Muon magnetic moment 4.4904511 X 10 2” J-T 1

(30) Compton wavelength of the electron Ac = h/meC 2.42631058x 10 12 m

43

Name and Symbol Value Unit

(31) Compton wavelength of the proton = h!mpc
(32) Stefan-Boltzmann constant o = i?k4!60f?c

(33) Avogadro’s constant

(34) Ideal gas at STP Vo

(35) Gas constant R = NAk

1.32141002X10 15

5.67051x IO -8

6.0221367x1 0 23

2.241410X10 2

8.314510

m

W ‘m 2 *K-4

m o l '1

m 3 -mol 1

J-m oI l -K “ l

(36) Faraday constant F = NAe

(37) Josephson frequency-voltage ratio 2e!h

(38) Quantum hole resistance Rh

(39) Electron volt eV

(40) Astronomical unit AU

9.6485309x 1 0 4

4.8359767x 1 0 14

25812.8056

1.60217733X 10 «

1.49597870X10"

C ’m ol"1

H z - V 1

Q

J

m

(41) Parsec pc

(42) Sea mile sea mile
(43) Angstrom A

(44) Knot knot

(45) Torr Torr

3.0856776x 1 0 16

1852

1 X 1O 10

1852/3600

101325/760

m

m

m

m -s -1

Pa

(46) Standard atmospheric pressure atm

(47) Calorie cal

101325

4.1868
Pa

J

Operation:
I 4 II 5 I * P H Y S I C A L C O N S T A N T *

1 : c =2 . 9 9 7 9-2 4 5 8 E + 8
[m•s" 1]

m x P H Y S I C A L C O N S T A N T *
2 : G = 6 . 6 7 2 5 9E- 1 1

[N•m 2 ‘k g * 2]

Use the following keys to recall a specific constant:
I I : Recalls the first physical constant.
I ► I : Recalls the last physical constant.
I I I : Recalls the following physical constant.
I t I : Recalls the previous physical constant.

44

METRIC CONVERSION

The METRIC CONVERSION program converts the units of length, area, volume,
weight and energy.

m in (inch) ft(fo o t) yd (ya rd)

m 1 39.3701 3.28084 1.09361

— in 0.0254 1 0.0833333 0.0277778

? ! f t 0.3048 12 1 0.333333
o 1

— vdO i
0.9144 36 3 1

3 m ile 1609.344 63360 5280 1760

t cm 0.01 0.393701 0.0328084 0.0109361
o
A 1X10 10 3.93701x 10 9 3 .2 8 08 4 X 10 '10 1.09361X10 10

p c 3.0856776 x 1016 1.214834357 X 10 18 1.01236145 x 1017 3.37452788X1016

mile cm
o
A pc(parsec)

m 0.000621371 100 1 x 10'° 3.24077927X10 17

- 1.57828x 10 s 2.54 254000000 8.231579346X 10 19

O)
G f t 0.000189394 30.48 3048000000 9.877895215X10 18

_o
*6

yd 0.000568182 91.44 9144000000 2.963368564X10 17

m ile 1 160934.4 1.609344x 1 0 13 5.215528674 X 10 14

c
Z) cm 6.21371X10 6 1 100000000 3.24077927X 10 19

o
A 6.21371X10 14 0.00000001 1 3.24077927x 1 0 ’ 27

pc 1.917350576X 10 13 3.0856776x 1 0 18 3.0856776x IO 26
11i

-
!i1

Reading the table:
To convert from “meter” to “inch", multiply by 39.3701.
Other conversions can be performed in a manner similar to the above operation.

m 2 a(a re) acre
--- o

m ile c

co
0) m 2 1 0.01 0.000247105 3.86102X10 7

o a 100 1 0.0247105 3.86102x 10 5

C/3
c acre 4046.86 40.4686 1 0.0015625

Z)
m ile 2 2589990 25899.9 640 1

0)
□E cm 3

cm 3 ______m3______

0.000001

in 3 (inch)

0.0610237

£ (f it re)

0.001

f t 3 (foo t)

1 3.53147x 10 3

o> m 3 1000000 1 61023.7 1000 35.3147
*&
co in 3 16.3871 1.63871 x 10 3 1 0.0163871 0.000578704

c £ 1000 0.001 61.0237
F ■

1 0.0353147

f t 3 28316.8 0.0283168 1728 28.3168 1

45

[
U

ni
ts

 o
f w

ei
gh

t g k g o z (o u n c e) l b (p o u n d)

g 1 0 . 0 0 1 0 . 0 3 5 2 7 4 0 . 0 0 2 2 0 4 6 2

k g 1 0 0 0 1 3 5 . 2 7 4 2 . 2 0 4 6 2

o z 2 8 . 3 4 9 5 0 . 0 2 8 3 4 9 5 1 0 . 0 6 2 5

l b 4 5 3 . 5 9 2 3 7 0 . 4 5 3 5 9 2 3 7 1 6 1

1
U

ni
t s

 o
f e

ne
rg

y
I

e V e r g c m 1 H z

e V 1 1 . 6 0 2 1 8 X 1 0 1 2 8 0 6 5 . 5 4 2 . 4 1 7 9 9 X 1 0 1 4

e r g 6 . 2 4 1 5 1 X 1 0 “ 1 5 . 0 3 4 1 1 x 1 0 ' 5 1 . 5 0 9 1 9 X l O 2 6

c m 1 0 . 0 0 0 1 2 3 9 8 4 1 . 9 8 6 4 5 X 1 0 1 6 1 2 . 9 9 7 9 2 X 1 0 1 0

H z 4 . 1 3 5 6 7 X 1 0 - 1 5 6 . 6 2 6 0 8 X 1 0 2 7 3 . 3 3 5 6 4 X 1 0 1 1 1

K 8 . 6 1 7 3 8 X 1 0 5 1 . 3 8 0 6 6 X 1 0 1 6 0 . 6 9 5 0 3 9 2 . 0 8 3 6 7 X l O 1 0

G 5 . 7 8 8 3 8 X 1 0 9 9 . 2 7 4 0 2 X 1 0 2 1 4 . 6 6 8 6 4 X 1 0 5 1 3 9 9 6 2 0

J / m o l 1 . 0 3 6 4 3 X 1 0 5 1 . 6 6 0 5 4 X 1 0 1 7 0 . 0 8 3 5 9 3 4 2 5 0 6 0 7 0 0 0 0

k c a l / m o l 0 . 0 4 3 3 8 5 4 6 . 9 5 1 1 X 1 0 1 4 3 4 9 . 9 2 6 1 . 0 4 9 0 5 x l O 1 3

i
U

ni
ts

 o
f e

ne
rg

y
II

__

__
1

K G J / m o l k c a l / m o l

e V 1 1 6 0 4 . 5 1 7 2 7 6 0 0 0 0 9 6 4 8 5 . 3 2 3 . 0 4 9 2

e r g 7 . 2 4 2 9 2 X 1 0 1 5 1 . 0 7 8 2 8 X l O 2 0 6 . 0 2 2 1 4 X l O 1 6 1 . 4 3 8 6 2 X 1 0 1 3

c m 1 1 . 4 3 8 7 7 2 1 4 1 9 . 5 U - . 9 6 2 7 0 . 0 0 2 8 5 7 7 4

H z 4 . 7 9 9 2 2 x 1 0 " “ 7 . 1 4 4 7 8 X 1 0 7 3 . 9 9 0 3 1 X 1 0 1 0 9 . 5 3 2 4 1 X 1 0 1 4

K 1 1 4 8 8 7 . 4 8 . 3 1 4 5 1 0 . 0 0 1 9 8 6 2 4

G 0 . 0 0 0 0 6 7 1 7 1 1 0 . 0 0 0 5 5 8 4 9 4 1 . 3 3 4 1 8 X 1 0 7

J / m o l 0 . 1 2 0 2 7 2 1 7 9 0 . 5 3 1 0 . 0 0 0 2 3 8 8 8 9

k c a l / m o l 5 0 3 . 4 6 3 7 4 9 5 2 5 0 4 1 8 6 . 0 5 1

O p e r a t i o n :

m m * M E T R I C C O N V E R S I O N *

1 - L E N G T H 4 - W E I G H T

2 - A R E A 5 - E N E R G Y

3 - V O L U M E

(M e n u

C h o o s e t h e i t e m f o r m e t r i c c o n v e r s i o n w i t h t h e 1 - 5 n u m b e r k e y .

E x a m p l e 1 :

C o n v e r t 1 2 m e t e r s t o i n c h e s :

* M E T R I C C O N V E R S I O N *

< L > X = ?

4 6

Enter the data to convert:
12P J] * M E T R I C C O N V E R S I O N *

< L > X= 12
f r om?
< l ; m , 2 : i n , 3 : f t , 4 : y d

Enter the original unit for the data:

Z jZ K m) * M E T R I C C O N V E R S I O N *
< L > X= 12
f r o m m to?
< l : m z 2 : i n , 3 : f t r 4 : y d

Enter the target unit:
: 2 J (in) * M E T R I C C O N V E R S I O N *

< L > X = 12
m 1 2
i n 4 7 2 . 4 4 1 2

The answer is 472.4412 inches.

Example 2:
Convert 1 CT3 inch to angstroms (A):
When the last result of metric conversion for length is still on the display, press the

— 11 key, and you can continue metric conversion for length.

* M E T R I C C O N V E R S I O N *
< L '> X = ?

1 r s iw i+ r~Exp~i- 3 n ^ n r ~ 2 ~ i (in) * M E T R I C C O N V E R S I O N *
< L > X = 0 . 0 0 1
f r o m in t o ?
< l : m / 2 : i n , 3 : f t , 4 : y d

Since angstrom (A) is not in the menu on the display, first recall it to the display using
the I 4 I (or I t |)key, then choose angstroms using I 7 I

f f l O Z I (i n) * M E T R I C C O N V E R S I O N *
< L > X = 0 . 0 0 1
i n 0 . 0 0 1
A 2 5 4 0 0 0

The answer is 254000 A.

Notes:
• If the result of metric conversion exceeds the range of 10-100 < X < 10100, “Answer

not found” will appear. Press the N — 11 key, then enter appropriate data for conver
sion.

• If the I-*— 11 key is pressed when the prompt “X = ?” is on the display, the computer
will return to the previous display.

47

COMPLEX NUMBER

The COMPLEX NUMBER program performs complex number calculations using the
following key operations:

Key Function

LXJ Stores the value into X (in the order of the real and imaginary parts).

LxJ Stores the value into Y (in the order of the real and imaginary parts).

1 + 1 X + Y -> X: Performs addition and stores the result into X.

1 ~ J X - K —> X: Performs subtraction and stores the result into X.

IX x I XXK -> X: Performs multiplication and stores the result into X.

L±d X/Y -> X: Performs division and stores the result into X.

L.M+J X + M -> M: Adds the value of X to the memory.

1 RM 1 M -> X: Recalls the value in memory and assigns it to X.

X -> Af: Stores the value of X into the memory.

morQZI X o Y: Exchanges the values of X and Y.

Jx X: Calculates the square root of X and stores the result into X.

Lvxj 7/X -> X: Calculates the reciprocal of X and stores the result into X.

uu XXX -> X: Calculates the square of X and stores the result into X.

LU

Absolute value of X -» X \ Stores the absolute value of X (^XR 2 + Xj 2)
Argument of X -> Y / into X and the argument of X (tan“1 -/-) into Y

Xr
where XR is the real part of X and X/ the
imaginary part ofx.

Operation:m rm * C O M P L E X N U M B E R *
X= 0
<< X , Y ,+-*/, M +, RM , x-»M >>

Example:
ForX = 3 + 4z and 7 = 6 + Qi, add Y to X, then square the result:

I x | (X is selected from the menu) * C O M P L E X N U M B E R *
X (real) =0 . ?
<< X,Y,+-*/,M+,RM,x->M >>

48

3[]4 * C O M P L E X N U M B E R *
X (r e a 1) =3
X (i m a g e)=0. 4_
<< X , Y ,+-*/, M +, RM , x —>M >>

* C O M P L E X N U M B E R *
X = 3

+ 4 i
<< X , Y , + - * / , M + , R M , x —>M >>

Y I (y is selected from the menu) x C O M P L E X N U M B E R *
Y(real) =0 . ?
<< X , Y , + - * / ,M+, RM, X->M >>

* C O M P L E X N U M B E R *
Y= 6

+ 9 i
<< X , Y , + - * / , M +, R M , x —>M >>

* C O M P L E X N U M B E R *
Y= 6

+ 9 i
<< X , Y ,+-*/, M + , RM , x-»M >>

You get (3 + 4z) + (6 + 9z) = 9 + 13i.
To display the result, press:

* C O M P L E X N U M B E R *
X = 9

+ 1 3 i
<< X , Y ,+-*/, M + , RM , x-»M >>

Now square the sum:

* C O M P L E X N U M B E R *
X = -8 8

+ 2 3 4 i
<< X , Y , +- * / , M + , RM, x —>M >>

The final answer is: (9 + 13z)2 = -88 + 234z.

Note:
Pressing the I I I or I t I key changes the display contents on the 4th line.

49

6. STAT MODE

The computer can perform statistical and regression calculations on one or two vari
ables. With statistical calculations, you can obtain mean values, standard devia
tions, and other statistics from sample data. Regression calculation determines the
coefficients of linear regression formulas or estimated values from sample data.

Selecting and Cancelling the STAT Mode
Press the I shif t | + | st at | keys to display the STAT menu.

* S t a t i s t i c a l a n a l y s i s *
1 : S i n g l e - v a r i a b l e s t a t
2 : T w o - v a r i a b l e s t a t

S e l e c t N o .?

Press the I 1 I key to select single-variable statistical calculations or the I 2 I
key to select two-variable statistical calculations.

Select any other mode to exit the STAT mode.

Single-Variable Statistical Calculations
The following statistics can be obtained from single-variable statistical calculations.

n: Sample size of x
Sx: Sum of samples x
Zx2: Sum of squares of samples x
x: Sample mean x
s: Sample standard deviation with population parameter taken to be

n-1.

n— 1
This equation is used to estimate the standard deviation of a popula
tion from sample data (x) extracted from that population.

o: Population standard deviation with population parameter taken to be
n.

n
This equation lets you assume the entire population as sample data
(x) or determine the standard deviation of the sample data which is
taken to be a population.

50

Selecting single-variable statistical calculations
After displaying the STAT menu, press the I 1 I key to select single-variable statis
tfoal calculations. The single-variable submenu will be displayed.

shif t I + [sTA fir~ i | * F u n c t i o n s *
1 : I n p u t
3 - . A n a l y s i s

S e l e c t N o . ?

(x)
2 : D e 1 e t e
4 : P r i n t e r

. tie following can be selected from the submenu:

i 1] . . . Input: Used for entering data.
1 2] . . . Delete: Used for deleting the entered data if the data was incor

rect or to start a new calculation.
1 3] . . . Analysis: Used for displaying the obtained statistics.
' 4] . . . Printer: Used for printing the obtained statistics. Available only if

the optional printer is connected to the computer.
--ess the I br eak I key to display the STAT menu.

Entering data
-ress the I 1 I key to display the data input prompt. Enter the data.

*
1

D a t
L : x = _

a i n p u t *

------ Data to be entered.
------- Indicates the number of data entered.

~o enter a single data value, press: data — i | .
~o enter multiple identical data values simultaneously, press: data, frequency

"□ enter negative values, press: | — | data |-«— 11.

* you make a typing error during data entry, press I C»CE I , then type the correct data.

Press the I br eak I key to end data entry and display the single-variable submenu.

Note:
m statistics, “frequency” is used to define the number of identical data. For ex
ample, if three identical data occur consecutively, frequency 3 is used.

Deleting data
This function can be used for correcting the entered data. Press the following keys
m the single-variable submenu to display the data clear prompt.

2 * D e l e t e *
1 : D a t a
2 : A l l c l e a r

S e l e c t N o . ?

51

* D e l e t e a d a t a *
x =

Enter the values of the incorrect data or data to be deleted in the same manner as
for data entry. Multiple data values can be deleted using commas (,).
After deletion, correct data may be entered from the data input prompt.

Obtaining statistics
Press the | 3 | key in the single-variable submenu to display the analysis sub
menu.

* A n a l y s i s * (x)
1 : n 2 : E x 3 : E x 2 4 : x“
5 : s 6 : o

S e l e c t N o . ?

The following statistics can be obtained by pressing keys | 1 I to | 6 |:
1........n: The sample size of data

]L r : Sum of samples
]5 > 2 : Sum of squares of samples
] x : Sample mean
]5: Sample standard deviation
] 0 : Popular standard deviation

Press the | br eak | key to return to the single-variable submenu.

Starting a new calculation (clearing the previous data)
Perform one of the following:
1. Exit the STAT mode and select the STAT mode again. The previous data will

be cleared.
2. Delete data using the delete/clear function. Press the | 2 | key in the single

variable submenu to display the delete/clear submenu.

FTZl * D e l e t e *
1 : Da t a
2 : A l 1 c l e a r

S e l e c t N o . ?

The delete/clear submenu will be displayed.

* A l l c l e a r *
1 : YES
2 : NO

S e l e c t N o . ?

The all clear submenu will be displayed.

Press the E Z O key to clear the previous data or the f 2 | key to retain the pre
vious data.

52

Example:
~~e test scores for 35 randomly selected students are as shown. Determine the
- san and standard deviation of these scores.

No. Score Frequency No. Score Frequency
1 30 1 5 70 8
2 40 1 6 80 9
3 50 4 7 90 5
4 60 5 _____ ?_____ 100 2

Select “1: Single-variable stat” in the STAT menu.* F u n c t i o n s1 : I n p u t3 : An a 1 y s iS e l e c t N o . ?
* (x)2 : D e 1 e t e4 x P r i n t e r

Select “1: Input” and enter the data.

rxn t t _
30 [= T | 40 50,4 [Z J]
60.5 | Z 3 | 70,8 1 ^ 1 80,9
90.5 P J] 10Q.2
Data entry is now complete.

2 0 : x = 8 0 . , 9 .2 9 : x = 9 0 . , 5 .3 4 : x = 1 0 0 . , 2 .3 6 : x =
Display the single-variable submenu.
BREAK|

Select “3: Analysis”,
z z o

* A n a l y s i s * < *)1 : n 2 : E x 3 : E x 4 : 5T5 : s 6 : oS e l e c t N o . ?
Obtain the mean.
r~~4~~I * A n a l y s i s * (x)1 : n 2 : E x 3 : E x 2 4 :5 : s 6 : 0 7 1 . 4 2 8 5 7 1 4 3
Obtain the population standard deviation. * A n a l y s i s * (x)1 : n 2 : E x 3 : E x 2 4 : x -5 : s 6 : oO= 1 6 . 2 3 8 0 2 5 42
Return to the single-variable submenu.
I BREAK |

53

• Press I 1 LI 2 I, I 3 I, or I 5 I key to obtain the sample size, sum, sum of
squares, or standard deviation of samples.
After obtaining intermediate statistics, such as mean and standard deviation, fur
ther data can be entered by selecting “1: Input” in the single-variable submenu.

Printing statistics
The calculated statistics can be printed on the optional CE-126P printer.
Connect the printer to the computer and turn the power on. Enter the data and
select “4: Printer" in the single-variable submenu to print the statistics.

* F u n c t i o n s *
1 : I n p u t
3 : An a 1 y s i s

S e l e c t N o . ?

(x)
2 : D e 1 e t e
4 : P r i n t e r

Printing example:

After printing, the display will return to the single-variable submenu.

Two-Variable Statistical Calculations
Operations for two-variable statistical calculations are similar to operations for single
variable statistical calculations. Read the section for the single-variable statistical
calculations first.

The following statistics can be determined from two-variable statistical calculations.
n. Lx, Lx2, and x: Same as for single-variable calculations
sx and ox: Same as $ and o.

Xy:

Lxy:

Sum of samples y
Sum of squares of samples y
Sum of products of samples x and y

sy:
Sample mean y
Sample standard deviation with population parameter taken to be n -
1.

n - 1
qy: Population standard deviation of samples (y) with population

parameter taken to be n.

n

54

a:

b:

r\

a — y—bx

Coefficient for linear regression y = a+bx

b - r 1-
Sxx

Coefficient for linear regression y = a+bx
Sxy

r ~ -jSxx-Syy

Correlation coefficient
x ' = ^

b

Estimated value (x estimated from y}

y' = a+bx

Estimated value (y estimated from x)

N o t % , (&)■

n

n

oxy = ^xy - ------ z -
n

Selecting two-variable statistical calculations
After displaying the STAT menu, press the I 2 I key to select the two-variable
statistical calculations.

Entering data
Press the I 1 I key at the two-variable submenu to display the data input prompt.
Enter the x and y data as shown in the display.
To enter a single pair of data values, press: data x N — 11 data y l-«— 11.
To enter multiple identical pairs of data values simultaneously, press: data x |«— 11
data y , frequency — »|.
To enter a negative value, press the I — | key before the value.

Press the I br eak I key to end data entry and display the two-variable submenu.

Obtaining statistics
Press the I 3 I key on the two-variable submenu to display the analysis submenu.
There are two submenus, pressing the I t I or I I I key toggles the submenus.
(The symbol t or I will appear.)
When the I 3 I key is pressed in the two-variable submenu,

(The first analysis submenu) * Analysis * (x,y) J-
1 : n 2 : £x 3 : £x 2 4 : x"
5 : sx 6:ex 7 : £ y 8 : £y 2

Select No.?

55

(The second analysis submenu) * A n a l y s i s *
1 : S x y 2 : y"
5 : a 6 : b 7 : r

S e l e c t N o . ?

(X , y) ?
3 : s y 4 : o y
8 : x ' 9 : y '

Pressing the I t I key will display the first analysis submenu.

Example:
The following table lists the dates (in April) on which migratory birds fly through a
certain district, versus the average temperatures in March of the same district.
From this table determine the coefficients, a and b, of the linear regression line, y =
a + bx, and correlation coefficient r. Estimate the date of migration when the mean
temperature in March is 9.1 °C. Also estimate the mean temperature in March if the
date of migration is April 10.

Year 1 2 3 4 5 6 7 8
Mean temp. (x°C) 6.2 7.0 6.8 8.7 7.9 6.5 6.1 8.2

Date of migration (y day) 13 9 11 5 7 12 15 7

Select “2: Two-variable stat” in the STAT menu.

I 2 | * F u n c t i o n s * (X , y)
1 : I n p u t 2 ‘. D e l e t e
3 : An a l y s i s

S e l e c t N o . ?
4 : P r i n t e r

Select “1: Input” and enter the data.

y = 1 5 .
8 : x = 8 . 2

y = 7 .
9 : x =

Data entry is now complete.
Display the two-variable submenu.
I BREAK I
Select “3: Analysis” and display the second analysis submenu.
E Z O E O
Determine coefficient a.

* A n a l y s i s * (x , y) ?
1 : Z x y 2 : y" 3 : s y 4 : o y
5 : a 6 : b 7 : r 8 : x ' 9 : y r

a = 3 4 . 4 4 9 5 1 0 1 7

56

Z-e:='mine coefficient b.

z * A n a l y s i s * (x , y) T
1 : E x y 2 : y" 3 : s y 4 : o y
5 : a 6 : b 7 : r 8 : x ' 9 : y '

b = - 3 . 4 2 5 0 1 8 8 3 9

zs^Tiate the date of migration.
o (X , y)

~er the mean temperature.
* A n a l y s i s * (x , y)

x = 9 . 1
y = 3 . 2 8 1 8 3 8 7 3 4

x = _
(Estimated date: April 3)

Z splay the second analysis submenu.
BREAKl

zstimate the mean temperature,
z o * A n a l y s i s * (x , y)

y = _

znter the date of migration.
* A n a l y s i s * (x z y)

y = 1 0 .
x = 7 . 1 3 8 5 0 3 8 5

y = _
(Estimated mean temperature on March 10: approx. 7.1 °C)

Note:
The statistical or regression results are automatically stored into the fixed variables
U to Z.

u V w X Y z
Value Xy2

sy Zxy Ex2 Ex n

• The variable contents not calculated will become 0 (zero).
• These statistics are cleared when the statistical calculation mode is set again.

57

7. RUN MODE

The RUN mode is a very versatile operation mode, and has the ability to run
BASIC programs written in the PRO mode.

Selecting RUN Mode
Select the BASIC mode by pressing the I basic I key. If PRO is displayed, press the
I basic I key to select the RUN mode. The prompt (>) tells you that the computer is
awaiting entry. The display should now look like this:

CAPSRUN MODE DEG

RUN

Some Helpful Hints
If you make an error during entry and get an error message, the simplest way to
clear the error is to press the I c»ce I key and reenter. If the computer "hangs up”
(you cannot get it to respond at all), press the RESET button while holding the I ON I
key (see Appendix E).

The prompt (>) tells you that the computer is awaiting entry. As you enter data the
prompt disappears and the cursor (_) moves to the right, indicating the next avail
able location in the display.

Pressing the right I ► I , left I I , up | t I and down I I I keys moves the cursor.

The display of the computer consists of 4 lines (24 characters per line). Key entries
and calculated results are displayed from the top line of the display. If the charac
ters to be displayed exceed 4 lines, the displayed contents will be moved up by 1
line (the first line will move off the top of the display).

Press the N — 'I key to tell the computer that you have finished entering data and
to signal the computer to perform the indicated operations. You must press the

— 1| key at the end of each line of entry or your calculations will not be
acted upon by the computer.

When performing numeric calculations, entries appear on the left of the display; the
results appear on the right.

-1234567891/10
-123456789. 1

58

Co not use dollar signs or commas when entering calculations. These characters
~ave special meanings in the BASIC programming language.

When using the I shif t I key to implement another key’s second function, press and
- old the I s h ir I key and then press the other key. The 12nd f I key may also be used,
=s in the CAL mode.

When the I s h ir I key is used, the character actually produced is represented in the
blow ing keystroke. For example pressing I SHIR I + I Y I will produce the char
acter. This is written I s h ir I + I & I .

=e sure to enter I c«ce | after each calculation (unless you are performing serial cal
culations). | c«ce I erases the display and resets any error condition. It does not erase
anything stored in the computer memory.

Note:
-o r details regarding the Decimal Place and Modify functions, see the explanation
on pages 31, 32 in the chapter on the CAL MODE.

Simple Calculations
"he computer performs calculations in the RUN mode with 10-digit precision. Turn
:ne power on and set it to the RUN mode. Now try these simple examples.

Example:
2 - 3 x 4 =
2 ~ n 3 r x 7 i 4 n ^ i

2 + 3 * 4
1 4 .

Example:
0 X (-6) + 7 = 2 + 3 * 4

1 4 .
5 * - 6 +7

- 2 3 .

Compound Calculations and Parentheses
You can combine several operations into one step as in the CAL mode.
= or example, you can enter:

675 + 6750/45000

Compound calculations, however, must be entered very carefully to avoid ambiguity.

When performing compound calculations, the computer has specific rules of expres
sion evaluation and operator priority (see page 70). Use parentheses to clarify your
expressions:

575 + 6750)745000 or 675 + (6750/45000)

59

Recalling Entries
Even after the computer has displayed the results of your calculation, you can verify
that the entry was made correctly, and edit it if necessary. To edit, use the left
arrow I I and right arrow | ► I keys. Remember that the left and right arrows are
also used to position the cursor. Use the left arrow I I key to position the cursor
after the last character. Use the right arrow | ► | key to position the cursor over the
first character.

Example:
300 R 7 | 6 r = l

Change this operation to 300/5.
Recall your last entry using the I I key.

3 0 0 / 6
5 0 .

3 0 0 / 6

Because you recalled the expression using I ■< I , the cursor is positioned at the
end of the display. Use I I to move the cursor one space to the left.

3 0 0 / 6
5 0 .

3 0 0 / 6

Notice that after you move the cursor, it becomes a flashing block. Whenever you
position the cursor over an existing character, it will flash.

Enter a 5 to replace the 6. An important point in replacing characters is that once
you enter a new character over an existing character, the original is gone forever!
You cannot recall an expression that has been erased.

5 n j] 3 0 0 / 6

3 0 0 / 5

You can also insert or delete characters in an entry. Change the previous calcula
tion to 3000/5.
Recall your entry using the | I key.

5 0 .
3 0 0 / 5

60 .

60

because you recalled using the 1 ► I key, the flashing cursor is now over the first
".aracter. To make the correction you must insert a zero. Using the | ► I key,
~ove the cursor until it is over a zero. When making an INSert, position the flash-
-.g cursor over the character before which you wish to make the insertion.

» n riNS~| 5 o .
3 0 0 / 5

6 0 .
3:. 0 0 / 5

Pressing INSert moves all the characters one space to the right, and inserts an
□pen slot. The flashing cursor is now positioned over this open space, indicating the
□cation of the next typed input. Type in your zero. Once the entry is corrected, dis-
clay your new result.

: - ----1| 3 0 0 / 5
6 0 .

3 0 0 0 / 5
6 0 0 .

To DELete a character, use the I del | key. Change the previous calculation to 3/5.
Recall your entry using I ► I .
To correct this entry, eliminate the zeros. Using I ► I , move the cursor to the first
zero. To delete a character, always position the cursor over the character to be
deleted.

ZEUZEJ 6 0 .
3 0 0 0 / 5

6 0 0 .
3 0 0 0 / 5

Now use the DELete key to delete the zeros.

DEL 11 DEL 11 DEL | 6 0 .
3 0 0 0 / 5

6 0 0 .
3 / 5

Pressing the I del I key deletes the character under the cursor and shifts all the fol
lowing characters one space to the left. Since you have no other changes to make,
complete the calculation by displaying the result.

---- 1| 3 0 0 0 / 5
6 0 0 .

3 / 5
0 . 6

Note:
Pressing the I space I key when the cursor is positioned over a character erases the
character, leaving a blank space. DELete eliminates the character and the space it
occupied.

61

You can also use the I bs I key to delete errors. Note that pressing the I bs I key
moves the cursor back one position and deletes the character there, while pressing
the I del | key deletes the character the cursor is positioned over.

Errors
Recalling your last entry is essential if you get an error message. Let us imagine
that, unintentionally, you typed this into the computer:

[c^cF] 3 0 0 R 7] R 7 1 5 I Z u] 3 0 0 / / 5
ER R O R 10

“ERROR 10” is the computer’s way of saying, “I don’t know what you want me to
do here.” Press the I I or | ► I key to move the flashing cursor to where the error
occurred.
L * J (o r L ± d) 3 0 0 / / 5

ER RO R 10
3 0 0 / '/ 5

Use the I del I key to correct this error.

roELir ^ r 3 0 0 / / 5
ER RO R 10
3 0 0 / 5

6 0 .

If, upon recalling your entry after an error, you find that you have omitted a charac
ter, use the INSert sequence to insert it.

When using the computer as a calculator, the majority of errors you encounter will
be syntax errors. For a complete listing of error messages, see Appendix B.

Serial Calculations
The computer allows you to use the results of one calculation as part of the follow
ing calculation.

Example:
What is 15% of 300 * 150?

1 C«CE| 3 0 0 1X * I 1 5 0 N — 1| 3 0 0 * 1 5 0
4 5 0 0 0 .

In serial calculations it is not necessary to retype your previous results, but DO
NOT press the I c«ce I key between entries.

62

Xx~| . 1 5 [^ J | 3 0 0 * 1 5 0
4 5 0 0 0 .

4 5 0 0 0 . * . 1 5
6 7 5 0 .

Notice that as you type in the second calculation (xc15), the computer automatically
cisplays the result of your first calculation at the left of the screen and includes it in
:he new calculation. In serial calculations the entry must begin with an operator. As
=iways, you end the entry with the |-«— 11 key.

Note:
“ he I % I and I a% I keys cannot be used in percent calculations in the RUN
-node. The I % I key should be used as a character only, and the I a% | key is
inoperative.
“ or example, 4 5 0 0 0 IX * I 15 I shif t | + I % 1|-«— 11 -> ERROR 10

. o change the sign of the previous result, multiply by -1 :

x T im i F ^ l 4 5 0 0 0 . * . 1 5

6 7 5 0 . * - !
6 7 5 0 .

- 6 7 5 0 .

Pressing the I shif t I + I (-) I keys or the I +/- I key will also reverse the sign.

Constant Calculations
The I const I key lets you use any constant in arithmetic calculations, as described
below.

How To Use Constants
Addition: I + I a I const | or a I + 11 const |
Subtraction: I - | a I const I or a I - 11 const |
Multiplication: | X * I a I const I or a IX * 11 const I
Division: 14 - / 1 a I const | or a |-e-/| I const I
where “a” denotes a constant.
Once you use the I const I key, the “CONST” appears on the upper right of the
display.

Note:
When you are not using the Constant Calculation function, make sure that the
“CONST’ indicator is not on.

Checking the Constant Setting
To check the constant setting you last entered, press the following keys when the
“CONST’ indicator is on:

12nd F11 CONST | (| SHIFT | + | CONST I)

63

Clearing the Last Constant
To clear the constant setting you last entered, press the following keys. It is also
cleared when the computer is turned off.

12nd F | |~CA~| (| SHIFT | + FCA~1)

Example:
Store “+ (4.8 + 3.6)" as a constant and calculate “24 - 18.5 + (4.8 + 3.6)” and
“8.2 x 6 + (4.8 + 3.6)”
Enter: |~T~| 4.8 F + l 3.6 I const I
The constant need not be enclosed in parentheses.
Enter: 24 I - 118.5 I-*— ‘ I Answer: 13.9
Enter: 8.2 | X * I 6 N — 11 Answer: 57.6

Using Variables in Calculations
The computer can store up to 26 simple numeric variables under the alphabetic
characters A to Z. If you are unfamiliar with the concept of variables, they are more
fully explained in Chapter 8. Variables are designated with an Assignment State
ment:

A = 5 [^]
B = -2

Note: ____ -
To enter the “=” sign, press the I shif t I + I l I keys.

You can also assign the value of one variable (right) to another variable (left).

C = A + 3 [^ T |
D = C f ^ J l

As you press N — 1|, the computer performs the calculation and displays the new
value of the variable. You can display the current value of any variable by entering
the alphabetic character it is stored under:

I~c*ce~| C

Variables will retain their assigned values even if the computer is switched OFF or
undergoes an Auto OFF. Variables are lost only when:

• You assign a new value to the same variable.
• You enter CLEAR N — 11 (not the I c«ce I key).
• You clear the computer using the RESET button.

There are certain limitations on the assignment of variables, and certain program
ming procedures that cause them to be changed. See Chapter 8 for a discussion of
assignment and the use of variables in programming.

64

Last Answer Feature
■ a simple calculation, the result of the previous calculation can only be used in

continuous calculations as the first number.

Example:
3 t t t i 4 n 3 + 4

7 .
7 . * 5

3 5 .

However, the computer has a feature that lets you recall the result of the previous
calculation and use it in any location in the current calculation. This is called the
ast answer feature. It allows the previous answer to be recalled any number of

ernes by pressing the I ans I key. If you entered the last example, press I c«ce I then
ams I and you will see “35.” displayed.

_et’s look at an example where a previous result is used twice in the current calcula-
ion. Note that in this example, the last answer changes and is updated with the cur-
'ent answer each time l-«— ‘ I is pressed.

Example:
Jse the result (6.25) of the operation, 5 0 14 - /18, to compute
:2 x 5/6.25 + 24 x 3/6.25 =

5 0 F R n 8 PiZZi] 7 . * 5
3 5 .

5 0 / 8
6 . 2 5

Last answer

1 2 |~x*l 5 F^~ | P a n s I

r n 2 4 r x * i 3 1 ans i

3 5 .
5 0 / 8

6 . 2 5
1 2 * 5 / 6 . 2 5 _

Last answer recalled

3 5 .
5 0 / 8

6 . 2 5
1 2 * 5 / 6 . 2 5 + 2 4 * 3 / 6 . 2 5

5 0 / 8
6 . 2 5

1 2 * 5 / 6 . 2 5 + 2 4 * 3 / 6 . 2 5
2 1 . 1 2

65

[~Ĉ CE~| |~~ANS~~| 2 1 . 1 2

Pressing !■«——* I causes the previous last answer to be replaced with the result of
the latest calculation. The last answer is not, however, cleared by pressing the
I c»ce I or I shif t I + I ca | keys but when the power is turned off.

The last answer can be recalled only when the computer is in the RUN mode, and
is replaced when a program is executed.

Maximum Calculation Length
The length of the calculation that can be entered is limited to 255 key strokes
before the |-«— 11 key is pressed. If you try to exceed this limit, the cursor will start
flashing to show that further input is invalid. If this happens, break down the calcula
tion into two or more steps.

Scientific Calculations
The computer has a wide range of numeric functions for use in scientific calcula
tions. PART 5 contains a listing of these functions. Note that the notation of the
functions in BASIC may differ from conventional mathematical notations.

All scientific functions may be entered in the RUN mode either by pressing the ap
propriate function key or entering the BASIC command.

The computer also enables specification of angular units in degrees, radians or
gradients using the DEGREE, RADIAN or GRAD commands.

Angular unit
Degrees
Radians
Gradients

Command
DEGREE
RADIAN
GRAD

Description
Represents a right angle as 9O[0].
Represents a right angle as n/2[rad].
Represents a right angle as 100[g].

For practice, use these instructions to specify angular units when required in the fol
lowing calculation examples:

Example: sin 30° =
Operation:
DEGREE |«— 11 (specifies “degree” for angular unit)

S I N 3 0 [^ J |
or
I sin | 30 I-*— 1 1

D EG REE
S IN 30

0 . 5

66

Example: tan jt/4 =
Operation:
RADIAN |-«— 1| (specifies “radian” for angular unit)

~ A N [~T~1 P I [4=71 4 n ~ i 0 . 5
RAD IA N
TAN (P I / 4)

1 .

Example: cos-1 (-0.5) =
Operation:
DEGREE] (specifies “degree” for angular unit)

a c s m o . 5
D EGREE
ACS - 0 . 5

1 .

1 2 0 .

Example: log 5 + In 5 =
Operation:
_ o g 5 m l n 5 ACS - 0 . 5

1 2 0 .
LOG 5+ LN 5

2 . 3 0 8 4 0 7 9 1 7

Example: e2+3 =
Operation:
= X P F T l2r7 LOG 5+ LN 5

2 . 3 0 8 4 0 7 9 1 7
EXP (2 + 3)

1 4 8 . 4 1 3 1 5 9 1

Example: V43 + 64 =
Operation:
~ĉ cei sq r r m 4 nF~i 3
~ H 6

SQR (4a 3 + 6 a 4)
3 6 . 8 7 8 1 7 7 8 3

Example:
Convert 30 deg. 30 min. in sexagesimal notation into decimal notation.
Operation: _________________________
D E G 3 0 . 3 0 |^— 1| SQR (4a 3 + 6 a 4)

3 6 . 8 7 8 1 7 7 8 3
DEG 3 0 . 3 0

3 0 . 5
(30.5 DEGREE)

67

Example:
Convert 30.755 deg. in decimal notation to sexagesimal notation.
Operation: ____________________
D M S 3 0 . 7 5 5 |«.— 1| DEG 3 0 . 3 0

3 0 . 5
DMS 3 0 . 7 5 5

3 0 . 4 5 1 8
(30 DEG. 45 MIN. 18 SEC.)

Example:
Conversion from rectangular into polar coordinates: Determine the polar coor
dinates (r, 0) for the point P(3, 8) in rectangular coordinates:
Operation:
DEGREE — »I (specifies “degrees” for angular unit)

p o L n ~ i3 .8 r ~ i~ i [^ n 3 0 . 4 5 1 8
DEGREE
PO L (3 , 8)

8 . 5 4 4 0 0 3 7 4 5

PO L (3 , 8)
8 . 5 4 4 0 0 3 7 4 5

Z
6 9 . 4 4 3 9 5 4 7 8

The value of 0 is stored in variable Z, and the value of r in variable Y.

Example:
Conversion from polar into rectangular coordinates: Determine the rectangular coor
dinates (x, y) for the point P(12, 4k /5) in polar coordinates.
Operation:
Ic«c e | RADIAN N — 1| (specifies “radians” for angular unit)

R E C | ~ ~ m 2 . m 4 5 [X T]
p i □ □ m

RA D IA N
REC (1 2 , (4 / 5 * P I))

- 9 . 7 0 8 2 0 3 9 3 3

Z REC (1 2 , (4 / 5 * P I))
- 9 . 7 0 8 2 0 3 9 3 3

Z
7 . 0 5 3 4 2 3 0 2 8

The values of y and x are stored in variables Z and Y, respectively.

Note:
For coordinate conversion, the conversion results are stored in variables Z and Y.
Therefore, the previous contents of Z and Y will be cleared.

68

Example:
Convert the hexadecimal number CF8 to its decimal equivalent.
Operation:
~cicE] [2iid~Fl l~F~| H c F 8 [^ r | & H C F 8

3 3 2 0 .

&H” represents a hexadecimal value.

expressions composed of relational operators (=, >, < , > = , < = , < >) can take on
the values listed in the following table (x and y represent numeric values):

= * -1
0

if x
if x

= y
t y

> = -1
0

if x
if x

All
V

> -1
0

if x
if x

A

VII

< = -1
0

if x
if x

VII A
 I

< -1
0

if x
if x

V

All

< > -1
0

if x
if x = y

(means “ 4 ”)

’ If, for example, “A = numeric value” or "B = formula” is used in a logical equa
tion, the computer will not treat it as a logical equation but as an assignment
statement for variables. When using an equal (=) sign for logical equation, use it
in the form of “numeric value = A” or “formula = B”, with the exception of condi
tional expressions used in IF statements.

Note:
Symbols “= > ,” “= < ,” and " | ” do not function as relational operators.

Direct Calculation Feature
in the manual calculations described up to now, the |-«— «| key has always been
used to terminate a formula and obtain the calculation result of the formula. How
ever, you can directly operate the functions of the computer with the desired func
tion key (without operating the l-«— 11 key) when the objective numeric data is on
the display.

Example:
Determine sin 30° and 81.
Operation:
D E G R E E !-*——11
C»CE | 3 0 | sin I

3 0
0 . 5

Operation:
C»CE I 8 | /?! | 8

4 0 3 2 0 .

69

Example:
5 5 -1 5For tan-1 — , first check the result of — > then determine tan — .

Operation:
DEGREE | ^ J]
5 F=7] 12 |— 1| [2iid~Fl [tair7]

DEGREE
5/12

0.416666666
22.61986495

It should be noted, however, that this “direct” calculation mode is not available for
functions requiring the entry of more than one numeric value (binominal functions),
such as power, root, or coordinate conversion. The direct calculation feature is effec
tive only for numeric values. Therefore, if hexadecimal numbers A to F are entered
for hex to decimal conversion, the direct calculation feature will remain inoperative.
In such a case, perform an ordinary manual calculation using the |-«— 11 key.
The direct calculation feature is not effective for formulas.

Example:
rĉ CE~l 5 |~Xxl 4-> 5 *4 _
r~iog~] 5X4LOG

If no data is on the display, pressing a function key will display the corresponding
BASIC command.

Priority in Direct Input Calculations
You can enter formulas in the exact order in which they are written, including paren
theses or functions. The order of priority in calculation and treatment of intermediate
results will be executed by the computer.

The internal order of priority in manual calculations is as follows:
1. Recalling variables or PI
2. Function (sin, cos, etc.)
3. Power (a), root (ROT)
4. Sign (+, -)
5. Multiplication and division (* , I)
6. Addition and subtraction (+, -)
7. Comparison of magnitude (>, > = , < , < = , < >, =)
8. Logical AND, OR

Notes:
• If parentheses are used in a formula, the operation given within the parentheses

has the highest priority.
• Composite functions are operated from right to left (sin cos- 1 0.6).

.2
• Chained power (3 or 3 a 4 a 2) is operated from right to left.
• For items 3 and 4 above, the last entry has higher priority.

Example:
-2 A 4—» -(2 4)
3 a - 2 —> 3-2

70

Printing of Direct Input Calculations
calculation steps and results can be printed if the optional printer is connected

l ' c switched on, and the | s h if t | + | MP| keys are pressed (Print mode). Note that
oaojlations made in the CAL mode cannot be printed out.

a printout is not desired, either switch off the printer, or press | shif t | + | MP | again
-.-Print mode).

Calculation Errors
following types of errors occur in ordinary calculators, pocket computers, and

oe'sonal computers:

Errors due to Least Significant Digit Processing
_s jally, the maximum number of digits that can be calculated in a computer is
=:ed. For example, 4/3 results in 1.33333333333-••. In a computer with a maximum

eight digits, the first eight digits are significant digits; other least significant digits
either truncated or rounded.

Example:
Computer with 10 significant digits

10 significant digits

_ ~+71 3 _> 1.33333333333...

Truncated, rounded

herefore the calculated result differs from the true value by the amount truncated
■ rounded. (The difference is the factor of error.)

Example: 4/3 x 3

- ^=7] 3 |3<7| 3 -» 4
i ~T7| 3 -» 1.333333333 1

[X T I 3 F ^ H 3.999999999 }

Calculated in succession

Calculated independently

When calculated in succession, the calculation error is reduced.

.‘/hen calculated independently, the displayed value (10 digits) is used for the cal
culation.

Errors due to Function Determining Algorithms
“ he computer uses a variety of algorithms to calculate the values of functions, such
as power and trigonometric functions. When calculations use these functions, an
additional source of error is introduced. This error factor increases with the number
of functions in the calculation. The actual error for each function varies according to
the values used and is greatest around singularities and inflection points (e.g., when
an angle approaches 90 degrees, the tangent approaches infinity).

71

PART 3

PROGRAM
OPERATION

Part 3 is devoted to the use of the BASIC
programming language as implemented on
the PC-E220*. It begins with a general
discussion of programming concepts, then
moves on to more specific application of
these concepts to the PC-E220. Part 3 con
cludes with some suggestions for program
ming shortcuts, and for tracing bugs in your
program.

This chapter explains the PRO (program)
mode and RUN mode (which was discus
sed in detail in PART 2).

*The PC-E220 is hereafter referred to as
“the computer”.

73

8. CONCEPTSAND
TERMS OF BASIC

In this chapter we will examine some concepts and terms of the BASIC language.

String Constants
In addition to numbers, the computer also uses letters and special symbols in many
ways. These letters, numbers, and special symbols are called characters.

In BASIC, a collection of characters is called a “string”. In order for the computer to
tell the difference between a string and other parts of a program, such as com
mands or variable names, you must enclose the characters of the string in quota
tion marks ("). If you wish to use a double quotation mark as a character, enter
“CHR$&H22”.

The following are examples of string constants:

“HELLO”
“Goodbye”
“SHARP COMPUTER”

The following are not valid string constants:

“COMPUTER No ending quotation mark
“VALUE OF “A”IS” Quotation mark cannot be used within a string

Hexadecimal Numbers
The decimal system is only one of many different systems to represent numbers.
Another that has become quite important when using computers is the hexadecimal
system. The hexadecimal system is based on 16 instead of 10. To write
hexadecimal numbers you use the familiar 0 to 9 and six more “digits”: A, B, C, D,
E, and F. These correspond to 10, 11, 12, 13, 14, and 15. When you want the com
puter to treat a number as hexadecimal, put an ampersand (&) character and “H” in
front of the numeral:

&HA = 10
&H10 = 1 6
&H100 = 256
&HFFFF = 65535

74

Variables
Computers are made up of many tiny memory areas called bytes. Each byte can be
:hought of as a single character. For instance, the word “byte” requires four bytes of
memory because there are four characters in it. To see how many bytes are avail-
able for use, simply enter FRE and press N — ■ I in the RUN mode. The number dis
played is the number of bytes available for writing programs.

"This storage technique works well for words, but is very inefficient when you try to
store numbers. For this reason, numbers are stored in a coded fashion. Thanks to
this coding technique, the computer can store large numbers in only 8 bytes. The
largest number that can be stored is +9.999999999E + 99. The smallest number is
1 .E-99. This gives you quite a wide range. However, if the result of a calculation
exceeds this range, the computer will let you know by displaying an error message
see Appendix B). To check this, enter:

9 |~SHiFfl + r~Exp—I 9 9 [X x] 9 N — »| 9 E 9 9 * 9
ER R O R 2 0

To get the computer working properly again, just press the I c»ce I key. But how do
you go about storing all these numbers and strings? It’s really very easy. The com
puter uses names for different pieces of data. Let’s store the number 556 in the
computer. You may call this number by any name you wish, but for this exercise,
let’s use the letter R. The statement LET can be used to instruct the computer to
assign a value to a variable name, but only in a program statement. Because the
LET command is not usually necessary, we will not use it often.
Enter: R = 556 and press N — 11.
The computer now has the value 556 associated with the letter R. These letters
that are used to store information are called “variables”. To see the content of the
variable R, press the I c«ce I key, the I R I key and the N — 11 key. The computer
responds by showing you the value 556 on the right of the display. This is useful
when writing programs and formulas.

Next, let’s use the R variable in a simple formula. In this formula, the variable R
stands for the radius of a circle whose area we want to find. The formula for the
area of a circle is: A = rcR2. Enter:

R r r ~ | 2 [x71
[SHiFf] + | 7C IN ---- 11

R = 5 5 6
5 5 6 .

R a 2* P I
9 7 1 1 7 9 . 3 8 6 6

The result is 971179.3866.

This technique of using variables in equations will become more understandable as
you get into writing programs.

So far, only numeric variables have been discussed. What about storing alphabetic
characters? Well, the idea is the same, but the computer must know the difference
between the two kinds of variables, so add a $ to the variable name. For instance,
let’s store the word BYTE in the variable B$. Note the $ after the B.

75

This tells the computer that the contents of variable B$ are alphabetic, or string
data. To illustrate this, enter:

B [SHIFT] + I $ | = I SHIFT | + | " |
b y t e rsH iF fi+ n n

Ra 2* PI
971179.3866

B $="BYTE"
BYTE

The string BYTE is now stored in the variable B$. To make sure of this, press the
I c»ce | key and enter the following:

b [sHiFfi + B$
BYTE

Types of variables
Variables handled by the computer are divided into the following:

Numeric variables:
Fixed numeric variables (A to Z)
Simple numeric variables (AB, C1, etc.)
Numeric array variables

String variables:
Fixed string variables (A$ to Z$)
Simple string variables (BB$, C2$, etc.)
String array variables

Fixed Variables
The first type, fixed variables, can be thought of as pre-allocated variables. In other
words, no matter how much memory your program uses, you will always have at
least 26 variables to choose from in which to store data. This data can be one of
two types: NUMERIC or STRING (alphanumeric characters). Fixed memory loca
tions are eight bytes long and can be used for only one type of data at a time.

To illustrate this, enter:

A = 123
A $ [^ u]

You get the message:

ERROR 91

This means that you have put numeric data into the area of memory called A and
then told the computer to show you that information again as STRING data. This
confuses the computer so it says that there is an error condition. Press the I c«ce I
key to clear the error condition. Now try the following example:

a $ = “a b c " r ^ i
A [=]

76

Again, the computer is confused and gives the ERROR 91 message. The variable
name A equals the same area in memory as the variable name A$, and that B
equals B$, and so on for all the letters of the alphabet.

Simple Variables
Simple variable names are specified by alphanumeric characters, such as AB and
C8$. Unlike fixed variables, simple variables have no dedicated storage area in
memory. The area for simple variables is automatically set aside (within the pro
gram and data area) when a simple variable is first used.

Since separate memory areas are defined for simple numeric variables and simple
string variables even if they have the same name, variables such as AB and AB$,
for example, may be used at the same time.

While alphanumeric characters are used for simple variable names, the first charac
ter of a variable name must always be alphabetic and uppercase. More than two
characters may be used to define a variable name, however, only the first two will
be read by the computer.

Notes:
• The functions and BASIC commands inherent to the computer, for example, PI,

IF, TO, ON, SIN, etc., cannot be used as variable names.
• Each simple character variable can hold up to 16 characters and symbols. Each

fixed character variable can hold up to 7 characters and symbols.

Array Variables
Sometimes, it is useful to deal with numbers as an organized group, such as a list
of scores or a tax table. In BASIC these groups are called “arrays". Arrays can be
either one-dimensional, like a list, or two-dimensional, like a table.

Use the DIM (short for dimension) statement to define an array. Arrays must always
be declared before they are used (unlike the single-value variables we have been
using). The form for the DIMension statement is:

DIM array variable name (size)

where:

array variable name is a variable that conforms to the previously discussed
rules for numeric or array variable names.

size is the number of storage locations and must be a number in the range of
0 through 255. Note that when you specify a number for the size, you get one
more storage location than you specified.

Examples of legal numeric and string DIMension statements are:

DIM X(5) -» X (0), X (1), X (2), X (3), X (4), X (5)
DIM AA(24)
DIM Q5(0)

77

The first statement creates an array X with 6 storage locations. The second state
ment creates an array AA with 25 locations. The third statement creates an array
with one location and is actually illogical since (for numbers at least) it is the same
as declaring a single-value numeric variable.

It is important to know that an array variable X and a variable X are separate and
distinct to the computer. The former denotes a series of numeric storage locations,
and the latter denotes a single, entirely different location.

Now that you know how to create arrays, you might be wondering how we refer to
each storage location. Since the entire group has only one name, the way in which
we refer to a single location (called an “element”) is to follow the group name with a
number in parentheses. This number is called a “subscript". For example, to store
the number 8 in the fifth element of our array X (declared previously) we would
write:

X(4) = 8

If the use of 4 is puzzling, remember that the numbering of elements begins at zero
and continues through to the number of elements declared in the DIM statement.

The real power of arrays lies in the ability to use an expression or a variable name
as a subscript.

To declare a string array, a slightly different form of the DIM statement is used:

DIM string variable name (size) xlength

where:

string variable name is a variable name that conforms to the previously
discussed rules for normal string variable names.

size is the number of storage locations and must be in the range of 0 to 255.
Note that when you specify a number, you get one more storage location than
you specified.

xlength is optional. If used, it specifies the length of each of the strings that
compose the array. Length must be a number in the range of 1 to 255. If this
clause is not used, the strings will have the default length of 16 characters.

Examples of legal string array declarations are:

DIM X$(4)
DIM NM$(1O)X1O
DIM IN$(1)x255
DIM R$(0)x26

The first example creates an array of five strings, each able to store 16 characters.
The second DIM statement declares an array NM with eleven strings of 10 charac
ters each. Explicit definition of strings smaller than the default helps to conserve
memory space. The third example declares a two-element array of 255-character
strings, and the last example declares a single string of 26 characters.

78

Besides the simple array you have just studied, the computer allows “two-dimen
sional” arrays. By analogy, a one-dimensional array is a list of data arranged in a
single column. A two-dimensional array is a table of data with rows and columns.
The two-dimensional array is declared by the statement:

DIM numeric array name (rows, columns) or
DIM string array name (rows, columns) ^length
where:

rows specifies the number of rows in the array. This must be a number in the
range of 0 to 255. Note that when you specify the number of rows you get
one more row than the specification.

columns specifies the number of columns in the array. This must be a num
ber in the range of 0 to 255. Note that when you specify the number of
columns you get one more column than the specification.

The following diagram illustrates the storage locations that result from the declara
tion DIM T(2, 3) and the subscripts (now composed of two numbers) that pertain to
each location:

row 0

row 1

row 2

column 0 column 1 column 2 column 3

T (0, 0) T (0 ,1) T (0, 2) T (0, 3)

T (1 ,0) T (1 ,1) T (1 ,2) T (1 ,3)

T (2, 0) T (2 , 1) T (2, 2) T (2, 3)

Note.
Two-dimensional arrays can rapidly use up storage space. For example, an array
with 25 rows and 35 columns uses 875 storage locations!

The following table shows the number of bytes used to define each variable and the
number used by each program statement.

Variable type
Number of bytes used

Variable name Data

Numeric variable
Numeric array variable 7 bytes 8 bytes

String variable 7 bytes 16 bytes

String array variable 7 bytes Specified number

* For example, if DIM Z$ (2,3)x 10 is specified, 12 variables, each capable of stor
ing 10 characters, are reserved. This requires 127 bytes: 7 bytes (variable name)
+ 10 bytes (number of characters) x 12.

Element Line number Statement & function — 1|, others

Number of bytes
used 3 bytes 2 bytes 1 byte

79

Program Files (RAM disk)
Program files are fundamental in the use of your computer.
Part of the computer’s internal memory can be used as a RAM disk. Only programs
can be stored to the RAM disk; no data can be stored to it. The program stored in
the RAM disk must be loaded into the program data area (user area) before it is
executed. (See the BASIC COMMAND DICTIONARY for details regarding SAVE,
LOAD, KILL, FILES.)

Filenames
Before saving to a storage medium such as a RAM disk, a file must be given a
name. This name is used to load the file into computer memory. The filename may
be up to 8 characters in length and can include the following characters:

A - Z, a - z, 0 - 9, #, $, %, &, ’, (,), { ,} , - , @

Extension
A file extension is an additional way of identifying the type of file (e.g., BASIC pro
gram file or text file). The extension consists of three characters added to the end
of the filename and separated from it by a period. The extension is specified when
the file is saved.

BASIC programs are automatically given the extension .BAS when saved using the
SAVE command. When reloaded into memory using the LOAD command, you do
not need to specify the .BAS extension.

When the FILES or LFILES command is used to list the files on the RAM disk,
BASIC programs will appear with the .BAS extension unless some other extension
has been specified by the user when the file was saved.

Expressions
An expression is some combination of variables, constants, and operators that can
be evaluated to a single value. The calculations that you entered previously were
examples of expressions. Expressions are an intrinsic part of BASIC programs. For
example, an expression might be a formula that computes an answer to some equa
tion, a test to determine the relationship between two quantities, or a means to for
mat a set of strings.

Numeric Expressions
A numeric expression is constructed in the same way that you entered compound
calculations. Numeric expressions can contain any meaningful combination of
numeric constants, numeric variables, and the numeric operators. The numeric
operators are:

80

+ Addition
- Subtraction
X Multiplication
I Division
a Power

These are the arithmetic operators that you used when exploring the use of the
computer as a calculator in Chapter 4.
The following are valid numeric expressions:

(A * B) a 2
A(2,3) + A(3,4) + 5.0 - C
(A/B) * (C + D)

String Expressions
String expressions are similar to numeric expressions except that there is only one
string operator — concatenation (+). This is the same symbol used for addition.
When used with a pair of strings, the + attaches the second string to the end of the
first string to make one longer string. You should take care when making complex
string concatenations and other string operations because the work space available
for string calculations is limited to 255 characters (see page 169).

Note:
String quantities and numeric quantities cannot be combined in the same expres
sion unless one of the functions that converts a string value into a numeric value,
or vice versa, is used:

“15” + 10 is illegal
“15" + “10” is “1510”, not “25”

Relational Expressions
A relational expression compares two expressions and determines whether the
stated relationship is true or false. The relational operators are:

> Greater than
> = Greater than or Equal to
= Equal to
< > Not equal to
< = Less than or Equal to
< Less than

The following are valid relational expressions:

A < B
C(1,2) > = 5
D(3) < > 8

81

If A is equal to 10, B equal to 12, C(1,2) equal to 6, and D(3) equal to 9, all of
these relational expressions will be true.

Character strings can also be compared in relational expressions. The two strings
are compared character by character according to their ASCII value starting at the
first character (see Appendix C). If one string is shorter than the other, a 0 or NULL
will be used for any missing positions. All of the following relational expressions are
true:

“ABCDEF” = “ABCDEF”
“ABCDEF" < > “ABCDE”
“ABCDEF” > “ABCDE”

Relational expressions evaluate to true or false. The computer represents true by a
-1 , and false by a 0.

Logical Expressions
Logical operations use the Boolean algebra functions AND, OR, and NOT to build
connections between relational expressions. The logical operations in a single
expression are evaluated after arithmetic and relational operations.

In this way, logical operators can be used to make program decisions based on mul
tiple conditions using the IF ... THEN statement.

Example:

IF A < = 32 AND B > = 90 THEN 150

This statement causes execution to jump to line number 150 if the value of the
numeric variable A is less than or equal to 32 and, at the same time, the value of
numeric variable B is greater than or equal to 90.

IF X < > 1 3 O R Y = 0 THEN 50

This statement causes execution to jump to line 50 unless variable X has the value
13, or if variable Y is equal to 0.

In a logical operation involving two numbers in the range -32768 to +32767, the
two numbers are converted into 16-bit binary integers (in two’s complement form)
and the logical connection is then evaluated for each corresponding pair of bits in
the two numbers.

The results returned by the logical operators for these bit evaluations are:

AND OR NOT

X Y X A N D Y X Y XO R Y X NOTX
1 1 1 1 1 1 1 0
1 0 0 1 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0

82

After each bit pair has returned the corresponding result (a 1 or a 0) according to
the above tables, the resulting 16-bit binary number is converted back to a decimal
value. This number is the result of the logical operation.

Example:
41 AND 27 -»
equals
9

41 OR 27 -»
equals
59

4 1 = 1 0 1 0 0 1 AND
27 = 011011

<-001001

41 = 101001 n p
27 = 011011

NOT 3 ->
equals

3 = 0000000000000011 N 0 T

-4 (two’s complement form) <- 1111111111111100

NOT X can generally be calculated by the equation NOT X = -(X+1).

Parentheses and Operator Precedence
When evaluating complex expressions, the computer follows a predefined set of
priorities that determine the sequence in which operators are evaluated.

5 + 2 * 3 could be

5 + 2 = 7 or 2 * 3 = 6
7 * 3 = 21 6 + 5 = 11

The exact rules of “operator precedence" are given on page 70.

To avoid having to remember all these rules, and to make your program more
precise, always use parentheses to determine the sequence of evaluation. The
above example is clarified by writing:

(5 + 2) * 3 or 5 + (2 * 3)

83

9. PROGRAMMING

In the previous chapter, you examined some of the concepts and terms of the
BASIC programming language. In this chapter, you will use these elements to cre
ate programs. However, this is not a manual on how to program in BASIC. This
chapter will provide a general explanation of how to use BASIC on your computer.

Programs
A program consists of a set of instructions to the computer. Remember that the
computer is only a machine. It will perform the exact operations that you specify.
You, the programmer, are responsible for issuing the correct instructions.

BASIC Statements
The computer interprets instructions according to a predetermined format. This for
mat is called a statement. You must always enter BASIC statements in the same
pattern. Statements must be preceded by a line number.

Example:
10: INPUT A
20: PRINT A*A
30: END

Line Numbers
Each line of a program must have a unique line number that is any integer between
1 and 65279. Line numbers are the reference for the computer. They tell the com
puter the order in which to run the program, and at which line to start. You need
not enter lines in sequential order (although if you are a beginning programmer, it is
probably less confusing to do so). The computer always begins execution with the
lowest line number and moves sequentially through the lines of the program in
ascending order.

You can use the AUTO command to automatically insert line numbers for you.
Each time you press the !■«— U key, a new line number, with the correct increment,
will be automatically inserted. (See the BASIC COMMAND DICTIONARY for a full
description of this useful function.)

It is wise to allow increments of several numbers in your line numbering (10, 20,
30, ... 10, 30, 50, etc.). This will enable you to insert additional lines if necessary.

84

If you use the same line number more than once, the old line will be deleted when
you enter the new line.

Labelled Programs
Often you will want to store several different programs in memory at one time.
(Remember that each must have unique line numbers). Normally, to start a program
with a RUN or GOTO command, you need to remember the beginning line number
of each program. However, there is an easier way. You can label each program
with alphanumeric characters and run the program.

Label the first line of each program that you want to reference. The label consists
of a letter and alphanumeric characters, with x in front of it or in quotes, followed
by a colon.

Example:
10: XA: PRINT "FIRST'
20: END
80: "B": PRINT "SECOND"
90: END

Although both xlabel and “label" forms may be used, xlabel is recommended, since
it executes more quickly and is more visible in the program listing.

BASIC Commands
All BASIC statements must contain commands. They tell the computer what action
to perform. A command is contained in a program, and as such is not acted upon
immediately. Some statements require or allow an operand.

Example:
10: DATA "HELLO"
20: READ B$
30: PRINT B$
40: END

Operands provide information to the computer telling it what data the command will
act upon. Some commands require operands; with other commands they are option
al. Certain commands do not allow operands. (See the BASIC COMMAND DIC
TIONARY for BASIC commands and their uses.)

Note:
Commands, functions and variables entered in lowercase characters will be con
verted to uppercase characters.

85

Direct Commands
Direct commands are instructions to the computer that are entered outside of a pro
gram. They instruct the computer to perform some immediate action or set modes
that affect how your programs are executed.

Direct commands have immediate effect — as soon as you complete entering direct
commands (by pressing the !■«— 1| key), the command will be executed. Direct com
mands are not preceded by a line number.

RUN
NEW
RADIAN

Modes
Remember that you can set the computer in the CAL or RUN mode when using it
as a calculator. The RUN mode is also used to execute the programs you create.
The PRO (program) mode is used to enter and edit your programs.

Beginning to Program
Now you are ready to program!
After all your practice in using the computer as a calculator, you are probably quite
at home with the keyboard. From now on, when we show an entry, we will not
show every keystroke. Remember to use the I shif t | key to access characters above
the keys and to end every line by pressing the N — 11 key.

To enter program statements into the computer, the computer must first be placed
in the PRO mode using the I basic I key. The following will appear:

Enter the NEW command.
NEW R ^ T |

The NEW command clears the memory of all existing programs and data. The
prompt appears after you press the I— < I key, indicating that the computer is await
ing input.

86

Entering and Running a Program
Make sure the computer is in the PRO mode and enter the following program:

1 0 P R I N T
[SHiFfl + F l H E L L O
I SHIFT | + | " |

P R O G R A M M ODENEW1 O P R I N T " H E L L O "
Notice that the computer automatically inserts the colon between the line number
and the command when you press the — 1| key.

Check that the statement is in the correct format and then change the mode to
RUN by pressing the I basic I key.

[c^c eI R U N RUNH E L L O
Since this is the only line of the program, the computer will exit the program and
return to the BASIC prompt “ > ”.

Editing a Program
Suppose you wanted to change the message that your program was displaying.
That is, you wanted to edit your program. With a single line program you could just
retype the entry, but as you develop more complex programs, editing becomes a
very important component of your programming. Let’s edit the program you have
just written.

Are you still in the RUN mode? If so, switch back to the PRO mode.

You need to recall your program in order to edit it. Use the up arrow key | t | to
recall your program. If your program was completely executed, the I t I key will
recall the last line of the program. If there was an error in the program, or if you
used the I br eak I key to stop execution, the I t I key will recall the line in which the
error or break occurred. To make changes in your program, use the I t I key to
move up in your program (recall the previous line) and the I ♦ I key to move down
in your program (display the next line). If held down, the I t I or I I I key will scroll
vertically (up or down) through your program.

Remember that to move the cursor within the program line you use the I ► I (right
arrow) and I I (left arrow) keys.

Using the I ► I key, position the cursor over the first character you wish to change:

|~T~| 1 0 : P R I N T " H E L L O "

87

1 0 P R IN T " H E L L O "

Notice that the cursor is now in the flashing block form, indicating that it is on top of
an existing character. Enter:

G O O D B Y E [s h if t] +
I SHIFT I + [~~T~|

1 0 P R IN T "G O O D B Y E " !

Remember to press the l-«— 11 key at the end of the line. Change to the RUN mode.

RUN MODE
RUN
E R R O R 1 0 IN 10

The error message indicates the type of error, and the line number in which the
error occurred.

Press the I c«ce I key to clear the error condition.

And return to the PRO mode. You must be in the PRO mode to make changes in a
program. Using | t I (or I I I), recall the line in which the error occurred.

I t I (or [~T~|) 1 0 P R IN T " G O O D B Y E "!

The flashing cursor is positioned over the problem area. You learned that when
entering string constants in BASIC all characters must be contained within quotation
marks. Use the DELete key to eliminate the “ I”.

1 0 P R IN T "GOOD BYE

Now let’s put the I in the correct location. When editing programs, DELete and
INSert are used in exactly the same way as they are in editing calculations. Using
I < I, position the cursor on top of the character that will be the first character fol
lowing the insertion.
Press the INSert key. A blank will indicate where the new data will be entered:

I 11 INS | 1 0 P R IN T "G O O D B Y E "

88

Enter the !. The display looks like this:

rsHiFf] + r~ r~ i 1 0 P R IN T " G O O D B Y E !’*

Remember to press the |-«— 11 key so the correction will be entered into the pro
gram.

Notes:
• If you wish to DELete an entire line from your program, just enter the line num

ber and the original line will be eliminated. The DELETE command can be used
to delete more than one line at a time.

• In the PRO mode, if keys are pressed when the cursor is not displayed, their cor
responding characters are usually displayed from the leftmost column of the dis
play. However, if the I ► I or | | key is pressed when the cursor is displayed,
successive key entries are displayed starting from the cursor position.

Using Variables in Programming
If you are unfamiliar with the use of numeric and string variables in BASIC, reread
the appropriate sections in Chapter 8.
Using variables in programming allows more sophisticated use of the computer’s
abilities.
Remember, you assign fixed numeric variables using any letter from A to Z:

A = 5

To assign string variables you use a letter followed by a dollar sign.

Do not use the same letter in designating a numeric and a string fixed vari
able. You cannot designate A and A$ in the same program.

Remember that each string fixed variable must not exceed 7 characters in length:

A$ = "TOTAL”

The values assigned to a variable can change during the execution of a program,
taking on the values entered or computed during the program. One way to assign a
variable is to use the INPUT command. In the following program, the value of A$
will change in response to the data entered in answer to the inquiry “WORD?”.

Enter this program:

10: INPUT "WORD?";A$
20: B=LEN(A$)
30: PRINT "THE WORD (";A$;") HAS”
40: PRINT B;" LETTERS"
50: END

Note: =
To enter the “=” sign, press the I shif t | + | l I keys.

89

The second new element in this program is the use of the END statement to signal
the completion of a program. END tells the computer that the program is com
pleted. It is always good programming practice to use an END statement.

As your programs get more complex you may wish to review them before you begin
execution. To look at your program, use the LIST command. LIST, which can only
be used in the PRO mode, displays program lines beginning with the lowest line
number.

Try listing the above program:
l i s t 1 0 : IN P U T " W O R D ? " ;A $

2 0 : B= LEN (A $)
3 0 : P R I N T "T H E W O R D (" ; A$

; ") H A S "

Use the I t I and I I I keys to move through your program until you have reviewed
the entire program. After checking your program, change to the RUN mode:

Fc ĉeI R U N C T

H E L P Fi— <1

RUN
WORD ?

WORD ?HE LP
THE WORD (H E L P) HAS
4 . L E T T E R S

This is the end of your program. Of course you may begin it again by entering
RUN. However, this program would be a bit more entertaining if it presented more
than one opportunity for input. We will now modify the program so it will keep run
ning without entering RUN after each answer.

Return to the PRO mode and use the I t I or | I I key (or LIST) to reach line 50,
or enter:
L I S T 5 0 F J] 5 0 : END

You may enter 50 to delete the entire line or use the I ► I key to position the cur
sor over the E in END. Change line 50 so that it reads:

50: GOTO 10

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same opera
tion). Since you put no limit on the loop it will keep going forever (an “infinite" loop).
To stop this program press the I br eak I key.

90

When you have stopped a program using the I br eak I key, you can restart it using
the CONT command. CONT stands for CONTinue. With the CONT command the
program will restart on the line that was being executed when the I br eak I key was
pressed.

More Complex Programming
The following program computes N factorial (Nl). The program begins with 1 and
computes N! up to the limit that you enter. Enter this program:

100: F = 1: WAIT 128
110: INPUT "LIMIT?";L
120: FOR N = 1 TO L
130: F = FxN
140: PRINT N,F
150: NEXT N
160: END

Several new features are contained in this program. The WAIT command in line
100 controls the time that displays are held before the program continues. The num
bers and their factorials are displayed as they are computed. The time they appear
on the display is set by the WAIT statement to approximately 2 seconds.

Notice that there are two statements in line 100 separated by a colon (:). You may
put as many statements as you wish on one line (separating each by a colon) up to
a maximum of 255 characters. Multiple-statement lines can make a program hard to
read and modify, so it is good programming practice to use them only where the
statements are very simple or there is some special reason to want the statements
on one line.

In this program we have used the FOR command in line 120 and the NEXT com
mand in line 150 to create a loop. In a previous program you created an infinite
loop that kept repeating the statements inside the loop until you pressed the I br eak I
key. With this FOR...NEXT loop, the computer adds 1 to N each time execution
reaches the NEXT command. It then tests to see if N is larger that the limit L. If N
is less than or equal to L, execution returns to the top of the loop and the state
ments are executed again. If N is greater than L, execution continues to line 160
and the program stops.

You may use any fixed numeric variable or single-precision simple numeric variable
in a FOR...NEXT loop. You do not have to start counting at 1, and you can incre
ment any amount at each step. (See the BASIC COMMAND DICTIONARY for
details.)

We have labeled this program with line numbers starting with 100. Labeling
programs with different line numbers allows you to have several programs in
memory at one time. To RUN this program instead of the one at line 10, change to
the RUN mode and enter:

R U N 1 0 0

91

You could also give the program a name using a label and start the program with
RUN xlabel.

Notes on the PRINT command:
If more than four lines must be displayed, the first lines will scroll up off the display,
and cannot be recalled. Use the WAIT command in the program to display data
more slowly, or use the printer. (See the BASIC COMMAND DICTIONARY for
details about the WAIT or LPRINT command.)

The WAIT command applies to every PRINT command. Break long PRINT com
mands into a number of shorter commands if the display scrolls too quickly.

Example:
100 PRINT A, B......P

1
100 PRINT A, B......H: PRINT I, JP

Since the WAIT command is not supported by many personal computers, a wait
loop such as FOR J=1 TO 500:NEXT J can also be used to extend the display time.

Storing Programs in Memory
You will remember that settings and functions remain in the computer even after it
is turned off. Programs also remain in memory when you turn off the computer, or it
undergoes an Auto OFF. Even if you use the I br eak I , I c«ce | , or I shif t I + I ca I
keys, the programs will remain in memory.

Programs are lost from memory only when you:

• Enter NEW before beginning programming in the PRO mode.
• Initialize the computer using the RESET button.
• Create a new program using the same line numbers as a program already in

memory.

Program Execution
More than one program can be stored in the computer if the memory capacity is
not exceeded. Execute the second or subsequent program using one of the follow
ing:
The RUN command: RUN line n u m b e r — 1|
The GOTO command: GOTO line number |-«— 1|
Execution begins from the specified line number. If a label such as *AB is entered
in the program, the program can be executed by entering RUN*AB |-«— »|.

92

The following lists the differences between the variables and status when a program
is executed using the GOTO and RUN commands.

Execution using RUN Execution using GOTO

• Clears the WAIT setting.
• Clears the USING format.
• Clears array and simple variables.
• Initializes the DATA statement for the

READ statement.
• Clears the PRINT=LPRINT setting.
• Closes the parallel port.

• Retains the WAIT setting.
• Retains the USING format.
• Retains array and simple variables.
• Does not initialize the DATA statement

for the READ statement.
• Retains the PRINT=LPRINT setting.
• Leaves the parallel port open.

Note:
When the program is executed using the RUN command, variables for data are
cleared. (Fixed variables are retained.) To retain the data, execute using the GOTO
command.

10. DEBUGGING

After entering a new BASIC program, it often does not work the first time. Even if
you are simply entering a program that you know is correct, such as those in this
manual, it is common to make at least one typing error. The program may also con
tain at least one logic error.

Following are some general hints on how to find and correct your errors.
If you run your program and get an error message:

1. Go back to the PRO mode and use the I t I or | I I key to recall the line with
the error. The cursor will be positioned at the place in the line where the error
ocurred.

2. If you cannot find an obvious syntax error, the problem may lie with the values
that are being used. For example, CHR$(A) will produce a space if A has a
value of 1. Check the values of the variables in either the RUN or PRO mode by
entering the name of the variable and pressing the I - — »I key.

If you run the program and don’t get an error message, but the program doesn’t do
what you expect:

1. Check through the program line by line using LIST and the I t I and I I I keys
to see if you have entered the program correctly. It is surprising how many errors
can be found by just taking another look at the program.

2. Think about each line as you go through the program as if you were the com
puter. Take sample values and try to apply the operation in each line to see if
you get the result that you expected.

3. Insert one or more extra PRINT statements in your program to display key
values and key locations. Use these to isolate the parts of the program that are
working correctly from the location of the error. This approach is also useful for
determining which parts of a program have been executed. You can also use
STOP to temporarily halt execution at critical points so that several variables can
be examined.

4. Use TRON (Trace ON) and TROFF (Trace OFF), either as direct commands or
within the program to trace the flow of the program through individual lines. Stop
to examine the contents of critical variables at crucial points. This is a very slow
way to find a problem, but it is sometimes the only way.

Trace mode
No matter how careful you are, eventually you will create a program that does not
do quite what you expect it to. To isolate the problem, BASIC has a special method
of executing programs known as the “Trace” mode.

94

TRON (Trace ON) starts TRACE mode. The TRON instruction may be issued as a
direct command (in RUN mode) or it may be embedded within a program. Used as
a direct command, TRON informs the computer that tracing is required during the
execution of all subsequent programs. The programs to be traced are then started
in a normal manner, with a GOTO or RUN command. If TRON is used as a state
ment, it will initiate the TRACE mode only when the line containing it is executed. If,
for some reason, that line is never reached, TRACE mode will remain inactive.

Debugging Procedures
1. Set the computer to the RUN mode.
2. Enter TRON |-«— 1| to specify the TRACE mode.
3. Enter RUN — 11 to execute the program. After executing each line, the com

puter will suspend execution, displaying the number of the line just executed.
4. Press the | 4 | key to move to the line to be checked. Holding the | I | key will

execute the program step by step. Releasing the key will stop program execu
tion. You can view the contents of the trace line by holding down the | t | key.
(When you release the | t | key, the command line prompt will appear. To con
tinue trace execution, press the | 4 | key.)

5. To resume execution, enter CONT|-«— 1|. However, if execution is interrupted
during data entry using the INPUT command, just press the — 11 key as for
usual program continuation.

6. Continue the trace procedure and check if the program is executing properly by
confirming program execution order and variable contents after each line is
executed. If the program is not executing properly, correct the logic.

7. After debugging, enter TROFF |-«— »| to exit the TRACE mode.

Example:
10 INPUT "A=";A,"B=";B
20 C=A*2
30 D=B*3
40 PRINT "C=";C;" D=";D
50 END

Run the program.
RUN mode

10:
20:
30:
C=16. D=27.
40:

Execute INPUT command

When execution is interrupted with the | br eak | key, recall the variables manually and
check that the values are as expected. Pressing the | 4 | key will execute one line
at a time and entering CO NT|-«— 1| will execute the lines continuously.

95

Notes:
• If a result or other information is displayed at a location specified by the LOCATE

command, the next line number will appear on the line next to that location. (See
the BASIC COMMAND DICTIONARY for details of the LOCATE command.)

• If you manually recall a variable or do manual calculation when a location has
been specified with the LOCATE command, the specification will be cleared.

• The TRACE mode will remain in effect unless TROFF |-«— 1| is entered, the
I shif t I + I ca I keys are pressed, or the power is turned off.

• If a comment line is executed in the TRACE mode, the line number for that com
ment line will not be displayed. In this case, the number of the last executed line
other than the comment line will be displayed.

To debug by interrupting program execution, perform one of the following:
• Press the I br eak I key during program execution.
• Enter the STOP command at the location to be stopped.

The Break message will be displayed and execution will be interrupted. Then:

1. Check the variable contents manually.
2. Press the I ♦ I key to execute subsequent statements line by line.

Enter CONT — 11 to return to previous operation.

• A program interrupted by the I br eak I key or the STOP command can be ex
ecuted line by line by pressing the I 4 I key.

PART 4

ASSEMBLER
OPERATION

The PC-E220* has a built-in Assembler that
allows the user to learn machine language.
Part 4 explains how to write a source pro
gram in ASCII format in the TEXT mode,
and how to convert TEXT and BASIC
programs.
Chapter 12 explains how to execute the
assembled program (or “object") in the
Monitor mode.

* The PC-E220 is hereafter referred to as
“the computer".

11. TEXT MODE
(TEXT EDITOR)

The TEXT mode (text editor) allows you to write or edit programs in ASCII format,
and input and output them through the SIO.
All BASIC commands for the computer are stored in a 2-byte format called “inter
mediate code”. Because this code will differ depending on the hardware or BASIC
interpreter being used, the code cannot be used for communications between
personal computers or other devices. ASCII code is generally used for data com
munications between personal computers since ASCII representations of alphanu
meric characters and basic symbols are the same regardless of the hardware being
used.
The TEXT mode of the computer allows you to write, edit, or save programs in
ASCII, or to translate the program from intermediate code (BASIC) into ASCII, or
vice versa.
This chapter describes the TEXT mode functions.

Text Mode Functions
The functions available in the TEXT mode are:
I shif t I + I t ext I TEXT mode (Text Editor)

• Edit (Programming and program editing)
• Del (Program deletion)
• Print (Program listing output to printer)
• Cmt (Program I/O to cassette tape)

Save (write)
Load (read)
Verify (compare)

• Sio (Serial I/O)
Save (send)
Load (read)
Format (set parameters)

• File (I/O to RAM disk)
Save (register a filename)
Load (recall)
Kill (delete file)
Files (recall a filename)

• Basic (Program conversion between BASIC and TEXT
formats)

Basic <- text (converts from TEXT to BASIC)
Text <- basic (converts from BASIC to TEXT)

98

* * * TEXT E D I T O R * * *

Edit Del Print Cmt
S i o File Basic

Selecting the TEXT Mode
To select the TEXT mode, press the
I shif t I + I t ext 1 keys. The computer will
display the TEXT EDITOR screen, as
shown. This screen is also called the
Main Menu.
From this menu select the desired function by entering the first letter (shown capital
ized) of the function name. Once a function is selected, the computer may display a
submenu for that function, or directly execute the selected function.

Notes:
• To stop a function from being executed, or to return to a function submenu or the

Main Menu, press the I br eak I key. Use the I c«ce | key to clear an error or delete
one or more characters that have been entered (e.g. the filename).

• Exit the TEXT mode by selecting any other mode or by turning the computer off
and then on again.

Edit
To select the Edit mode from the Main Menu, press the I E I key.

m TEXT E D I T O R

In the Edit mode, the command line prompt is “ < ” (instead of “ > ”, as in the
BASIC mode).
As with BASIC programs, each line of a TEXT program must be preceded by a line
number. However, with a TEXT program, the computer does not automatically
insert a colon (:) after each line number as it does in BASIC programs, nor does it
insert a space following each entered command. Each line will appear just as you
type it.

Notes:
• Program line numbers are automatically sorted into ascending order.
• The range of line numbers that can be used in a program is from 1 to 65279. If

this range is exceeded or no line number is entered, an error message (LINE
NO. ERROR) will be displayed. Press the I c«ce I key to clear the error.

To return to the Main Menu, press I br eak |.

Note:
A TEXT line cannot begin with a numeral directly following the line number. If you
wish to begin a line with a numeral, separate it from the line number with a single
quote (’).

Example:
5 0 ’ 1 CONFORM AT (17X, A) [^ T]

t— Single quote

--------- Line number

99

(Sample Programming) Enter the following program:
10INPUT A
20B=A x A
30PRINT A, B
40END

10INPUT [SPACE] A F ^ H
20B=A x A F ^ T |
30PRINT [SPACE] A, B F ^ T |
40END [Z 3]

10INPUT A
2 0B = A*A
30PRINT A ,B
4 0 END

Note:
See page 120 for details about assembling the sample TEXT program.

Program Editing
You edit a TEXT program in much the same way that you would a BASIC program.
(See the explanation of BASIC programming in chapter 9.)
The L (List) and R (Renumber) commands in the TEXT mode take the place of the
LIST and RENUM commands in BASIC. (For details of the L and R commands,
see the explanations for the LIST and RENUM commands in the BASIC command
dictionary.)
However, if you execute the R command in a TEXT program that has been con
verted from a BASIC program, it will renumber only those line numbers at the begin
ning of each line, but will not change line numbers within the GOTO, THEN,
GOSUB, or RESTORE command statement. As a result, the program will not run
properly if it is converted back to BASIC.

L Command Formats:
(D L F ^ l _____
(2) L line number |-«— »|
(3) L label F ^ H

R Command Format:
R [new line number][,[starting fine][,increment]] !•«— 1|

The I t ab I Key
In the Edit mode, the I t ab I key lets you position the cursor at tab positions.

TEXT EDITOR

t t t t
Starting position Tab1 Tab 2 Tab3
(column 0) (columns) (column 14) (column 21)

When you first press the I t ab I key, the cursor advances to the eighth column.
Pressing it a second time moves the cursor to the fourteenth column (six columns
from the first tab position). Each time you subsequently press the key, the cursor
will advance seven columns.

100

Deleting a TEXT Program (Del)
To select the Delete mode, press the I d I key at the Main Menu.

r~p—i xxx TEXT EDITOR ***
TEXT DELETE OK? (Y)

If I y I is pressed, the memory’s TEXT area will be cleared of all contents includ
ing the TEXT program, and the Main Menu will be displayed.
If any key other than I y I is pressed, the computer returns to the Main Menu
without executing deletion.

Note:
If no text has been stored in the text area, nothing will happen when you press
I d I at the Main Menu.

Printing a TEXT Program Listing (Print)
Connect the optional CE-126P printer to the computer, and turn on the computer
and printer. Press I P I at the Main Menu, and the TEXT program stored in the
memory’s text area will be printed.

L p_I xxx TEXT EDITOR **x
--- PRINTING ---

When printing is completed, the computer will return to the Main Menu.

Note:
To abort printing, press the I br eak I key. If the printer is not turned on or is not con
nected to the computer, nothing will happen when you press | p I at the Main
Menu.

Saving, Loading, and Verifying a TEXT Program with
Cassette Tape (Cmt)
Press the I c I key at the Main Menu, and the computer will display the Cassette
Menu (CMT).

r a < < CMT
Save Load Verify

From the Cassette Menu, select the function you want to execute — Save, Load or
Verify — by typing in the first letter of the name of the desired function.

Before selecting any function, connect the optional CE-126P printer and cassette
tape recorder to the computer and prepare for saving (record) or loading (playback).

101

Saving a program to cassette tape (Save)
Press the I s I key at the Cassette Menu (CMT), and the computer will prompt
you for the name of the file you want to save.

L_s_J << CMT >>
•♦Save Load Verify
FILE NAME=?

Enter the filename, then press N — >1, and saving of the program will begin.

Example:
Save a file with the filename “TEXT’

TEXT << CMT >>
■♦Save Load Verify
FILE NAME=TEXT

<< CMT >>
--- SAVING ---

When saving is completed, the computer will return to the Cassette Menu (CMT).
To verify that the file was successfully saved, select the Verify function from the
Cassette Menu.

Notes:
• If you press the |<— 1| key at the filename prompt without entering a filename,

the program will be saved to the cassette tape without a filename.
• A filename can be up to eight characters long.
• If no TEXT file has been stored, the computer will return to the Cassette Menu

when you press the N — < I key at the filename prompt.

Saving/loading the entire contents of the RAM disk
You can use a wild card (*.*) to save all the files stored on the RAM disk. Enter
“* .x ” at the filename prompt. (You’ll find this is convenient to temporarily save the
entire contents of the RAM disk in order to arrange the necessary machine code
area.)
To load all the files from a cassette tape, use the wild card (“x .x ”) at the filename
prompt after you select the Load function at the Cassette Menu. The files will be
loaded in the format they were written in (e.g. ASCII or BASIC intermediate code)

102

Loading a program from a cassette tape
Press the I L I key at the Cassette Menu (CMT), and the computer will prompt
you for the name of the file you want to load.

L U << CMT >>
Save -*Load Verify

F ILE NAME=?

Enter the name of the file to load, then press N — iI , and the computer will begin
loading the program.

Example:
Load a file with the filename “TEXT’

TE XTP J 1 << CMT >>
--- LOADING ---

The computer searches for the specified filename (TEXT, in this example) on the
tape and loads the ASCII contents of the file into the text area.
While the program is loading, an asterisk (x) appears in the lower right corner of
the display.
When loading is completed, the asterisk disappears, and the computer will return to
the Cassette Menu. To verify that the file was successfully loaded, select the Verify
function from the Cassette Menu to check the contents of the loaded file.

Notes:
• If you press the N — 1| key at the filename prompt without entering a filename,

the computer will load the first ASCII file that was encountered after the tape
began running.

• If the specified file is not found, the computer will continue searching after the
tape stops. Press the I br eak I key to stop the search.

• If an error occurs during loading or loading is aborted with the I br eak I key, only
the portion of the file that was loaded up to that point will be in the text area.

Verifying the contents of a saved/loaded file
The Verify function lets you confirm that a program has been properly saved to a
cassette tape or loaded from it.

Press the I V I key on the Cassette Menu to select the Verify function. The com
puter will prompt you for the name of the file you want to verify.

U d << CMT >>
Save Load -►Verify

FILE NAME=?

Enter the name of the file to verify, then press N — 11, and the computer will begin
the verification operation.

103

Example:
Verify the contents of a file with the filename “TEXT"

T E X T [^] << CM ! >>

------ V E R IF Y IN G ------

The computer searches for the specified file (TEXT, in this example) on the tape
and compares the ASCII contents of the file with the contents loaded into the text
area. During comparison, an asterisk (*) appears in the lower right corner of the dis
play. When verification is completed, the asterisk disappears and the computer will
return to the Cassette Menu.
If a data mismatch is found, an error message (VERIFY ERROR) is displayed.

Notes:
• If you press — »| at the filename prompt without typing a filename, the com

puter will verify the first ASCII file that was encountered after the tape began run
ning.

• If the specified file is not found, the computer will continue searching after the
tape stops. Press the I br eak | key to stop the search.

Serial I/O (Sio)
Press the I s I
(SIO) Menu.

I s I

key at the Main Menu, and the computer will display the Serial I/O

<< s i o >>

S a v e L o a d F o r m a t

Select any of the three SIO functions — Save, Load, and Format — from this
menu. Enter the first letter of the name of the desired function.

Setting I/O parameters (Format)
Format lets you set the serial communication parameters. The communication
parameters must be matched to those on the device the computer is communicat
ing with.

Press the I F I key at the Serial I/O Menu, and a help screen will be displayed.
Press any key or wait a short while and a display of the communication parameter
setup will follow.

i~f~i

Press any key or wait a short while
and the display shown will appear.

<< S I O >>
S e l e c t J. k e y
S e t J k e y

------ p u s h a n y k e y ------

-►b a n d r a t e = 1 2 0 0
d a t a b i t = 8
s t o p b i t = 1
p a r i t y = n o n e

104

■* indicates the parameter selection. To move -*■ to select a parameter to change,
use the I » I or | ♦ I key. Seven parameters can be set. Parameters can be
scrolled onto the display by pressing the I 4 I key.

m
parity =none
end of line = CR LF
end of file =1A

*line number =yes

Use the I ► | or I I key to change a setting. The setting for the "end of file”
parameter, however, must be entered manually. After making a change, press
I - — 11 to store the change in memory. If the new setting is not stored, the computer
will use the previous parameter setting.

Explanation of communication parameters
• Baud rate : 300, 600, 1200, 2400, 4800

Baud rate specifies the speed of data transfer. The greater the
baud rate, the higher the speed of data transfer. You can select a
baud rate of 300, 600, 1200, 2400, or 4800 bps (bits per second).

• Data bit : 7 or 8
The data bit specifies how many bits will be included in a single
character of data. Either 7 or 8 bits can be specified.

Stop bit : 1 or 2
The stop bit specifies the length of the stop bit at the end of each
piece of data.

Parity : none, even, or odd
The parity specifies the type of parity checking (error detection).
none ... No parity bit is added to transferred data (no error check
ing).
even ... Specifies even parity.
odd ... Specifies odd parity.

End of line : CR, LF, or CR + LF
End of line specifies the delimiter code used to indicate the end of
each program line.
CR ... Specifies a carriage return (CR) code.
LF ... Specifies a line feed (LF) code.
CR + LF ... Specifies CR and LF codes.

End of file : 00 to FF (2-digit hex numeral)
End of file specifies the end-of-text code used to indicate the end
of a program or other file.

Line number: yes or no
The line number selects whether to send a TEXT program with or
without line numbers.
yes ... Program is sent with line numbers.
no ... Program is sent without line numbers.
The line number also selects whether or not line numbers (in incre
ments of 10) are to be automatically assigned to program lines as
they are received.
yes ... Line numbers are not assigned. Select “yes” when the pro
gram being received already has line numbers.
no ... Line numbers are automatically assigned.
An error message (LINE NO. ERROR) will be displayed if the
received file has no line numbers though "yes” was specified.

105

On the computer, the communication
parameters are initially set to the values shown:

You can change the values of these
parameters as described under “Setting I/O
parameters (Format).” Once changed and
stored in memory, the parameter values are
retained until the RESET button is pressed to
clear memory, the battery is replaced, or the
settings are again changed.

Parameter Condition

baud rate 1200

data bit 8

stop bit 1

parity none

end of line CR LF

end of file 1 A

line number yes

Sending programs (Save)
Press the I s I key at the Serial I/O Menu, and the computer will begin sending a
TEXT program through the serial I/O port.

r~s~i sio >>
--- SENDING ---

When sending is completed, the computer will return to the Serial I/O Menu.

Notes:
• Press the I br eak I key to abort sending. The computer will return to the Serial I/O

Menu.
• If no program is stored in the text area, nothing will happen when the I s I key

is pressed.

Receiving programs (Load)
Press the I l I key at the Serial I/O Menu, and the computer will begin receiving a
TEXT program through the serial I/O port.

L_U << SIO >>
--- RECEIVING ---

When receiving is completed, the computer will return to the Serial I/O Menu.

Notes:
• Press the I br eak | key to abort receiving. The computer will return to the Serial I/O

Menu.
• An error message (I/O DEVICE ERROR) will be displayed if the program was

not properly received or a parity error occurred. Press the I c«ce I key to clear the
error.

106

Program File (File)
Press the I f I key at the Main Menu, and the computer will display the Program
File Menu.

EZO << PROGRAM FILE >>
Save Load Kill Files

Select any of the functions — Save, Load, Kill, and Files — from this menu. Enter
the first letter of the name of the desired function.

Registering a TEXT program (Save)
Registering a TEXT program means assigning a name to it. The computer then
references this name when carrying out operations on the file.
Press the I s I key at the Program File Menu, and the computer will prompt you
for the name of the file you want to register.

E C << PROGRAM FILE >>
-*Save Load Kill Files
FILE NAME=?

Enter the filename, and press — J |. The computer will register the file.

Example:
Register a file with the filename “TEST"

TEST << PROGRAM FILE >>
■♦Save Load Kill Files
FILE NAME=TEST

< < P ROGRAM FILE > >
Save Load Kill Files

The computer registers the file "TEST”, then returns to the Program File Menu.

Notes:
• Once the Save function has been selected from the Program File Menu, a

filename must be entered. If you press the N — »| key at the filename prompt
without entering a filename, an error message (ILLEGAL FILE NAME) will be dis
played. Press the I c«ce I key to clear the error.

• The filename can be up to eight characters long, and have a file extension of up
to three characters. If no file extension is specified, the computer automatically
assigns the file extension “.TXT".

• File registration is not possible if no TEXT program is stored in the text area.

107

Recalling a TEXT file (Load)
Press the | l | key at the Program File Menu, and the computer will display a list
of registered files, with “LOAD ■*" pointing to the first filename (if no program is
registered, nothing will happen when the

(An example of a list of registered files
is shown.)

L ~ |key is pressed).

LOAD *ABC .TXT
P RO . TXT
SAMPLE01 . BAS
TEST . TXT

Use the | ♦ | or | t | key to position the “LOAD ■*” pointer at the name of the file
you want to recall, then press the I-*—-i I key. The computer will load the contents
of the specified file into the text area, then return to the Program File Menu.

Note:
In the TEXT mode, only programs and files that were registered in the TEXT mode
can be recalled. An error message (FILE MODE ERROR) will be displayed if you
attempt to load a BASIC program that was saved using the BASIC SAVE
command. Press the |c»c e| key to clear the error.

Killing a program file (Kill)
The Kill function deletes a specified file.

Press the | K | key at the Program File Menu, and the computer will prompt you
for the name of the file you want to kill.

□o
Save

PROGRAM FILE
Load -*K ill Files

FILE NAME=?

Enter the name of the program file to delete, then press — 1|. The computer will
delete the file.

Example:
Kill a file with the filename 'TEST’
T E S T [=] << PROGRAM FILE >>

Save Load Kill Files

The computer will delete the file “TEST’, then return to the Program File Menu.

Notes:
• If the specified filename has no file extension, “.TXT” is automatically assumed.
• An error message (FILE NOT FOUND) will be displayed if the specified file is not

found. Press the | c»ce | key to clear the error.

Listing filenames (Files)
Press the | f | key at the Program File Menu, and the computer will display a list
of all registered files, with ■* pointing to the first filename in the list (if no file is
registered, nothing will happen when the | F | key is pressed).

108

r~r~i
(An example of a list of registered files
is shown.)

-►ABC .TXT
PRO .TXT
S A M P L E 0 1 .BAS

You can view the remaining portion of the list, if any, by scrolling using the I 4 I or
E T 2 key. ____ ____ ____ _____
To load the program indicated by -*■, press I shif t I + I l oad I (or 12nd f 11 l oad I).

BASIC Converter (Basic)
The Basic function converts a BASIC program in intermediate code format to a
TEXT file in ASCII format, or vice versa. This function is convenient to file or handle
your PC-E220 BASIC programs on your personal computer.

Press the I B I key at the Main Menu, and the computer will display the BASIC
Converter Menu.

<< BASIC CONVERTER >>
Bas ic«-t ext Text^-basic

This screen lets you select the direction of conversion, from TEXT to BASIC or
from BASIC to TEXT. Type in the first letter of the destination format type.

Conversion between TEXT and BASIC programs (between ASCII and inter
mediate code formats)
Press the I b I key at the BASIC Converter Menu, and the computer will convert
the TEXT program in the text area to a BASIC program and store it to the program
data area.
Press the I T I key at the BASIC Converter Menu, and the computer will convert
the BASIC program in the program data area to a TEXT program and store it in the
TEXT area.

Example:
Convert a TEXT program to BASIC

i~ b~] << BASIC CONVERTER >>
--- CONVERTING ---

After completing conversion, the computer returns to the Main Menu. (When the
size of the program to be converted is small, conversion will be completed almost
instantly.)

If there is already a BASIC program in the program data area when a TEXT pro
gram is being converted to a BASIC program, or if there is a TEXT program in the
text area when a BASIC program is being converted to a TEXT program, the com
puter will ask if you are sure you want to delete the existing program before begin
ning conversion.

109

<< BASIC CONVERTER >>
Basic«-text Text-basic
BASIC DELETE OK? (Y)

If I y I is pressed, the computer will delete the existing BASIC program and begin
conversion.
If any key other than I Y I is pressed, conversion will be canceled and the com
puter will return to the Main Menu.

The computer normally retains the original program after it is translated to another
format. However, if there is insufficient free memory as a result of converting a pro
gram, the computer will ask if you are sure you want to delete the original program.

<< BASIC CONVERTER >>
--- CONVERTING ---

TEXT DELETE OK? (Y)

If I y I is pressed, the computer will
delete the original program as it is converted to the other format. The original pro
gram will be entirely deleted upon completion of conversion.
If any key other than I y I is pressed, conversion will be canceled and the com
puter will return to the Main Menu.

Notes:
• When a password has been specified, the BASIC Converter function cannot be

selected from the Main Menu. First clear the password in the RUN or PRO mode.
• The BASIC Converter does not delete the contents of the data area (variables)

during conversion. Conversion may not be possible if there is insufficient free
memory. Before starting conversion, ensure sufficient free memory by, for
example, clearing variables from the data area with the CLEAR command.

• An error message (MEMORY OVER) will be displayed if the free memory is insuf
ficient when the computer is executing conversion and deleting the original
program. Once this error occurs, the program will be divided into converted and
unconverted portions. It is therefore advisable to save the program to a cassette
tape or other media before beginning translation. This error is more likely to
occur when a program is converted from BASIC to TEXT format than from TEXT
to BASIC.

• When converting a file from TEXT to BASIC, the computer does the conversion
no matter what the contents of the original TEXT file are. So the exact contents
of the original TEXT file may not be restored if it is converted to BASIC then
back to TEXT again.

• If the converted file exceeds 255 characters (or 255 bytes), the overflow portion
is ignored.

Example:
TEXT 10FORMULA

X
BASIC 10:FORs_JVIULA

TEXT 10FOR^JVIULA

110

i 12. MACHINE LANGUAGE
MONITOR

Using the computer, you can write programs in machine language, as well as in
BASIC. To assist you in programming in machine code, the computer has a
machine language monitor (hereafter referred to as “the monitor”). The monitor is
one of the system features that allows you to use a set of simple commands to
input and output or execute programs written in machine code. This chapter ex
plains the functions of the machine language monitor commands available on the
computer.
The CPU of the computer is a Z80 microprocessor (CMOS Z80A equivalent), which
is widely used in various high-performance 8-bit computers. A number of reference
books about the Z80 processor are available. For details regarding the Z80
machine language, refer to one or more of these reference materials.
A data transfer cable such as the CE-T801 is required for execution of the R and W
commands.

Using the Machine Language Monitor
MACHINE LANGUAGE MONITOR
*

Select the Monitor mode by entering
MON [= T | in the BASIC (RUN or
PRO) mode, and the display will ap
pear, as shown.
The asterisk (*) on the display is the
command line prompt in the Monitor mode. Enter any command at the prompt. Any
necessary addresses or data may be entered following the command. Press the

— 11 key at the end of the line to execute the command.

Example:
- Command

| ----- Data separator

XD0100, 01FF [^ > 1
y f T—--------- Data (address)

Command line prompt

Notes:
• If a password has been set, the computer will be unable to enter the Monitor

mode.
• All addresses and data must be in hex code.
• Use commas (,) to separate more than one address or piece of data.
• An error message (SYNTAX ERROR) will be displayed if hex code is not used

or any symbol other than a comma is used as a data separator.
• Exit the Monitor mode by selecting any other mode, or turning the computer off

and then on again.

111

(D Machine language is extremely complex, and this often results in programming er
rors. When a machine language program containing errors is executed, it may
destroy BASIC programs, data, or other contents of the computer memory. There
fore, it is strongly advised that you save your BASIC programs and other data to
cassette tape or other media before executing a machine language program.

® When using the monitor, accessing any area other than the machine language
area (reserved with the USER command) could destroy BASIC or TEXT
programs or any other data within that area, or cause a malfunction. Be sure to
use only the area reserved for machine code.

Machine Language Monitor Command Reference

USER — User Area

Purpose: Reserves a machine language area and displays the addresses of the
reserved area.

Format: (1) USER01FFN — 1|
(2) USER N — 1|
(3) USEROOFF |^ — 1|

Remarks: • Format (1) reserves the memory address area of 01 OOH (the first
address) to 01FFH (the last address) as the machine code area.
The first address is automatically set to 01 OOH.

* U S E R O IF F
Reserved area—► F R E E : 0 1 0 0 - 0 1 F F

*

• Format (2) displays the range of addresses reserved as the
machine code area.

* U SE R
F R E E : 0 1 0 0 - 0 1 F F
*

“FREE: NOT RESERVED" will be displayed if no machine code
area has been reserved.

• Format (3) deletes the existing machine code area from memory
and displays the message “FREE: NOT RESERVED”.

• An error message (MEMORY ERROR) will be displayed if an illegal
address area for the machine code area is entered.

112

S — Set Memory
n
ii jrpose: Updates the contents of memory.

ormat: (1) S010 0 N — 1|
(2) S [^ T]

Remarks: • Format (1) displays the contents of address 01 OOH (the first ad
dress) and prompts you to enter a new setting.

* SO 1 0 0
0 1 0 0 : 1 0 -

Existing contents of memory

• To change the data, enter one byte of replacement data (2-digit
hex), then press I— —1|. The computer will then display the contents
of the next address and prompt you for the data to be entered.
When existing data does not need to be changed, press the — 11
key without entering any data. The computer will then display the
contents of the next address and prompt you for the data to be
entered.

• A maximum of two digits of hex data can be entered. To cancel an
entry before pressing the |-«— 1| key, press the I I or I C»CEI key.

• Press the | t | key to recall the contents of the preceding address,
and the I ♦ | key to recall the contents of the following address.

• Executing Format (2) recalls the contents of the address that is
adjacent to the address that was last displayed with the S com
mand.

• Press the I br eak I key to return to the command line prompt.

I D — Dump Memory

Purpose: Dumps the contents of memory.
Format: (1) D0100 N — < I

(2) D r ^ T |
(3) D0100, 01FF[^ n

Remarks: • Format (1) dumps 16 bytes of memory from the address area of
01 OOH (first address) to 010FH. (The dumped data is printed when
in Print mode.)

Example:

ASCII code representations of dumped data
are displayed here. Data 00H-1FH appear -----
as periods (.), however.

First address of
16-byte segment—* 0 1 0 0 : 3E 0 1 1 8 0 4 > . . .

Check sum—* (I D) 3A OF 0 1 3C : . . <
3 2 OF 0 1 C 9 2 . . 8

3 1 0 0 0 0 0 0 1 . . •

113

Notes:
• The size of the area that can be dumped is fixed at XXXOH-

XXXFH. The contents of the same segment will be dumped when
ever an address within that 16-byte segment is specified. For ex
ample, if you specify address 0104H, the contents of the fixed 16-
byte segment which includes that address, in this case 0100H-
010FH, will be dumped.

• Press the | t I key to dump the preceding 16-byte segment, and
the I 4 I key to dump the following 16-byte segment.

• Format (2) dumps the contents of the segment that is adjacent to
the segment that was last dumped with the D command.

• If Format (3) is executed in Print mode, the computer will dump the
contents of the specified area, 01 OOH (the first address)-01 FFH (the
last address), to the printer in 16-byte increments. When dumping is
completed, the command line prompt will be displayed.
If Format (3) is executed in non-Print mode, the computer will dump
the contents of the 16-byte segment beginning with address 01 OOH
(the first address) to the screen. During screen-dump in non-Print
mode, the last address specified is not acknowledged by the com
puter.

• To enter or exit the Print mode, use the P command (see below) or
the I shif t | + | MP | keys.

• Press the I br eak I key to return to the command line prompt.

Check Sum
Check sum refers to the sum of the values of a specific set of data.
This sum is computed and assigned to a data set when that data set
is written or dumped. The computer calculates the sum of the contents
of a 16-byte segment dumped with the D command, and displays the
low-order single byte of the sum as a check sum result.
For example, if you manually enter a machine code program, copying
it from a printed program, you can check for errors in the contents of
each of the16-byte segments that are dumped by comparing the dis
played check sum result with that for the original program. Note, how
ever, that if your program contains more than one error, the check
sum result may erroneously match that of the original program.

P — Print Switch

Purpose: Sets or clears the Print mode.
Format: P |-«— 11
Remarks: • The Print mode is alternately selected and deselected each time P

!■«— »I is entered. (“PRINT" will appear in the lower right corner of
the display when the Print mode is selected.) The Print mode can
also be selected and deselected using the I shif t | + IMP I keys.

Note:
• The P command will not work if the printer is not connected or is

not turned on.

114

G — GOSUB

Purpose: Executes a machine code program from a specified address.
Format: G0100
Remarks: • The G command is similar to the GOSUB command in BASIC. It ex

ecutes a machine code program beginning with a specified address
until a RET (Return) command is encountered. When the RET com
mand is executed, the command line prompt will be displayed.

Note:
• Be sure to place a RET (Return) command at the end of your pro

gram or the program will not execute properly.

Runaway programs
A runaway program is one that is not executing properly and has gone
out of control, so that the only way to stop the program is by resetting
the system. In many cases, a runaway program will destroy the con
tents in memory, including the machine code programs, BASIC
programs, and other data.
A machine code program can run away if it contains even a single
minor bug. Therefore it is advised that any BASIC or other program
stored in the computer be saved to cassette tape or other media
before executing a machine code program.

Note:
• Press the RESET button to abort program execution.

BP — Break Point

Purpose: Sets the break point at a specified address.
Format: (1) BP011E [■«-— i1

(2) BP [^]
(3) BPO

Remarks: • Format (1) sets the break point at address 011EH. Up to two break
points can be specified in one program by using Format (1) twice to
specify two different addresses.

• If you attempt to set a third break point, the break point that was
first set will be cleared. Therefore, there cannot be more than two
breakpoints in one program.

• Be sure to set the break point at an instruction (OP code) address.
If you set the break point at an operand address, the program will
fail to read the breakpoint, and will not execute properly.

• Format (2) displays the address of the break point. If no break point
has been set, only the program line prompt (x) will appear on the
following line.

• Format (3) clears all existing break points.
• A break point becomes invalid after it has been executed, so if a

break point is specified in a program loop, it will be valid only
during the first execution of the loop. However, it can be made valid
again using the G command.

115

• The computer retains break points that were specified the last time
the Monitor mode was used. When the computer is switched back
into Monitor mode from another mode, you can make these break
points valid by executing the G command.

Note:
• The contents of an address specified in the BP statement is tem

porarily replaced with “F7H" when the program is executed. If the
RESET button is pressed before a break point specified in the pro
gram being run is encountered, the contents will remain “F7H”. If
this occurs, you will have to replace “F7H” with the original contents.

R — Read SIO

Purpose: Reads data through the serial I/O (SIO) port. This command is used
for transferring machine code from a personal computer or other
devices.

Format: (D R L s = U
(2) R0100N — ■ I

Remarks: The R command reads data in Intel Hex format through the SIO.
• Format (1) loads data that’s been received into addresses specified

in the received data.
• Format (2) sequentially loads data that’s been received into an area

beginning with address 01 OOH.
• When all data has been read, the address area into which the data

was loaded will be displayed.
• To abort data reading, press and hold the I br eak I key until the com-

mand line prompt is displayed.

W — Write SIO

Purpose: Outputs data through the serial I/O (SIO) port. This command is used
for transferring machine code to a personal computer or other devices.

Format: W0100, 01FF N — 1|
Remarks: • When you execute the format example above, the computer sends

contents of the memory area in Intel Hex format from 01 OOH (the
first address) to 01FFH (the last address) through the SIO port.

• To abort data sending, press and hold the I br eak I key until the com
mand line prompt is displayed.

Note:
• If you connect a printer that’s turned on to the peripheral interface

connector (11-pin) and execute the W command, both the computer
and printer may malfunction. If this occurs, turn the printer off, and
press and hold the I br eak I key until the command line prompt is dis
played.

116

Error Messages in Monitor Mode
The following table lists error messages that can be displayed in the Monitor mode.
Press the I c*ce I key to clear an error.

Error message Description
SYNTAX ERROR
MEMORY ERROR

Illegal command syntax.
Attempt was made to reserve a machine code area
outside the allowable area.

I/O DEVICE ERROR Data read error or check sum error was detected
during serial I/O operation.

OTHER ERROR Other errors

13. ASSEMBLER

Reference
The following is a summary of technical terms that are often used in machine
language programming:

Assemble:
To translate a source program expressed in an assembly language to a
machine language. A translated machine code program is called an “object
program" or simply “object".

Assembler:
A translation program used to translate a source program into an object
program.

Generate:
To generate an object from mnemonic code.

Hand assemble:
To manually translate a source program without using an assembler.

Machine language:
A computer language directly interpreted and executed by a machine.
Represented in hex code (internally processed in binary code).

Mnemonic codes:
Symbols designed to assist programmers in remembering instructions for
machine code statements; for example, the abbreviation “ADD” for an addi
tion command. A language whose mnemonic statements have specific one-
to-one correspondence with machine code is called “assembly language”.

Object program:
A fully assembled program that is ready to be loaded into the computer. It
generally refers to a machine code program translated from a source
program. Sometimes referred to simply as an “object”.
("Object” may refer either to individual machine code resulting from transla
tion or an entire machine language program.)

Pseudo instructions:
A set of assembler control commands that is not translated into object
code. This set is used to specify an address area, to store object code, or
to generate data.

Source program:
A program written in mnemonic code (assembly language). A machine code
program is a translation of the source program.

118

Let’s try Assembling
Before we go into the description of the assembler, let’s try to assemble a sample
program and execute the resulting object (machine code program).

Prior to this, however, you should remember some unusual events that might occur
during program execution. If your machine code program has one or more errors,
the following may occur:
® The computer executes the program in an endless loop, and all keys are inopera

tive.
To exit this loop, press the Reset button.

® Program displays random or abnormal characters or behaves strangely.
In some cases, the | br eak | key will stop the program, but in others, the Reset but
ton may have to be pressed.

® Part or all of the program is destroyed or lost.
This is the result of a memory problem, and can extend to the source (TEXT) pro
gram, BASIC program, and/or all data in the computer, as well as to the machine
code program itself.

These problems may occur singly or all together at one time. If any of these
problems occurs and is severe enough that you cannot tell what state the computer
is in, press the RESET button to clear the entire contents of memory.
• Problems (D and (2) above are called “program runaway”.

• When you execute a machine code program, one or more of the problems ■
j described above could occur if the program has even a single error. It is there- ■
i fore recommended that you save programs and data to a cassette tape or make ■
: a printed or written record before running a program. Note that, if a program in !
; memory or other data is destroyed or lost as a result of a machine code program ;
; crashing, it cannot be restored. ;
L____________________ ______ ____________________________ _____________ ______________________J

Entering a Source Program
A source program is entered into the computer as a TEXT program (see page 99).

Press the | shif t | + I t ext | keys to select
the TEXT mode and display the Main
Menu.

x x * TEXT EDITOR xxx
Edit Del Print Cmt
Sio File Basic

Press the | e | key at the menu to TEXT EDITOR
select the Edit function.

If a TEXT program already exists in the text area, press the | d | key for “Delete”
at the Main Menu, then press | Y | to delete the existing program.

119

Sample Program
The following program loads hex numerals 20H through 9FH into the address area
0400H through 047FH (H suffix denotes hexadecimal notation):

Key operation
10 f t a b i o r g i~t ab~i o io o h
20START: LD |~TAB~| A, 20H
30 | t ab | LD | t ab | HL, 0400H N — 1|
40LBL: Ft aTI LD Ft ab~| (HL), A R Z J]
50 | TAB I INC I TAB | A N ---- 1|
60 | TAB | INC | TAB | HL N ---- 1|
70 |~TAB1 CP l~TAB~| 0A0H
so [t a b] j p Ft ab~| NZ, l b l
90 rfABl RET [^ T |
100 Ft ab I e n d

Display
10 ORG 01 OOH
20START:LD A, 20H
30 LD HL, 0400H
40LBL: LD (HL), A
50 INC A
60 INC HL
70 CP 0A0H
80 JP NZ, LBL
90 RET
100 END

You may use the I space I key instead of the I t ab I key to insert one or more spaces.

Description of Sample Program
10: (Load object into the area beginning with address 01 OOH.)
20: Load 20H into register A.
30: Load 0400H into register pair HL.
40: Load the contents of register A into the address specified by register pair HL.
50: Increment the value of register A by one and load the result into register A.
60: Increment the value of register pair HL by one and load the result into HL.
70: Compare the contents of register A with value A0H (subtract A0H from the

contents of A).
80: If the result of the last operation is not zero (contents of register A are not

A0H), jump to label LBL. The label will be translated into an address (0105H).
90: Return (return from subroutine)

100: (End of source program)

Lines 10 and 100 of this source program are called pseudo instructions. They are
used for controlling the assembler, and are not translated into machine code
(object) (see page 130).

After you’ve finished entering all the lines in the sample program, check for typing
errors. Before you assemble the source program, you have to reserve the machine
code area needed to store the object; otherwise it will not be possible to assemble
the source program.

Reserving Machine Code Area
To reserve the machine code area, use the USER command in the Monitor mode
(see page 112).

First select the Monitor mode.
PBAsicl MON r ^ T |

MACHINE LANGUAGE MONITOR
*

120

Now reserve the machine code area, in this case from 01 OOH to 04FFH with the
USER command.
USER 04FF

The computer displays the reserved
machine code area (user area).

M A C H I N E L A N G U A G E M O N I T O R
*USER04FF
FREE : 0 1 0 0 - 0 4FF
*

Assembling the Source Program
You can now assemble the sample source program into machine code.
Select the Assembler mode.
| SHIFT I + I ASMBLl

(The size of the work area may be dif
ferent from that shown in this example.

* * * * * A S S E M B L E R *****
user a r e a = 0 1 0 0 H - 0 4 F F H
work a r e a = 2 9 2 2 1 b y t e s

< Asm D i s p l a y Print >
See page 127 for details.)

Press the | a | key to begin assembly. ***** A S S E M B L E R *****

--- a s s e m b l i n g ---

When assembly is completed, you will
see the display, as shown at right (for
an explanation of display information,
see page 127).

o b j e c t :0 1 0 0 H - 0 1 0 D H
size :000EH(14)by t e s
label : 2
error : 0 c o m p l e t e !

If an error occurs during assembly, the
computer will display the relevant error
message along with the number of the
line in which the error occurred (see
page 128).
If this occurs, return to the Editor and correct the source program.

***** A S S E M B L E R *****
* FORMAT E RROR (1)
0 10 5 * * * * 4 0

LBL: LD HL) , A

Checking the Generated Object Program
Check the generated object program with the Monitor. The object program is stored
in the area from 01 OOH to 010DH.

To enter the Monitor mode, press the
I o c e | key (or enter | basic | MON |-«— J|).

M A C H I N E L A N G U A G E M O N I T O R
*

121

Dump the object program with the D
command.
D0100 j ^ T |
The computer displays the dumped ob
ject program, as shown.

0 10 0 : 3E 2 0 2 1 0 0 > ! .
(8 8) 0 4 7 7 3C 2 3 . w< #

FE A0 C2 0 5 i
0 1 C 9 00 0 0 8

(Part of the last contents of memory
may be displayed in the area beginning
with 010DH (C9).)
(88) is a check sum result (see page
114).

Executing the Object (Machine Code) Program
Now let’s execute the generated object program. Use the Monitor’s G (GOSUB)
command.
Return to the Monitor's command line *
prompt.
I BREAK |

Execute the following G command to
run the object program.
G 0100[^ ± J |
When execution is completed, the
Monitor's command line prompt will be
displayed.

Now check the results of program
execution.
D0400 —*1

* GO 1 0 0
*

0 4 0 0 : 2 0 2 1 2 2 2 3 ! " #
(7 8) 2 4 2 5 2 6 2 7 $ %&'

2 8 2 9 2 A 2 B () * +
2C 2 D 2 E 2 F

m
Hex numerals 20H through 9FH have
been written in the address area from
0400H through 047FH.

0 4 10 : 30 3 1 32 3 3 0 1 2 3
(7 8) 3 4 3 5 3 6 3 7 4 5 6 7

3 8 3 9 3 A 3B 8 9 : ;
3C 3D 3E 3 F < = > ?

Source Program Coding and Editing
The computer’s assembler translates (assembles) the source program that’s stored
in the text area into object code. The assembled object code is sequentially loaded
into a memory area beginning with the specified address.

In this section, you will look at the conventions and rules (entry format, etc.) used to
create a source program.

122

Source Program Configuration
Each line of a source program normally contains a single statement. A program is
usually made up of at least several of these lines. A source program written in as
sembly language begins with an ORG statement and ends with an END statement
(the ORG and END statements can be omitted).

Example:
10 ORG 01 OOH

100 END

• The ORG statement is used to specify the first address of the memory area
where the generated object code is to be stored. In other words, the lines of the
object program are sequentially stored in the area beginning with the address
specified by the ORG statement. If the address is not specified, the computer as
sumes address 01 OOH as the first address.

• The END statement specifies the end of the source program. The computer
ceases assembling when it encounters an END statement in the source program.

These statements are used for controlling the assembler, and themselves are not
assembled into object code (see pseudo instructions on page 130).

Line (Statement) Configuration
Each line of a source program may consist of a line number, label, command,
operand, comment, and/or pseudo instruction.

32767LABEL : ADD HL, 30 ; SAMPLE

Line
No.

Label Command Operand
field field

A label must
be followed by
a colon (:).

Use a space to
separate the
command from
an operand.

Comment

Use a semicolon (;) to
separate a comment from
an operand.

• A single line may have up to 254 characters including a comment.
• Lowercase alphabetic characters are processed the same as uppercase charac

ters, except when they are used in operands or comments.

(T) Line numbers
A LINE NO. ERROR will occur if you specify a line number outside the range of
1 through 65279.

® Labels
• A label may be specified immediately following the line number (do not insert

a space between the line number and the label; otherwise an error will occur).
• Up to six characters may be used to specify a label. If more than six charac

ters are used, an error will occur (see page 134).
• The following characters may be used for labels:

Letters: A to Z (a to z are read as A to Z)
Numerals: 0 to 9
Symbols: [,], @, ?, and _

123

• Notice, however, that the first letter of a label must always be a letter or symbol
character (if a numeral is used, it will not be distinguished from the line number).

• In labels, you cannot use exactly the same single or pair of characters as the
register or conditional code names listed below:

Single registers: A, B, C, D, E, H, L, I, R
Paired registers: AF, BC, DE, HL, IX, IY, SP
Conditional code: NZ, Z, NC, C, PO, PE, P, M

• A label must be followed by a colon (:); otherwise an error will occur. An
exception is when you define a value for a label with the EQU pseudo instruc
tion, in which case the label need not be followed by a colon (see page 133).

• When you don’t need a label, place one or more spaces between the line num
ber and the following command word. You may use the I t ab I key instead of
the I space I key to insert spaces.

(3) Command field (OP code)
• The command field accepts Z80 commands in mnemonic symbols. You can

also enter any of the pseudo instructions listed on page 130 and a few sub
sequent pages in this field. A command in a statement is called an operation
code or OP code.

• The entered command must be separated by one or more spaces from the
operand that follows it. The I t ab I key can be used instead of the I space | key to
insert a space.

@ Operand field
Registers, addresses, and constants used in command (OP code) execution are
called operands.
• Use commas (,) to separate operands.
• Each operand may have up to 32 characters.
• The following types of constants can be used in operands:

[Numerical constants]
Binary, decimal, and hexadecimal numbers:

Binary numbers: Represented by a string of ones and zeros, with a “B" suffix.
Example: 10111100B, 100000B

Decimal numbers: Represented by radix 0 to 9.
Example: 188, 32

Hexadecimal numbers: Represented by decimal radix 0 to 9 plus uppercase
letters A through F, with an “H” suffix. When hex num
bers begin with a letter, they must have a zero prefix
to distinguish them from a command.
Example: OBCH, 20H

[String constants]
Character strings in operands must be enclosed in single quotes (’). ASCII repre
sentations of characters serve as constants in operands.
Example:

(Specifications) (Character strings) (Constants)
’A’ A 41H
’AB’ AB 41H, 42H
’B”C B’C 42H, 27H, 43H
” ’D’ ’D 27H, 44H
’E” ’ E’ 45H,27H» 27HH (NULL) OOH

124

[Label constants]
If you define a constant for a label with the EQU command, that label can be
used as a constant in operands (see page 133).

• Expressions (including arithmetic operators) may be used in operands. You
can use the following signs and arithmetic operators in operands. Note, how
ever, that one operator does not have priority over another.
Signs: Positive (+), negative (-)
Operators: * , /, +, -

• The computer performs internal operations on 16-bit data. If an overflow oc
curs, the overflow is ignored (no error occurs). The object is generated by
using the 8- or 16-bit result of operation.

• In statements containing expressions, the computer will not check the varidity
of entered expressions.
Examples:
LD A, 4142H -> Read as LD A, 42H
DB 1234H -> Read as DB 34H

@ Comments
Each line of a source program may be followed by a comment, separated by a
semicolon (;). The portion of a line from the semicolon to the end of the line is
regarded as a comment, and will not be translated into machine code (object).

Deleting a Source Program
Press the I o I key for “Delete” at the Main Menu in the TEXT mode to select the
Delete function. The computer asks if you are sure you want to delete the contents
of the text area. (However, if no program is stored in the text area, nothing will
happen when the I d I key is pressed.)
TEXT DELETE OK? (Y)
Press the I y I key, to delete the entire contents of the text area. The display then
returns to the Main Menu of the TEXT mode. If any key other than I y I is
pressed, the display returns to the Main Menu of the TEXT mode without executing
deletion.

Entering a Source Program
Press the I e I key for "Edit" at the
Main Menu in the TEXT mode to select
the Edit function.

TEXT EDITOR

Press the I ♦ I or I t I key to display any contents of the text area, such as a
source program. If nothing is in the text area, the display will not change. A new
program can be loaded into the text area after first deleting any previous contents.
Press the I br eak I key to return to the Main Menu, select the Delete function, and
delete the contents of the text area by following the steps in the section above
about deleting a source program.

125

To enter a source program:
® Enter a line number.
(5) When you don’t need a label, press I t ab I to insert one or more separating

spaces. The cursor will advance to the command entry field. (The I space I key can
be used instead of I t ab |.)
When you need a label, enter it immediately following the line number without in
serting a space. Place a colon (:) at the end of the label. The colon may be fol
lowed by one or more spaces but this is not required.

(3) Enter a command. If the command is to be followed by an operand, separate it
from the command with one or more spaces using the I t ab I or I space I key.

® Input operands.
Use commas (,) to separate operands.

® When you want to add a comment to the line, enter the comment following a
semicolon (;).

® When the entire line has been entered, press I-*——1 I to register the line to
memory. The cursor will disappear when you press l-«— i| .

To enter the next line, repeat the steps above. (See the entry example on page 120.)

Assembling
In this section, you will take a closer look at how to assemble a source program
entered in the TEXT mode. The following explanation assumes that the sample pro
gram shown on page 120 is already loaded in the computer. If not, load it before
continuing to the next section.

Menu in the Assembler Mode
To assemble a source program, you must first select the Assembler mode.

I SHIFT | + | ASMBLI
The Assembler mode menu as
shown at the right appears.

o * ** ASSEMBLER *****
user area=0100H-04FFH
work area=29221bytes

< Asm Display Print >
[User area (machine code area): addresses 0100H
] to 04FFH
I Size of work area: 29221 bytes

I a~ I executes assembly.
I d I displays an assembly list.
f p I prints an assembly list.

• The menu shows the reserved machine code area on the second line. To
reserve a machine code area, use the USER command in the Monitor mode. If a
machine code area is not reserved or is too small to store the object, an error
message (NOT RESERVED or USER AREA OVER) will display during assem
bling. If this occurs, enter: I basic [MON |*«— "I to select the Monitor mode, and
reserve or increase the machine code area with the USER command.

126

• The third line of the ASSEMBLER display shows the size of the available work
area in bytes. This information indicates the byte count of the free area available
in memory, and matches the byte count obtained with the FRE command in
BASIC.
The work area, used for actual assembly operations within the computer, is auto
matically reserved in the free area. If the work area cannot be reserved, an error
message (WORK AREA OVER) will be displayed. If this occurs, increase the
free area by, for example, deleting an existing BASIC program or array variables,
or reducing the machine code area.

Note:
An error will occur if a free area of at
least 307 bytes is not reserved when
the computer enters the Assembler
mode.
When a source program contains
labels, the assembler will set aside a
label work area of the necessary size
during assembling. An error will occur
the assembler is unable to set aside
the necessary work area.

Executing Assembly

Successful assembly
Press the I a I key for “Asm" at the
Assembler menu to begin assembly.

01 OOH

* * * * * ASSEMBLER *****
---ass emb l i n g -----

While assembly is executing,
“—assembling—” is displayed. When
assembly is completed, a final dis
play with “complete I” will appear,
and will include the object area, its
size, the number of labels, and error
count.

object :0100H-010DH
size : 0 0 OEM (14)bytes
label : 2
error : 0 complete !

Object area: 01 OOH to 010DH
Size of object: OEH (14) bytes
Number of labels: 2
Error count: 0

Press the | c«ce I key at the “complete I” display to select the Monitor mode. In the
Monitor mode, you can check the assembled object program with the D command,
or execute it with the G command.

Unsuccessful assembly
If an error is encountered in the source program when it is being assembled, the as
sembler will suspend assembly and display the relevant error message along with
the number of the line in which the error was found. Press the | I I key to continue
assembly.

127

Example:
Assume that the sample program given on page 120 contains errors on lines 50
and 80, as shown below.
50 INB A“INC A” is correct.
80 JP NZ, KBL “JP NZ, LBL” is correct.

Press the I a | key at the Assembler menu to assemble the sample program
containing the above errors.

When the first error is encountered,
the error message shown at right is
displayed.

Object (See note) L in e number-l
L Error message (indicates OP code error)

***** A S S E M B L E R * * * * *
* OP ECOD E ERROR
0 10 6 * * * * 5 0

INB A
f fF 1

Address Command Operand

Note:
If the assembler fails to generate the correct object
program due to an error in the source code, an
asterisk string (****) will be displayed following the ad
dress.

Press the I I I key to resume as
sembly, and the error message for
the second error on line 80 will be
displayed.

***** A S S E M B L E R *****
^ U N D E F I N E D SYMBOL
0 1 0 9 * * * * 80

JP N Z ,KB
Error message (an undefined symbol has been used
in the label)

Press the I I I key again.

The assembler final display will appear,
this time without the “complete I” mes
sage.

o b j e c t :0 1 0 0 H - 0 1 0 C H
size : 0 0 0 D H (13) byte s
label : 2
error : 2

Press the I c»ce I key at the final display to return to the Assembler menu.

Notes:
• The assembler ignores the statement on line 50 and assumes that the label on

line 80 specifies address 0000H, at which point it assembles the program in this
example.

• If an error is detected in the source program, the generated object will not be a
correct program. If you attempt to execute the object, it may cause program
runaway or damage contents of memory. Be sure to correct the source program
and reassemble it, so you can execute an error-free object.

Displaying an Assembly List
The Display option in the Assembler menu lets you examine an assembly list
before you actually assemble your source program. The assembly list contains the
object code to be generated, its address, and other object information.
Press the I D I key for “Display” at the Assembler menu to display the first line of
an assembly list. You can sequentially view the subsequent lines with the | ♦ | key.
Load the sample source program shown on page 120 if it is not in your computer
yet, and examine the assembly list for it.

128

Press the I d~ I key at the Assembly
menu.

ORG

* * * * A S S E M B L E LIST x x x x
0100 10

0 1 0 OH
0100 3E20 2 0

Address Object
Source program

Line number

When the object cell is left blank, there is no object
code to be generated. If an object code exceeds
eight digits, the remaining digits will be displayed on
the next line.

Press the |_ l J key repeatedly to view X X X X A S S E M B L E LIST X X X X

subsequent lines of the assembly list. 0 10 0 1 0
ORG 0 1 0 0 H

0 10 0 3E20 2 0
START : LD A, 20H

0 10 2 210004 3 0
LD HL, 04

OOH
0 10 5 7 7 4 0

LBL : LD (HL) ,
A

0 10 6 3C 5 0
INC A

0 10 7 2 3 6 0
INC HL

0 10 8 FEA0 7 0
CP 0 A0 H

0 1 0 A C2 0 5 0 1 8 0
JP NZ , LB

L
0 10D C 9 9 0

RET
0 1 0E 10 0

END
X X X X S Y M B O L T A B L E X X X X

Symbol table(*) -► START : 0 1 0 0 LBL :0 10 5
Object address - * o b j e c t : 0 1 0 0 H - 0 1 0DH

Object size -► size :000EH(1 4) b y t e s
Number of labels-* label : 2

Error count—* error : 0 c o m p l e t e !

• The symbol table lists the values assigned to labels in hex.

Notes:
• Press the I c»ce I key to return from the assembly list to the Assembler menu.
• The Display function only lets you examine the assembly list, but will not load the

object code in the list into the machine code area. To load it, you have to actual
ly assemble the source program.

Printing an Assembly List
The Print option from the Assembler menu lets you print an assembly list. Connect
the optional CE-126P printer to your computer, turn the printer on, and press the
I p I key at the Assembler menu.

129

Notes:
• If you choose the Print option when the CE-126P printer is not connected or is

turned off, an error message (^PRINTER ERROR) will be displayed. If this oc
curs, clear the error with the | oc e | key, and check your printer.

• You can print an assembly list whether or not the PRINT indicator is on in the
lower right corner of the display.

• When printing is completed, the assembler shows the assembler’s final screen.
Press the | c«ce | key to return to the Assembler menu.

• The list is printed in the same format that it’s displayed.
• To abort printing, press and hold the | br eak | key until printing stops. break —”

will appear on the display. Press the | c«ce | key to return to the Assembler menu.

Pseudo Instructions of the Assembler
Pseudo instructions are used to control the assembler itself and are not translated
into object code. The computer has the following pseudo instructions:

• ORG: Specifies the first address of object load area.
• DEFB/DB/DEFM/DM, DEFS/DS and DEFW/DW: Define data in operands.
• EQU: Defines label values.
• END: Specifies the end of assembly.

The following summarizes conventions and rules used in explanations of the format
of these pseudo instructions.

Expression: Expressions may be numerals, formulas, labels, or “strings”.
Formula: Formulas may be numerals, labels, and any arithmetic expressions

using numerals and labels.
{ }: When several elements are stacked within braces in a statement, one

of these elements must be selected.
[]: An element within brackets in a statement is optional.
[]...: A horizontal ellipsis that follows brackets indicates that an element

within brackets is optional or may be repeated.

ORG — Origin

Format: ORG expression
Purpose: Specifies the first address of an object load area.
Remarks: • Expression specifies the first address of the area where the

generated object is to be stored. In other words, the lines of the ob
ject program are sequentially stored in the area beginning at the
first address that is specified by the expression.

• If the source program has no ORG statement, the assembler as
sumes “ORG 10OH”, which makes address 10OH the first address
from which the object is stored.

Example:
ORG 0400H

This statement stores the object into the area that begins with ad
dress 0400H.

130

DEFB/DB/DEFM/DM — Define Byte/Define Message

Format:

Purpose:

Remarks:

DEFB1

DEFM
■ expression [.expression]...

DM
Translates a string or low-order single byte of a numeral given by the
expression into object code.
• These statements translate the low-order single byte of a numeral

given in the expression into object code.

Examples:
DEFB 1234H; Translates 1234H into object code "34H”.
DB 1234; Translates 1234 into object code “D2H”.

• A character string in the operand must be enclosed in single quotes
(’). Up to 32 characters may be used in a string. Individual charac
ters in the operand string are translated into corresponding ASCII
codes.

Example:
DEFM ’DATA’; Translates individual characters in string ’DATA’ into ob

ject codes 44H, 41H, 54H, and 41H.

• Use commas (,) to separate operands.

Example:
DB 32*4+5, ’X2’; 85H, 58H, and 32H are generated in the object.

Sample Program
Source code Object code

10 ORG 01 OOH
20 LD HL, DATA 21 0C 01
30 LD DE, 300H 11 00 03
40 LD BC, 5 01 05 00
50 LDIR ED B0
60 RET C9
70DATA: DB ’ABCDEFGH’ 41 42 43 44

45 46 47 48
80 END

Individual characters in the operand string on line 70 are translated
into corresponding ASCII code.
This sample program copies five bytes of data located in the area
whose first address is specified by label DATA, into the area begin
ning with address 300H. In short, it copies data 41H, 42H, 43H, 44H,
and 45H into address area 300H to 304H.

131

DEFW/DW — Define Word

Format: IDEFWI[label:] (D W expression [.expression]...

Purpose: Translates the low-order two bytes of a numeral or a string (two char
acters or less per data) given in the expression into object code.

Remarks: • These statements translate the low-order two bytes of a numeral
specified in the operand.

Examples:
DW 1234H; Translates 1234H into object codes 34H and 12H (in the

order of low- and high-order bytes).
DEFW 34H; Translates 34H into object codes 34H and OOH.

• A character string in the operand must be enclosed in single quotes
(’). You can specify up to two characters for a string.

Examples:
DEFW ’DA’; Translates string ’DA’ into object codes 41H and 44H.
DW ’Z’; Translates string ’Z’ into object codes 5AH and OOH.

• Use commas (,) to separate operands.

Example:
DW ’AB’,’CD’,5678H; 42H, 41H, 44H, 43H, 78H, and 56H are

generated in the object.

DEFS/DS — Define Storage

Format: n u . i [DEFS1
[label:] j D g) numeric expression

Purpose: Generates null codes (OOH) by the number specified in the operand.
Remarks: • These statements generate null codes (OOH) by the specified byte

count.

Example:
DS 12; Generates 12 bytes of OOH.

Sample Program
Source code Object code

10 ORG 01 OOH
20 LD HL, DATA 21 10 01
30 LD DE, 300H 11 00 03
40 LD BC, 5 01 05 00
50 LDIR ED B0
60 RET C9
65 DS 4 00 00 00 00
70DATA: DB ’ABCDEFGH’ 41 42 43 44

45 46 47 48
75NXT00: DS 500H-NXT00 (OOH is placed in all the

subsequent addresses to
04FFH.)

80 END

132

EQU — EQU

This sample program is identical to the one shown on page 131, ex
cept for inclusion of additional lines 65 and 75. Line 65 reserves a
memory area for future use. Line 75 places null codes (OOH) to clear
unnecessary contents in memory.
OOH is a no operation (NOP) code that instructs the computer not to
do anything.

END — End

Format: label EQU expression
Purpose:
Remarks:

Assigns the value specified by the operand to a label.
• This statement assigns the value given by the expression to the

label.
• The value may be a one- or two-byte numeral or string.
• The label should not be followed by a colon (:).

Example:
START EQU 1000H; Assigns value 1000H to label START, which can

then be treated as constant 1000H.
OK EQU ’Y’; Assigns value 59H to label OK.

Format: END
Purpose:
Remarks:

Declares the end of the source program.
• The END statement specifies the end of a source program at which

point assembly terminates. Anything following this statement will not
be assembled.

• If no END statement is placed at the end of a source program, the
assembler assembles to the last contents of the text area.

133

Assembly Errors
This section contains a list of the error messages that can occur during assembly,
as well as the meanings of these messages. Use the I c»ce I key to clear an error
message. If assembly is suspended upon encountering an error in the source pro
gram, press the I I I key to continue assembly.
Errors are also cleared when another mode is selected.

Error Meaning (cause)
OPECODE ERROR Invalid OP code (command code).

FORMAT ERROR (1) Invalid operand separator.

FORMAT ERROR (2) Invalid code (ASCII codes 01H-1FH, etc.) or
character is in operand (such codes or charac
ters cannot be entered through normal opera
tion, however).

FORMAT ERROR (3) Invalid number of operands.

FORMAT ERROR (4) Invalid characters used in the label.

FORMAT ERROR (5) A label has more than six characters.

FORMAT ERROR (6) String in operand is not enclosed in single
quotes.

FORMAT ERROR (7) The number of characters used in statement or
individual operand exceeds 32 (e.g. value of
address, etc. in operand has too many leading
zeros).

QUESTIONABLE OPERAND (1) Invalid operand.

QUESTIONABLE OPERAND (2) Invalid condition (NZ, Z, NC, etc.).
QUESTIONABLE OPERAND (3) Operand value exceeds the allowable limit.

QUESTIONABLE OPERAND (4) String in operand exceeds length of 32 charac
ters.

QUESTIONABLE OPERAND (5) Division by zero was attempted.

QUESTIONABLE OPERAND (6) Other invalid values or expressions.

UNDEFINED SYMBOL An undefined symbol (label) is used.

MULTI DEFINE SYMBOL The same symbol (label) is defined more than
once.

FILE NOT EXIST Program to be assembled does not exist in text
area.

USER AREA OVER Object could not be loaded into the machine
code area. (The first address of the object area
specified by the ORG statement is outside the
machine code area, or the object has over
flowed the machine code area as it was loaded.)

WORK AREA OVER The size of free area is too small for the work
area needed for assembly (when the computer
enters the Assembler mode or is assembling).

PRINTER ERROR Printer is not ready or not functioning. (The
printer is not connected, turned off, or is inopera
tive due to dead printer battery.)

134

PART 5

BASIC REFERENCE
Part 5 contains alphabetical listings of all
the BASIC commands supported by the
PC-E220*. This chapter is designed to be
used as a ready reference.

The first section contains an alphabetical
listing of numeric functions and pseudo
variables.

The second section is an alphabetical listing
of all other BASIC commands.

* The PC-E220 is hereafter referred to as
“the computer”.

14. SCIENTIFIC & MATHE
MATICAL CALCULATIONS

The computer has a wide range of built-in functions for scientific, mathematical and
statistical calculations. They are listed below alphabetically. All the functions listed
below can be used as part of calculations when using the computer in RUN mode.
They may also be used as BASIC commands within programs.

For trigonometric functions, entries can be made in degrees, radians or as a
gradient value, as appropriate:

DEGREE: Set the computer to degree entry mode by typing DEGREE (the status
line on the display shows DEG). This is the default mode.

RADIAN: Set the computer to radian entry mode by typing RADIAN (the status
line on the display shows RAD).

GRADIENT: Set the computer to gradient entry mode by typing in GRAD (the
status line on the display shows GRAD).

These three modes (DEG, RAD, and GRAD) can also be set from within a pro
gram. Once a mode is set, all entries for trigonometric functions must be in the
units set (degrees, radians, or gradient values) until another mode is selected either
manually or from within a program. The examples given below are all for direct
entry of the functions entered in degrees.

Most functions can also be implemented by pressing the corresponding function
key. Functions marked with an asterisk (*) have no corresponding key and must be
entered through the keyboard.

136

*ABS
Function: Absolute value

Remarks: Returns the absolute value of the numeric argument. The absolute
value is the magnitude of the number irrespective of its sign. ABS-10
is 10.

Example: ABS -10 P — 'I

ACS cos 1x

Function: Inverse or arc cosine

Remarks: Returns the arc cosine of the numeric argument. The arc consine is the
angle whose cosine is equal to the argument. The value returned
depends on the mode (DEG, RAD or GRAD).

Example: DEGREE [ZZZT|
ACS -0 .5 [Z Z T] 120

AHC cosh-1x

Function: Inverse hyperbolic cosine

Remarks: Returns the inverse hyperbolic cosine of the numeric argument.

Example: AHC 10 N — »| 2.993222846

AHS sinh 1x

Function: Inverse hyperbolic sine

Remarks: Returns the inverse hyperbolic sine of the numeric argument.

Example: AHS 27.3 [Z Z j] 4.000369154

AHT tanh x

Function: Inverse hyperbolic tangent

Remarks: Returns the inverse hyperbolic tangent of the numeric argument.

Example: AHT 0.7 N — 11 0.867300527

137

ASN sin 1x

Function: Inverse or arc sine

Remarks: Returns the arc sine of the numeric argument. The arc sine is the angle
whose sine is equal to the argument. The value returned depends on
the mode (DEG, RAD or GRAD).

Example: DEGREE — 11
ASN 0.5 C T 30

ATN tan-1x

Function: Inverse or arc tangent

Remarks: Returns the arc tangent of the numeric argument. The value returned
depends on the mode (DEG, RAD or GRAD).

Example: DEGREE [C T J]
a t n 1 C T j] 45

COS COS X

Function: Cosine

Remarks: Returns the cosine of the angle argument. The value returned depends
on the mode (DEG, RAD or GRAD).

Example: DEGREE C T H
COS 120CT j | -0 .5

*CUB
Function: Cube

Remarks: Returns the cube of the argument.

Example: CUB 3 N — 11 27

CUR 3Vx

Function: Cube root

Remarks: Returns the cube root of the argument.

Example: CUR 125 — ’ I 5

138

DEG dd°mm'ss" -> ddd.dddd0

Function: Deg/min/sec to decimal conversion

Remarks: Converts an angle argument in DMS (Degrees, Minutes, Seconds) for
mat to DEG (Decimal Degrees) format. In DMS format the integer por
tion of the number represents degrees, the first and second digits after
the decimal point represent minutes, the third and fourth digits after the
decimal point represent seconds, and any further digits represent frac
tional seconds.

Example: DEG 30.5230 (30°52'30") 30.875

DMS ddd.dddd0 -> dd°mm'ss

Function: Decimal to deg/min/sec conversion

Remarks: Converts an angle argument in DEG format to DMS format (see DEG).

Example: DMS 124.8055 124.48198 (124°48'19"8)

iEXP
i

Function: Exponential function

Remarks: Returns the value of e (2.718281828... the base of natural logarithms)
raised to the value of the numeric argument.
The corresponding function key is I ex I.

Example: EXP 1.2 I - — ‘ I 3.320116923

FACT n!

Function: Factorial n

Remarks: Returns the factorial of the argument.

Example: FACT 7 N — 1 1 5040

HCS cosh x

Function: Hyperbolic cosine

Remarks: Returns the hyperbolic cosine of the numeric argument.

Example: HCS 3 1| 10.067662

139

Function: Hyperbolic sine

Remarks: Returns the hyperbolic sine of the numeric argument.

Example: HSN 4 F ^ T | 27.2899172

HTN tanh x

Function: Hyperbolic tangent

Remarks: Returns the hyperbolic tangent of the numeric argument.

Example: HTN 0.9 [^ = J] 0.71629787

*INT
Function: Integer

Remarks: Returns the integer portion of the argument. The integer portion of PI is
3.

Example: INT -1.9 — H -2

Function: Natural or Naperian logarithm

Remarks: Returns the logarithm to base e (2.718281828 ...) of the numeric
argument.

Example: LN 2 I - — 1~| 0.69314718

Function: Common logarithm

Remarks: Returns the logarithm to base 10 of the numeric argument.

Example: LOG 1000 N — 1| 3

140

*NCR nCr=n!/r!(n—r)!

Function: Combination

Remarks: Enter the values as NCR(n,r).

Example: NCR (6,3) F ^ > 1 20

*NPR nPr=n!/(n-r)I

Function: Permutation

Remarks: Enter the values as NPR(n,r).

Example: NPR (6,3) — ‘ I 120

PI n

Function: PI

Remarks: PI is a numeric pseudovariable that has the value of n. Use of PI is
identical to use of the I ir. I key.

3.141592654Example: PI N — 11

Function: Rectangular to polar coordinate conversion

Remarks: Converts numeric arguments of rectangular coordinates to their polar
coordinate equivalents.

The first argument indicates the distance from the y-axis and the
second the distance from the x-axis. The values converted indicate the
distance from the origin and the angle in the polar coordinates, and are
assigned to the fixed variables Y and Z, respectively. The angle
depends on the mode (DEG, RAD, or GRAD).

Example: DEGREE
POL (8,6)
Z [S

10 (r = 10)
36.86989765

(9 = 36.9°)

141

A yx

Function: xth power

Remarks: Returns the x,h power of the numeric argument. Enter as y A x.

Example: 4 A 2.5 l-«— 1| 32

RCP 1/x

Function: Reciprocal

Remarks: Returns the reciprocal of the numeric argument.

Function: RCP 4 I - — 1| 0.25

REC (r,6) (x,y)

Function: Polar to rectangular coordinate conversion

Remarks: Converts numeric arguments of polar coordinates to their rectangular
coordinate equivalents.

The first argument indicates the distance from the origin and the second
argument the angle. The angle depends on the mode (DEG, RAD or
GRAD). The converted values indicate the distances from the y-axis
and the x-axis, and are assigned to the fixed variables Y and Z, respec
tively.

Example: DEGREE
REC (12.30)
z [=]

10.39230485 (x = 10.4)
6 (y = 6)

*RND
Function: Random number

Remarks: See RND and RANDOMIZE in the BASIC COMMAND DICTIONARY.

ROT
Function: x,h root

Remarks: Returns the x,h root of the argument y. Enter as yROTx.

Example: 7776 ROT 5 | Z J] 6

142

*SGN
Function: Sign of argument

Remarks: Returns a value based on the sign of the argument.

If x > 0, the function returns 1.
If x < 0, the function returns -1 .
If x = 0, the function returns 0.

SIN sin x

Function: Sine

Remarks: Returns the sine of the angle argument. The value returned depends on
the mode (DEG, RAD or GRAD).

Example: DEGREE
SIN 30 0.5

SQR
Function: Square root

Remarks: Returns the square root of the argument.

Example: SQR 3 N — 11

SQU
Function: Square

Remarks: Returns the square of the argument.

Example: SQU 4 1-«— »|

TAN

1.732050808

tan x

Function: Tangent

Remarks: Returns the tangent of the angle argument. The value returned depends
on the mode (DEG, RAD or GRAD).

Example: DEGREEN — 1|
TAN 45 1

143

TEN 10

Function: Antilogarithm

Remarks: Returns the value of 10 (the base of the common log) raised to the
value of the numeric argument.

Example: TEN 3 N — H 1000

&H
Function: Hexadecimal to decimal conversion

Remarks: Converts a hexadecimal value to its decimal equivalent.

Example: &H F82 — 11 3970

Calculation Ranges
Numerical Calculations:
For a calculation involving x, the number x must be within one of the ranges below:

-1 x 1O100 < x < -1 x 10“" for negative x
10-99 < x < 1O100 for positive x
x = 0

The displayed value of x is limited by the number of digits that can fit on the display
screen.

Functions:

Function Range of x
sin x
cos X
tan x

DEG: |x| < 1 x 1O10

RAD: M < t ^ x 10’°

GRAD: |x| < ^ x 1O10

Also, for tan x only: (n=integer)
DEG: |x | * 9 0 (2 n -1)

RAD: |x| (2n - 1)

GRAD: |x| * 100 (2n - 1)
sin-1 x
cos"1 X -1 < x < 1

tan-1x |x| < 1 x 1O,o°
sinh x
cosh x
tanh x

-227.9559242 < x < 230.2585092

sinh"1 x |x| < 1 x 105°
cosh"1 x 1 < x < 1 x 1050

tanh'1 x |x |<1
In x
log x

1 x 10-9 9 < x < 1 x 101”

ex -1 x 10’“ < X < 230.2585092
10‘ -1 x 10’” < x < 100

|x| < 1 x 10’”
J_
X |x| < 1 x 1010°, x ^ O

x2 |x| < 1 x 1050

ST 0 < x < 1 x 10’”
n! 0 < n < 69 (n=integer)
DMS->DEG
DEG-»DMS |x| < 1 x 10’”

145

Function Range of x
y«
(y«= 10'lto«*)

when y > 0,
when y = 0,

when y < 0,
•

-1 x 1O100 < x log y < 100
x > 0

x = integer or = odd integer (x * 0)

and -1 x 1O100 < x log |y| < 100
’<y~
(x< y “=10«b9x)

when y > 0,

when y = 0,

when y < 0,

-1 X 1O100 < Y log y < 100, x * 0

x > 0
r x or ” ■ must be non-zero integer,

and -1 x 1O100 < log |y| < 100

&H 0<x<2540BE3FF (x in hexadecimal)
FDABF41C01<x<FFFFFFFFFF

x,y -> r,0 (x2 + y2) < 1 x 1O100 r = -V xz+ y2

-y - < 1 x 1 O 100 e = tarT’-^-
X X

r,0 -> x,y r < 1 x 1O100 x = r cos0
|r sin0| < 1 x 1O100 y = r sin0
|r cos0| < 1 x 1O100

nPr 0 < r < n < 1O100 n,r integers
nCr 0 < r < n < 1O100 n,r integers

when n - r < r, n - r < 69
when n - r > r, r < 69

15. BASIC COMMAND
DICTIONARY

This chapter contains an alphabetical listing of the BASIC commands that you can
use on the computer.

For simplicity, the following conventions have been adopted in compiling this diction
ary:

expression Indicates a numeric value, numerical variable or a formula, includ
ing numeric values and numerical variables.

variable Indicates a numerical variable or string variable, including array
variables.

“string” Indicates a character string enclosed in quotation marks.

string variable Indicates a string variable or string array variable.

xlabel Indicates xlabel.
(Although both xlabel and “label” forms may be used with the
computer, xlabel is recommended. *AB and “AB” are recognized
as the same labels.)

1] The parameter in square brackets is optional. The brackets them
selves are not part of the command entry.

() Used to enclose parameter values in certain commands. They
should be entered as part of the command.

it 99 Used to enclose string parameter values in certain commands.

J Al
i B J A or B can be selected.

P
D

Program execution is possible.
Direct input operation is possible.

Abbreviation Most of the commands can be abbreviated.
The shortest abbreviations allowed are given in this manual.
Example:

Abbreviation: P. (for PRINT)
The following abbreviations are also valid:

PR. PRI. PRIN.

147

ASC p
D

FORMAT: ("string"
[string variable

Abbreviation: AS.
See Also: CHR$

PURPOSE:
Returns the character code for the first character in the specified string.

REMARKS:
Specify the string as the contents of a string variable in the form X$ or as an actual
string enclosed in quotes, “XXXX”. Only the character code of the first character in
the string is returned. See Appendix C for character code tables.

EXAMPLE:
10: INPUT "ENTER A CHARACTER ";A$
20: N = ASC A$
30: PRINT "THE CHARACTER CODE IS ";N
40: GOTO 10

[10] The user presses a key to enter a character.
[20] ASC finds the code number for the character.
[30] The answer is displayed. _____
[40] Repeats until the user halts the program by pressing the I br eak] key.

BEEP D
p

FORMAT: BEEP expression

Abbreviation: B.
See Also:

PURPOSE:
The BEEP verb is used to produce an audible tone.

REMARKS:
The BEEP verb causes the computer to emit one or more audible tones.
The number of beeps is determined by the expression, which must be numeric
(positive number less than 65535). The expression is evaluated, but only the integer
part is used to determine the number of beeps.

BEEP may also be used as a command using numeric literals and predefined vari
ables.

148

CHR$ D
p

FORMAT: CHR$ expression

Abbreviation: CH.
See Also: ASC

PURPOSE:
Returns the character that corresponds to the numeric character code of the
parameter.

REMARKS:
See Appendix C for a chart of character codes and their relationship to characters,
e.g., CHR$ 65 is “A”.

A hexadecimal number can be specified with “&H" in front of the character code
(eg. A$ = CHR$ &H5A)

A value greater than 255 generates an error.

EXAMPLE:
10' AA$=""
20: INPUT “CODE=" ;A:CLS
30: AA$=AA$+CHR$A
40: LOCATE 7,1 PRINT AA$
50: GOTO 20

Displays the characters represented by the codes entered in line 20.

149

CLEAR D
p

FORMAT: CLEAR

Abbreviation: CL.
See Also: DIM

PURPOSE:
Erases variables that have been used in the program and resets all preallocated
variables to zero or null.

REMARKS:
CLEAR frees memory space that has been used to store simple numeric variables,
and array variables secured using the DIM statement. Also use CLEAR at the begin
ning of a program to clear memory occupied by variables from previously run
programs if several programs are in memory.

Do not use the CLEAR command within a FOR...NEXT loop.

EXAMPLE:
10: A = 5: DIM C(5)
20: CLEAR

[20] Frees memory assigned to C() and resets A to zero.

CLOAD D

FORMAT: 1. CLOAD “filename" F ^ J]
2. CLOAD g

Abbreviation: CLO.
See Also: CLOAD?, CSAVE

PURPOSE:
Loads a program saved on tape.

REMARKS:
Valid only as direct input in the PRO or RUN mode.

Format 1 clears the memory of an existing program, searches the tape for the
program indicated by “filename”, and loads the program.
Format 2 clears the memory and loads the first program stored on tape, starting at
the current position.

During execution, is displayed at the bottom right after the file name is display
ed. After execution, disappears and the prompt (>) will be displayed. When sear
ching for a filename, is not displayed. The same applies to the CLOAD? com
mand.

If the specified filename is not found, the computer continues to search for the
filename even after the end of the tape has been reached. Press the I br eak I key to
stop searching for the filename.
If an error occurs during execution of the CLOAD command, the program being
loaded will be invalid.

See tape operation in the section describing peripherals.

EXAMPLE:
CLOAD*

* Loads the first program found on the tape.
** Searches the tape for the program “PROS'' and loads it.

CLOAD "PRO3"**

151

CLOAD? D

FORMAT: 1. CLOAD? “filename”
2. CLOAD? [^ 1

Abbreviation: CLO.?
See Also: CLOAD, CSAVE

PURPOSE:
Compares a program saved on tape with one stored in memory.

REMARKS:
Valid only as direct input in the PRO or RUN mode.

To verify that a program was saved correctly, rewind the tape to the beginning of
the program and use the CLOAD? command.

Format 1 searches the tape for the program indicated by “filename” and then com
pares it to the program stored in memory.
Format 2 compares the program stored in memory with the first program stored on
the tape, starting at the current tape position.

When the program on tape does not match the one stored in memory, an error will
occur. During execution, is displayed at the bottom right after the file name is
displayed. After execution, disappears and the prompt (>) will be displayed.

Note:
When loading a program created with another computer and stored on tape, the pro
gram is converted to PC-E220 code. In this case, the CLOAD? command cannot be
executed.

For an explanation of tape operation, see the relevant section in the peripherals
chapter.

EXAMPLE:
CLOAD?*
CLOAD?"PRO3"*‘

’ Compares the first program found on the tape with the one in memory.
** Searches the tape for the program “PRO3” and compares it to the one in memory.

152

CLOSE
FORMAT: CLOSE [# 1]

Abbreviation: CLOS.
See Also: OPEN

PURPOSE:
Closes a file.

REMARKS:
This commands closes a file on the currently accessed device such as the cassette
tape drive. When a file is opened in the OUTPUT mode, the data remaining in
memory (the output buffer) is output to the cassette file with an End Of File code
before being closed.

A file will be closed in the following cases:

• An END, NEW, or RUN command is executed.
• The power is turned off.
• After editing a program (program entry, correction, deletion, or execution of

DELETE command).
• A program is written into, read from, or deleted from the RAM disk.
• The CSAVE, CLOAD, or CLOAD? command is executed.
• The Monitor mode is selected.

Note:
The CLOSE command must be executed whenever serial communications are
completed. If a file is left open and the data transfer cable is connected, current will
continue to be drawn from the operating batteries in the computer.

153

CLS
FORMAT: CLS

Abbreviation:
See Also: LOCATE

PURPOSE:
Clears the display.

REMARKS:
Clears the display and resets the display start position to (0,0).

CONT D

FORMAT: CO NTF ^ H

Abbreviation: C.
See Also: STOP

PURPOSE:
Continues a program that has been temporarily halted.

REMARKS:
Valid only as direct input in the RUN mode.

Enter CONT to continue running a program that has been stopped with the STOP
command. Enter CONT at the prompt to continue a program that has been halted
using the I br eak I key.

EXAMPLE:
CONT

Continues an interrupted program.

154

CSAVE D
p

FORMAT: 1. CSAVE “filename”
2. CSAVE
3. CSAVE “filename”, “password”
4. CSAVE, “password”

Abbreviation: CS.
See Also: CLOAD, CLOAD?, PASS

PURPOSE:
Saves a program to tape.

REMARKS:
Format 1 writes all program lines in memory to the tape and assigns the indicated
filename.
Format 2 writes all program lines in memory to the tape without assigning a
filename.
Format 3 writes all program lines in memory to the tape and assigns them a
specified filename and password.
Format 4 writes all program lines in memory to the tape without assigning a
filename, but assigns a specified password.

Programs saved with a password can be loaded by anyone, but only someone who
knows the password can list or modify them. (See PASS command.)

If a program in memory is write-protected, the CSAVE command will be ignored.

Avoid writing different programs with the same filename onto the same side (side A
or B) of a tape. This may cause the wrong program to be read. It is recommended
that the number on the tape counter be noted when writing a program onto tape.

For an explanation of tape operation, see the relevant section in the peripherals
chapter.

EXAMPLE:
CSAVE "PRO3", "SECRET"

Saves all programs in memory to tape under the name “PRO3", protected with the password “SECRET’.

155

DATA p

FORMAT: DATA list of values

Abbreviation: DA.
See Also: READ, RESTORE

PURPOSE:
Provides values for use by READ.

REMARKS:
When assigning initial values to an array, it is convenient to list the values in a
DATA statement and use a READ statement in a FOR...NEXT loop to load the
values into the array. When the first READ is executed, the first value in the first
DATA statement is returned. Succeeding READs use succeeding values in the
sequential order in which they appear in the program, regardless of how many
values are listed in each DATA statement or how many DATA statements are used.

A DATA statement may contain any numeric or string values, separated by
commas. Enclose string values in quotes. Spaces at the beginning or end of a
string should be included in the quotes.

DATA statements have no effect if encountered in the course of regular execution
of the program, so they can be inserted wherever appropriate. Many programmers
include them after the READ that uses them. If desired, the values in a DATA state
ment can be read a second time using the RESTORE statement.

EXAMPLE:
10: DIM B(10)
20: WAIT 128
30: FOR I = 1 TO 10
40: READ B(l)
50: PRINT B(l)
60: NEXT I
70: DATA 10,20,30,40,50,60
80: DATA 70,80,90,100
90: END

[10] Sets up an array.
[40] Loads the values from the DATA statement so that B(1) will be 10,B(2) will be 20,B(3) will be 30,

etc.

156

DEGREE
FORMAT: DEGREE

P
D

Abbreviation: DE.
See Also: GRAD, RADIAN

PURPOSE:
Changes the form of angular values to decimal degrees.

REMARKS:
The computer has three forms for representing angular values: decimal degrees,
radians and gradient. These forms are used in specifying the arguments to the SIN,
COS, and TAN functions and in returning the results from the ASN, ACS, and ATN
functions.

The DEGREE function changes the form of all angular values to decimal degree
form until GRAD or RADIAN is used. The DMS and DEG functions can be used to
convert angles from decimal degree form to degree, minute, second form and vice
versa.

EXAMPLE:
10: DEGREE
20: X = ASN 1
30: PRINT X

[20] X now has a value of 90; i.e., 90 degrees, the arc sine of 1.

157

DELETE D

FORMAT: 1. DELETE line number
2. DELETE line number - |-«— 11

3. DELETE line number - line number — 11

4. DELETE - line number N — 11

Abbreviation: DEL.
See Also: NEW, PASS

PURPOSE:
Deletes specified program lines in memory.

REMARKS:
Valid only as direct input in the PRO mode.

Format 1 deletes only the specified program line.
Format 2 deletes program lines from the line number specified up to the highest pro
gram line in memory.
Format 3 deletes all program lines between the first specified line number (lower
value) and the second specified line number (higher value).
Format 4 deletes program lines from the lowest line number in memory up to the
specified line number.

Using DELETE in the RUN mode generates an error. If a password has been used,
the command will not be executed and the prompt will be displayed. Only the digits
0-9 can be in the line numbers. Specifying a line that does not exist generates an
error. Specifying a start line number that is greater than the end line number also
generates an error.
If the first and second line numbers are omitted, an error will occur.

To delete the whole program, use the NEW command.

EXAMPLE:
DELETE 150*
DELETE 200-**
DELETE 50-150***
DELETE -35****

* Deletes line 150 only.
** Deletes from line 200 to the highest line number.

Deletes all lines between and including line 50 and line 150.
**** Deletes from the lowest line number up to line 35.

158

p
DDIM

FORMAT: 1. DIM numeric variable name 1 (size) [, numeric variable name 2 (size)]
2. DIM string variable name 1 (size) xlength

[, string variable name 2 (size) xlength]
3. DIM numeric array name 1 (rows, columns)

[, numeric array name 2 (rows, columns)]
4. DIM string array name 1 (rows, columns) xlength

[, string array name 2 (rows, columns) xlength]

Abbreviation: D.
See Also: CLEAR, RUN

PURPOSE:
Reserves space for numeric and string array variables.

REMARKS:
DIM must be used to reserve space for any array variable. The size of an array is
the number of elements in that array.

The maximum number of dimensions in any array is two, the maximum size of any
one dimension is 255. In addition to the number of elements specified in the dimen
sion statement, one additional zeros element is reserved. For example, DIM B(3)
reserves B(0), B(1), B(2), and B(3). In two-dimensional arrays there is an extra
zeros row and column.

In string arrays, the size of each string element in addition to the number of
elements are specified. For example, DIM B$(3)x 1 2 reserves space for 4 strings
that are each a maximum of 12 characters long. If the length is not specified each
string can contain a maximum of 16 characters.

When a numeric array is dimensioned, all values are initially set to zero; in a string
array the values are set to null.

Integers 0-255 can be used to reserve space for the desired array size (rows,
columns), but an error may occur if a variable with the specified size cannot be
reserved because of limits in free memory space and conditions of use.

If the size designation includes a decimal point, only the integer part will be recog
nized (and the fractional part will be ignored).

Example:
X(2.3) recognized as X(2)
Y(0.25) recognized as Y(0)

159

Array space and size may be declared by a numeric variable or expression:
10: INPUT A, B
20: DIM X(A), YY(B-1, A*B)

More than one array can be declared using one DIM statement.

Example:
DIM V(5), K$(4,3), XB$(5)

If an array has been defined, it cannot be defined again. For example, both DIM
X(5) and DIM X(3,4) cannot be defined since the variable names are the same.

Numerical array and string array variables are recognized as different arrays; thus,
the arrays Z() and Z$() can both be defined.

Array variables can be cleared (or set undefined) with the CLEAR command. When
the program is started using the RUN command, array variables are automatically
cleared.

An array can be declared only once and any attempt made to redeclare the array
within the program without first CLEARing it will generate errors. Be careful when
executing a program using GOTO that the same DIM statement will not be
executed again unless CLEAR has been used first.

EXAMPLE:
10: DIM B(10)
20: DIM C$(4,4)*10
30: DIM F$(12)
40: DIM H$(4,6)

[10] Reserves space for a numeric array with eleven elements.
[20] Reserves space for a two-dimensional string array with five rows and five columns; each string will

be a maximum of ten characters.
[30] Reserves space for string variable F$ with thirteen elements.
[40] Reserves space for a two-dimensional string array with five rows and seven columns; that is,

thirty-five elements.

160

END
FORMAT: END

Abbreviation: E.
See Also:

PURPOSE:
Signals the end of a program.

REMARKS:
The program will be terminated when the END statement is executed. Statements
after the END statement in the same line cannot be executed. An open file will be
closed.

EXAMPLE:
10: PRINT "HELLO"
20: END
30: PRINT "GOODBYE"
40: END

With these programs in memory, RUN 10 prints HELLO, but not GOODBYE. RUN 30 prints GOODBYE.

FILES D

FORMAT: FILES

Abbreviation: FL
See Also: LFILES, SAVE, LOAD

PURPOSE:
Displays names of files on the RAM disk.

REMARKS:
A maximum of four filenames will be displayed at one time, and an ■» mark will
appear to the left of the filenames. Scroll through the files by pressing the I t I and
I I I keys to move the ■* mark up or down, respectively.

If the I c»ce I or I br eak I key is pressed, the entry prompt (>) is displayed, and the
computer waits for the next command.

To display the listing of a program, position the ■* mark at the filename of the
desired program, then press I shif t | + I l oad I . Listing of contents of programs
registered in the TEXT mode cannot be displayed, however.

FOR...NEXT
FORMAT: FOR numeric variable = expression 1 TO expression 2

[STEP expression 3]

NEXT [numeric variable]

Abbreviation: F. N. STE.
See Also:

PURPOSE:
In combination with NEXT, repeats a series of operations a specified number of
times.

REMARKS:
FOR and NEXT are used in pairs to enclose a group of statements that are to be
repeated. If the variable following NEXT is omitted, the variable following FOR is
assumed. The first time this group of statements is executed the loop variable (the
variable named immediately following FOR) is assigned its initial value (expression
1).

When execution reaches the NEXT statement, the loop variable is increased by the
STEP value (expression 3) and then this value is tested against the final value
(expression 2). If the value of the loop variable is less than or equal to the final
value, the enclosed group of statements is executed again, starting with the state
ment following FOR. If expression 3 for step value is omitted, the increment be
comes 1. If the value of the loop variable is greater than the final value, execution
continues with the statement that immediately follows NEXT. Because the com
parison is made at the end, the statements within a FOR...NEXT loop are always
executed at least once.

When the increment is zero, FOR...NEXT will continue in an infinite loop.

The loop variable may be used within the group of statements, for example as an
index to an array, but care should be taken in changing the value of the loop
variable. Write programs so that the program flow does not jump out of a
FOR...NEXT loop before the counter reaches the final value. To exit a loop before it
has been repeated the specified number of times, set the loop variable higher than
the final value.

The group of statements enclosed within one FOR...NEXT loop can include another
pair of FOR...NEXT statements that use a different loop variable as long as the
enclosed pair is completely enclosed; i.e., if a FOR statement is included within a
group of statements, the NEXT paired with it must also be included. FOR...NEXT
loops may be “nested” up to five levels deep. Illegally jumping out of an inner loop
will generate a nesting error.

Do not use the CLEAR or DIM command within a FOR...NEXT loop.

163

FRE P
D

FORMAT: FRE

Abbreviation: FR.
See Also:

PURPOSE:
Returns the free memory available in the program and data area in bytes.

REMARKS:
FRE returns the byte count of the free space (in the area not used by BASIC
programs, array variables, simple variables and machine code, and includes the
RAM disk and text area) in the program and data area of memory.

Note:
When using this command in the PRO mode, enter PRINT FRE N — ■ |.

GOSUB...RETURN
FORMAT: Q Q g jg fline number

[xlabel

RETURN

Abbreviation: GOS. RE.
See Also: GOTO, ON...GOSUB

PURPOSE:
Diverts program execution to a BASIC subroutine.

REMARKS:
When you wish to execute the same group of statements several times in a
program, it is convenient to use the BASIC capability for subroutines using GOSUB
and RETURN.

The group of statements should be included in the program at some location where
they will not be encountered in the normal sequence of execution. A common loca
tion is following the END statement marking the end of the main program.

At each location in the main body of the program where a subroutine is to be
executed, include a GOSUB statement with a line number or xlabel, which indicates
the starting line number of the subroutine. The last line of each subroutine must be
a RETURN.
When GOSUB is executed, the computer transfers control to the indicated line
number or xlabel and processes the statements until a RETURN is encountered.
Control is then transferred back to the statement following the GOSUB.

Subroutines may be “nested" up to ten levels deep.

Since there is an ON...GOSUB structure for choosing different subroutines at given
locations in the program, the expression in a GOSUB statement usually consists of
just the desired line number or *label.

EXAMPLE:
10: GOSUB 100
20: END

100: PRINT "HELLO"
110: RETURN

When run, this program prints HELLO once.

165

GOTO D

FORMAT: GOTO line number
xlabel

Abbreviation: G.
See Also: GOSUB, ON...GOTO, RUN

PURPOSE:
Transfers program control to a specified line number or xlabel.

REMARKS:
GOTO transfers control from one location in a BASIC program to another location.
Unlike GOSUB, GOTO does not “remember” the location from which the transfer
occurred.

Usually, a program is executed sequentially from the lowest line number. However,
execution can be transferred to a line with the given line number or xlabel. Program
execution can be started from the specified line by specifying a GOTO statement as
direct input in the RUN mode. The transfer destination is specified by entering the
line number or xlabel after the GOTO command.

Example:
GOTO 40 Jumps to line 40
GOTO xAB Jumps to the line with label xAB

If the specified line number or xlabel does not exist, an error occurs.
If two or more identical xlabels are included in a program, program execution trans
fers to the line with the lowest line number.

EXAMPLE:
10: INPUT A$
20: IF A$ = "Y" GOTO 50
30: PRINT "NO"
40: GOTO 60
50: PRINT "YES"
60: END

This program prints “YES” it a “Y" is entered and prints “NO” if anything else is entered.

166

GRAD D
p

FORMAT: GRAD

Abbreviation: GR.
See Also: DEGREE, RADIAN

PURPOSE:
Changes the form of angular values to gradient form.

REMARKS:
The computer has three forms for representing angular values: decimal degrees,
radians, and gradient. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results form the ASN, ACS, and
ATN functions.

The GRAD function changes the form for all angular values to gradient form until
DEGREE or RADIAN is used. Gradient form represents angular measurement in
terms of percent gradient, i.e., a 45° angle is a 50 percent gradient.

EXAMPLE:
10: GRAD
20: X = ASN 1
30: PRINT X

X now has a value of 100, i.e., a 100 gradient, the arc sine of 1.

167

IF...THEN P

FORMAT:
IF condition THEN

line number
*label
statement

Abbreviation: IF T.
See Also: AND, OR, NOT

PURPOSE:
Conditionally executes a statement at the time the program is run.

REMARKS:
When the condition of the IF statement is true, the statement following THEN is
executed; if it is false, the statement following THEN is skipped and the next line is
executed.

If THEN is followed by a GOTO statement, either THEN or GOTO may be omitted.

Example:
1) IF A<5 THEN C=A*B:GOTO 50

If A is smaller than 5, then assign the product, A*B, to C and go to line 50.

2) IF B=C+1 GOTO 60
or
IF B=C+1 THEN 60
If B equals C+1, then go to line 60; otherwise go to the next line.

The condition (e.g. A<5) of the IF statement can be any relational expression listed
below:

Note: O O and x x represent expressions (5*4, A, 8, etc.).

Relational expression Description
O O = x x Equal to
O O > X X Greater than
O O > = X X Not less than
O O < X X Less than
O O < = X X Not greater than
O O < > X X Not equal to

168

More than one relational expression can be linked with the logical operators “* " or
“+". For example:

IF (A>5)*(B>1) THEN
If A is greater than 5 and B is greater than 1, the statement following THEN is
executed. Logical operator “AND" may be used in place of For example:

IF (A>5)+(B>1) THEN
If A is greater than 5 or B is greater than 1, the statement following THEN is
executed. Logical operator “OR" may be used in place of “+”.

Using Character Strings in Relational Expressions
The magnitudes of character strings can be compared when used in a relational
expression of an IF...THEN statement. The magnitudes of character codes are com
pared. For example, characters A, B, and C have codes 65, 66, and 67, respective
ly. So A is smaller than B, and B is smaller than C.

Length of Character Strings in Expressions
The total number of characters used in an expression linking or comparing two or
more character strings cannot exceed 255.

EXAMPLE:
10: INPUT"CONTINUE?";A$
20: IF A$="YES" THEN 10
30: IF A$="NO" GOTO 60
40: PRINT "YES OR NO, PLEASE"
50: GOTO 10
60:

Note:
Whenever a variable name is to be followed by a statement, be sure to insert a
space between, for example:
100 IF A=Bt THEN 200

- A space is needed.
Pay special attention to this when you use the IF, FOR, ON...GOTO, or
ON...GOSUB command.

169

INKEY$
FORMAT: INKEY$

Abbreviation: INK.
See Also:

PURPOSE:
Gives the specified variable the value of the key pressed while the INKEY$ function
is executed.

REMARKS:
INKEY$ is used to respond to the pressing of individual keys without waiting for the

11 key to end the entry.

See the table below for a list of applicable keys and the characters that are
returned.

If no key is pressed when the INKEY$ command is executed, a null value will be
assigned to the variable.
The INKEY$ command is unable to recognize any key operation made while the
I shif t I key is pressed or immediately after the 12nd f I key has been pressed.
I of f I or I shif t I key operations also are not recognized. Lowercase alphabetic char
acters cannot be read.

Note:
If the INKEY$ command is included in the first line of a program, it may act on the
key that is pressed to begin running the program.

EXAMPLE:
10: CLS: WAIT 60
20: IF INKEY$< > " " THEN 20
30: A$=INKEY$
40: IF A$=” n THEN 30
50: PRINT ASC A$; ’
60: GOTO 10

170

INKEY$ Character Code Table

• The loF l key functions as a Break key.

" \ H i g h
Low

0 1 2 3 4 5 8 9 ... F

0 2ndF SPACE 0 P
1 1 A Q In
2 C-CE 2 B R log
3 CONST 3 C S
4 T 4 D T
5 CAPS 5 E U sin
6 6 F V cos
7 ANS BS 7 G w 1/x tan
8 BASIC RM (8 H X x2

9 CAL M+) 9 I Y
A TAB X* J 2
B INS + » K -»DEG K
C DEL 1 L FSE
D - +/- M hyp
E ► N y‘ MDF
F <4 + / O

INPUT p

FORMAT: 1. INPUT variable [.variable]
2. INPUT “prompt string”, variable [[.“prompt string”], variable]
3. INPUT “prompt string”; variable [[.“prompt string”]; variable]

Abbreviation: I.
See Also: INPUT#, INKEY$, READ, LOCATE

PURPOSE:
Allows entry of one or more values from the keyboard.

REMARKS:
When you want to enter different values each time a program is run, use INPUT to
enter these values from the keyboard.

Format 1 displays symbol “?" to prompt data entry. If data is entered and the N — 11
key is pressed at this prompt, the system assigns the data to the variable and
resumes program execution.
if more than one variable is specified, the data prompt is repeated the correspond
ing number of times.

During data prompt, format 2 displays the character string enclosed by double
quotes (“ ”) as entry guidance. The guidance disappears when data is entered.

Format 3 also displays entry guidance during data prompt, but the entered data
appears following the entry guidance, which does not disappear.

Formats 1, 2, and 3 may be concurrently used in one INPUT statement:
INPUT “A=” ;A,B,“C=?”,C

The type of the variables given in the INPUT statement must match the type of
input data. Assign string data to string variables, and numerical data to numerical
variables. If “ABC” is entered in response to a numerical entry prompt, the value
assigned to variable AB is assigned. This allows you to enter such values as SIN30.

If the start position is specified using the LOCATE statement before excecuting the
INPUT statement, the prompt string or ? will be displayed at the specified location.

EXAMPLE:
10: INPUT A
20: INPUT "A=";A
30: INPUT "A=",A
40: INPUT "X=?";X,"Y=?";Y

[10] Puts a question mark at the left margin.
[20] Displays "A=” and waits for data to be entered.
[30] Displays “A=”. When data is entered, “A=" disappears and the data is displayed starting at the left

margin.
[40] Displays “X=?” and waits for the first entry. After !•«— <| is pressed, “Y=?n is displayed at the left

margin.

172

INPUT#
FORMAT: INPUT# 1, variable, variable, ..., variable

Abbreviation: I.#
See Also: OPEN, PRINT#

PURPOSE:
Reads items from sequential files on the SIO (serial I/O) device or cassette tape.

REMARKS:
INPUT# assigns data values that have been transferred from an SIO device or
cassette tape to specified variables.
This statement is valid only with an SIO device opened with the file descriptor
“COM:" or with a cassette file opened with the file descriptor “CAS:” and the access
mode “FOR INPUT”.

Specify variables as follows:
• Fixed variables (A, X, B$, etc.)
• Simple variables (CD, EF$, etc.)
• Array elements (B(10), C$(5,5), etc.)
• All array variables (B(x), C$(x), etc.)

An error will occur if the file contains less data than the number of specified vari
ables. If the file contains more data, the rest of the data will be ignored.

Use a comma (,), space (&H20), CR (&H0D), LF (&H0A) or CR + LF as a delimiter
when data are read into numeric variables. Spaces preceding data are ignored.
If data that cannot be translated into numerals is read to a numeric variable, the
data is assumed to be zero.

Use a comma (,), CR, LF or CR + LF as a delimiter to read data into character vari
ables. Spaces preceding data are ignored. A data delimiter automatically replaces
the 256th character that is output. If a double quotation mark appears at the begin
ning of data, data is read up to the next double quotation mark. A comma in a char
acter string enclosed by double quotation marks is assumed not to be a delimiter.

Treatment of EOF (End Of File: &H1A) Code:
• An EOF code preceding data causes an error.
• An EOF code in the middle of data is treated as a data delimiter.
Order of Data Input into array variables:
Examples:
For one-dimensional array variables: B (0) -> B (1) -> B (2) - >
For two-dimensional array variables: C (0, 0) -> C (0, 1) -» C (0, 2) ->

C (1, 0) -» C (1, 1) -» C (1, 2) ->

173

KILL D

FORMAT: KILL “filename”

Abbreviation: K.
See Also: SAVE

PURPOSE:
Deletes a file on the RAM disk.

REMARKS:
KILL deletes a file with the specified filename from the RAM disk.

An error occurs if the specified file does not exist.

LEFT$ D
p

FORMAT: LEFT$(“string”,expression)

Abbreviation: LEF.
See Also: MID$, RIGHTS

PURPOSE:
Returns the specified number of characters from the left end of a given string.

REMARKS:
LEFTS returns the number of characters specified by the expression from the left
end of the given string.
For example, if A$=“ABCD", LEFT$(A$,3) returns the leftmost 3 characters, “ABC”.

EXAMPLE:
10: X$="SHARP": WAIT 60
20: FOR N=1 TO 5
30: LET S$=LEFT$(X$,N)
40: PRINT S$
50: NEXT N

RUN
S
SH
SHA
SHAR
SHARP

174

LEN p
D

FORMAT: LEN “string”

Abbreviation:
See Also:

PURPOSE:
Returns the number of characters in a string.

REMARKS:
The number of characters in the string includes any blanks or non-printable charac
ters such as control codes or carriage returns.

EXAMPLE:
10: INPUT "ENTER A WORD ”;A$
20: N=LEN A$
30: PRINT "THE WORD LENGTH IS ";N
40: END

RUN
ENTER A WORD CHERRY
THE WORD LENGTH IS 6.

[10] Prompts for a word. In this example, the user enters “CHERRY”.
[20] Finds the length of the word.
[30] Prints out the answer.

LET
FORMAT: 1. LET numeric variable = expression

2. LET string variable = string

Abbreviation: LE.
See Also:

PURPOSE:
Used to assign a value to a variable.

REMARKS:
LET assigns the value of the expression to the designated variable. The type of
expression must match that of the variable; i.e., only numeric expressions can be
assigned to numeric variables and only string expressions can be assigned to string
variables.

The LET command may be omitted in all LET statements.

EXAMPLE:
10: 1=10
20: A=5*l
30: X$=STR$A
40: IF I >=10 THEN LET Y$=X$+".00"

[10] Assigns the value 10 to I.
[20] Assigns the value 50 to A.
[30] Assigns the value 50 to X$.
[40] Assigns the value 50.00 to Y$.

LFILES D

FORMAT: LFILES

Abbreviation: LF.
See Also: FILES

PURPOSE:
Prints out filenames stored on the RAM disk.

REMARKS:
Prints all the filenames on the RAM disk.

176

LIST D

FORMAT: 1. LIST
2. LIST line number |*«— 1|
3. LIST xlabel

Abbreviation: L.
See Also: LLIST, PASS

PURPOSE:
Displays a program.

REMARKS:
Valid only as direct input in the PRO mode.

In format 1, the program is displayed from its first line until the display is full.
In format 2, the program is displayed from the specified line number until the
display is full. Use the I I I key to advance to the next line in the list. If the line for
the specified number does not exist, the program will be displayed from the line
with the next largest number that does exist.
In format 3, the program is displayed from the line with the specified label until the
display is full.

If a password has been set, the LIST command is ignored.
An error will occur if a xlabel that is specified does not exist in the program, or a
line number is specified that is greater than the last line number in the program.

EXAMPLE:
LIST 100

Displays line number 100.

LLIST D

FORMAT: 1. LLIST F ^ T
2. LLIST Pine number!

[xlabel J 1-------- 1

3. LLIST [line number 1] - [line number 2] N — 1|

Abbreviation: LL.
See Also: LIST, PASS

PURPOSE:
Prints out a program on the optional CE-126P printer.

REMARKS:
Valid only as direct input in the PRO or RUN mode.

Format 1 prints or sends all programs in memory.
Format 2 prints or sends only the program line for which the number or label is
specified.
Format 3 prints or sends the statements from line number 1 through line number 2.
There must be at least two lines between the numbers.

Either line number 1 or line number 2 may be omitted. If line number 1 is omitted,
the program listing is printed from the first line through line number 2. If line number
2 is omitted, the program listing is printed from line number 1 through the end of
the program.

If the line with the line number given in format 2 does not exist, or the lines with
line numbers 1 and 2 given in format 3 do not exist, the nearest larger numbers are
assumed.

If a password has been set, the LLIST command is ignored.

EXAMPLE:
LLIST 1 0 0 - 2 0 0 (^ 3

Prints program listing between line numbers 100 and 200.

LLIST - 200 r^ = T |

Prints program listing from the first line through line 200.

LLIST 100

Prints program listing from line 100 through the last line.

178

LOAD D

FORMAT: LOAD “filename” [Z j I

Abbreviation: LO.
See Also: SAVE, FILES

PURPOSE:
Loads a BASIC program on the RAM disk.

REMARKS:
An error will occur if the program area is exceeded as a result of loading a
program. In such a case, clear unnecessary variables from the data area.
If program filenames have been displayed with the FILES command, the desired
program can be simply loaded by selecting it with the | I I or | t | key, and press
ing | SHIFT I + I LOAD | .

The file extension may be omitted only if it is a “.BAS” extension.

While a program is being loaded, any open file will be closed.

An error will occur if an attempt is made to load a TEXT program.

LOCATE
FORMAT: LOCATE expression 1, expression 2

Abbreviation: LOG.
See Also: CLS, INPUT, PRINT

PURPOSE:
Specifies the display start position in column units.

REMARKS:
Specifies the display start position in units of a character position for the contents
displayed by the PRINT and INPUT commands.

The display position is specified, as follows:

Horizontal position (specified by expression 1)
0 1 2 3 4 ...22 23

0 |
1
2
3 |_____________________________________

T Vertical position (specified by expression 2)

A position on the display is specified by its horizontal and vertical positions. Expres
sion 1 specifies the horizontal position, and expression 2 specifies the vertical posi
tion. The range of expression 1 is 0 to 23, and the range of expression 2 is 0 to 3.
An error occurs if the expressions are not specified within these ranges.

EXAMPLE:
10: CLS
20: LOCATE 2,1: PRINT "ABODE
30: LOCATE 0,2: PRINT ”123"

ABCDE
12 3

Using the LOCATE command allows text to be written to any part of the display
without affecting existing text except where characters are directly overwritten. Use
the CLS command to clear the entire display.

If the number of characters exceeds the limits of the display, the display will scroll
to show all the characters, even if the display start position was specified with the
LOCATE command.

180

LPRINT D
p

FORMAT: 1. LPRINT

2. LPRINT

expression
string
expression
string

expression
string
expression
string

3. LPRINT USING “format” ; expression
string

expression
string

4. LPRINT

Abbreviation: LP.
See Also: PRINT, USING

PURPOSE:
Outputs given data to the printer.

REMARKS:
When a semicolon (;) is placed at the end of the statement, the next LPRINT com
mand in the program will print specified data directly after the data printed by the
first LPRINT. A comma (,) cannot be placed at the end of the statement.

If a single item is specified using format 1 for the CE-126P Printer, numerical
values are printed from the right margin of the paper, strings from the left.

Use commans (,) to separate expressions or strings in order to divide the 24
columns of each printer line into twelve-column areas. Numerical values or strings
are printed in each of these areas; numerical calculations are printed from the right
margin of each twelve-column area, strings from the left. For numerical values
longer than twelve digits, the extra part of the mantissa is truncated when printed.
For strings longer than twelve characters, only the first twelve characters are
printed; all other characters will be ignored.

Format 2 consecutively prints out data from the left margin.
When a semicolon (;) is placed at the end of the statement, the next LPRINT
command in the program will print data consecutive to the data printed by the first
LPRINT.

Format 3 prints out data in the exact format specified in the statement. Either a
comma (,) or semicolon (;) may be used as a separator.
For the format for USING, see the USING command.

Format 4 prints only delimiter codes. If the preceding LPRINT statement is ter
minated with a semicolon (;) with unprinted data left in the buffer, format 4 prints
that data.

EXAMPLE:
LPRINT A,B
LPRINT A;B;Z$

181

MID$ p
D

FORMAT: MID$(string,N,M)

Abbreviation: Ml.
See Also: LEFTS, RIGHTS

PURPOSE:
Returns a string of M characters from inside a string starting from the Nth character
in the string.

REMARKS:
If N is greater than the number of characters in the string, a null string will be
returned. If N is less than 1, an error will occur. M must be in the range of 0 to 255,
and N in the range of 1 to 255. Fractions will be truncated.

EXAMPLE:
10: Z$="ABCDEFG"
20: Y$= MID$(Z$,3,4)
30: PRINT Y$

MON D

FORMAT: MON

Abbreviation: MO.
See Also:

PURPOSE:
Selects the machine language Monitor mode.

REMARKS:
Valid only as direct input in the PRO or RUN mode.
MON places the computer in the machine language Monitor mode. (See the
explanations of the Machine Language Monitor.)

182

NEW D

FORMAT: NEW [^ F]

Abbreviation:
See Also: CLEAR, PASS

PURPOSE:
Clears existing programs and data.

REMARKS:
The NEW command clears all programs and data that are currently in memory.
(Programs with passwords cannot be cleared.)

An open file will be closed.

EXAMPLE:
NEW

ON...GOSUB P

FORMAT: i d (line number 11ON expression GOSUB < * |a be | i r
[line number 21

’ |xlabel2 J

Abbreviation: O. GOS.
See Also: GOSUB, GOTO, ON...GOTO

PURPOSE:
Executes one of a set of subroutines, depending on the value of a control expres
sion.

REMARKS:
When ON...GOSUB is executed, the expression between ON and GOSUB is
evaluated and reduced to an integer. If the value of the integer is 1, control is trans
ferred to line number 1 or *label 1 in the list, as in a normal GOSUB. If the expres
sion is 2, control is transferred to line number 2 or xlabel 2 in the list, and so forth.

Note:
Be sure to place a space just before the GOSUB command. Otherwise it may be
regarded as a variable.

If the expression is zero, negative, or larger than the number of line numbers
provided in the list, no subroutine will be executed and execution will proceed with
the next statement or line of the program.

Use commas (,) to separate line numbers or xlabels in the list.

EXAMPLE:
10: INPUT A
20: ON A GOSUB 100,200,300
30: END

100: PRINT "FIRST"
110: RETURN
200: PRINT "SECOND"
210: RETURN
300: PRINT "THIRD"
310: RETURN

An entry of 1 displays “FIRST” ; 2 displays “SECOND"; 3 displays 'THIRD". Any other entry does not
produce any display.

184

ON...GOTO
FORMAT: ON expression GOTO line number 1

xlabel 1
(line number 2
[xlabel 2

Abbreviation: O. G.
See Also: GOSUB, GOTO, ON...GOSUB

PURPOSE:
Transfers control to one of a set of locations, depending on the value of a control
expression.

REMARKS:
When ON...GOTO is executed the expression between ON and GOTO is evaluated
and reduced to an integer. If the value of the integer is 1, control is transferred to
line number 1 or xlabel 1 in the list. If the expression is 2, control is transferred to
line number 2 or xlabel 2 in the list, and so forth.

Note:
Be sure to place a space just before the GOTO command. Otherwise it may be
regarded as a variable.

If the expression is zero, negative, or larger than the number of line numbers
provided in the list, execution will proceed with the next statement or line of the
program.

Use commas (,) to separate line numbers or xlabels in the list.

EXAMPLE:
10: INPUT A
20: ON A GOTO 100,200,300
30: GOTO 900

100: PRINT "FIRST"
110: GOTO 900
200: PRINT "SECOND"
210: GOTO 900
300: PRINT "THIRD"
310: GOTO 900
900: END

An entry of 1 displays “FIRST"; 2 displays “SECOND”; 3 displays “THIRD". Any other entry does not
produce any display.

185

OPEN D
p

FORMAT: 1. OPEN “COM:”
2. OPEN “CAS:[filename]” FOR OUTPUT
3. OPEN “CAS:[filename]” FOR INPUT

Abbreviation: OP.
See Also: CLOSE

PURPOSE:
Opens an SIO (serial I/O) device or a cassette tape file for input or output of data.

REMARKS:
Format 1 opens an SIO device for data input/output (opens the SIO circuit). The
filename or access mode cannot be specified. Serial communications parameters
are set in the TEXT mode. (See page 105.)

Format 2 opens a cassette tape file for output of data to the file. Before executing
this command, make sure the cassette recorder is set to Record.
When executed, this command writes an information block (header) to the tape. If a
filename is specified, it is also recorded in the information block.

Format 3 opens a cassette tape file for input of data from a file. Before executing
this command, make sure the cassette recorder is set to Play.
This command searches for the information block in which the specified filename
exists, and loads the specified file from the tape. If no filename is specified, the
computer loads the file whose filename was first encountered in the information
block after the tape was started.

Notes:
• If the specified file is not found, the computer will continue searching after the

end of the tape is reached. If this occurs, press the I br eak I key to stop the search.
• Only one file can be opened at a time. An error will occur if the OPEN command

is executed when a file has already been opened.

186

PASS D

FORMAT: PASS “character string” |-«— 11

Abbreviation: PA.
See Also: CSAVE, SAVE, CLOAD, LOAD, DELETE, LIST, NEW, RENUM

PURPOSE:
Sets and cancels passwords.

REMARKS:
Passwords are used to protect programs from being listed or edited by
unauthorized users. A password consists of a character string that is no more than
eight characters long. The eight characters must be alphanumeric characters or
symbols. The character string cannot be a null string.

Once a PASS command has been entered, the programs in memory are protected.
A program protected by a password cannot be examined or modified in memory. It
cannot be saved to tape or the RAM disk, or listed with LIST or LLIST. Nor is it
possible to add or delete program lines. The only way to remove this protection is
to execute another PASS command with the same password.

If a password is set in the program to be loaded, that password is also set within
the computer. If not, no password is set within the computer.
If PASS is executed when no program is loaded, an error will occur and no
password will be set.
A password-protected program is protected against the NEW or DELETE command
as well.

EXAMPLE:
PASS "SECRET" F ^ J]

Establishes the password "SECRET" for the program in memory.

187

PRINT D
p

FORMAT:

2. PRINT

1. PRINT
expression
string
expression
string

expression)'
string J
expression)
string

3. PRINT USING “format” ; Je x Pr e s s i o n l L
string

expression
string [;]

4. PRINT

Abbreviation: P.
See Also: LPRINT, USING, WAIT, LOCATE

PURPOSE:
Displays information.

REMARKS:
PRINT displays prompt information, results of calculations, etc.

If the start position is specified by the LOCATE statement, the data will be
displayed from the specified location.
If a semicolon (;) is at the end of the statement, the contents will be displayed
continuously. A comma (,) cannot be placed at the end of the statement.

Format 1 displays as follows:
1) For a single item to be displayed:

If the expression is numeric, the value is shown from the right margin of the
display. If it is a string, it is shown from the left margin of the display.

EXAMPLE:
10: PRINT 1234
20: PRINT "ABCD"

1 2 3 4.
ABCD

2) For two or more items to be displayed (specified with commas):
Divide the twenty-four columns of each line into twelve-column areas. Numeric
values are displayed from the right margin of each twelve-column area, and
strings from the left margin.

188

EXAMPLE:
10: A = 1234: B = 5/9: C$ = "ABCDE":WAIT 200
20: CLS: PRINT "A=",A
30: CLS: PRINT A,C$,B

RUNF ^ i] A = 1 2 3 4 .

1234.ABCDE
5 .5 5 5 5 5 E - 0 1

If a numeric value exceeds twelve digits (when the decimal fraction in the exponen
tial display is seven digits or more), the least significant digits are truncated. When
a character string exceeds twelve columns, only the first twelve characters (from the
left) will be displayed.

Format 2 displays the data continuously from the left margin of the display.

EXAMPLE:
10: A = 1234:B = 5/9:C$ = "ABCDE"
20: PRINT "A=";A
30: PRINT "EFGHI";B;C$;A
RUNF ^ J]

A = 1 2 3 4 .
EFGHI5.555555556E-01ABCD
E 1 2 3 4 .

Format 3 displays the data by following the specified format.
Refer to the USING command for USING format. Commas (,) and semicolons (;)
will be treated as usual. The USING statement is valid also to the next PRINT state
ment encountered in the program.
Example: PRINT USING “&&&&&&&&”;“ANSWER=”;:PRINT USING “####.##” ;5/9
Format 4 displays the previously displayed value as is. (Usually, it is used together
with the WAIT command to retain the current display.)

EXAMPLE:
10: CLS
20: FOR A=0 TO 159
30; PRINT CHR$ (A+32);
40: NEXT A
50: WAIT: PRINT
The characters displayed between lines 20 and 40 will remain on the display at line 50. (An infinite inter
val is set.)

189

PRINT -> LPRINT setting
The computer can switch all PRINT commands to function as LPRINT commands.
Connect the printer before executing the following statement:

Setting: PRINT=LPRINT
Resetting: PRINT=PRINT

Resetting can also be performed by:
1) executing the RUN command
2) pressing the I shif t I + I ca I keys
3) turning the power off and then on.

Since the RUN command resets the setting, run the program using the GOTO
command.

PRINT#
FORMAT: PRINT# 1, expression! J ,1 [expression

string f | ; j [string

Abbreviation: P.#
See Also: OPEN, INPUT#

PURPOSE:
Writes values of specified variables to the SIO (serial I/O) device or cassette tape.

REMARKS:
PRINT# is valid only with an SIO device opened with the file descriptor “COM:” or
with a cassette file opened with the file descriptor “CAS:" and the access mode
“FOR OUTPUT”.

When an array variable (one or two dimensions) has been specified in the form of
“array name(*)”, the entire array is written to the file. Its elements are written in the
order of, for example, C$(0,0), C$(0,1), C$(0,2)....C$(1,0).... C$(5,5).
It is recommended that the FOR...NEXT statement be used for writing array
variable data.

When the respective elements of the array are specified, they must be specified in
the form of “B(7)”, “C$(5,6)”, etc.

When a character or string element is used, it must not be specified using a
semicolon (;):

PRINT#1 ,“ABC”
PRINT#1,A$

If PRINT#1 ,“ABC”;A$ is executed, no data delimiter will be written and “ABC” and
A$ cannot be distinguished.

A numeric value is recorded in such a form that the sign (a space when it is posi
tive), numeric character string, and a space appear in that form. The recording
format is shown below:
(1) When a comma or semicolon does not follow the data, CRf&HOD) and

LF(&H0A) are provided.
Example:

PRINT #1, - 1.2

PRINT #1, “ABC"

— 1 • 2 CR LF

A B c CR LF

When data is terminated with a comma (,) or semicolon (;), no CR+LF code will be
output.

191

(2) When a comma follows the data, twenty bytes are occupied. A numeric value is
right justified and a character string is left justified.

Example:
PRINT #1, - 1.2,3

— 1 2 3 CR LF

|«------------------------20 bytes

PRINT #1, “ABC”, “DEF”

A CD c Q LU F CR LF

f ------------ 20 bytes------------ ►]

When the character string exceeds twenty bytes, the excess part is written to the
next twenty-byte area.
(3) When a semicolon follows the data, it is stored without spaces.
Example:
PRINT #1, - 1.2;3

— 1 • 2 3 » CR LF

PRINT #1, “ABC”;“DEF”

A B c D E F CR LF

---------------In this case, character strings “ABC" and “DEF" are not read separately.

When all the variables of an array are specified, each output of a variable is
followed by the CR+LF code. For example, PRINT#1, B(*) is identical to
PRINT#1, B(0): PRINT#1, B(1): PRINT#1, B(2): and so on.

For exponential values, when the mantissa is output, it is followed by exponent
symbol E, the sign, and a two-digit exponent (a one-digit exponent must be
preceded by a leading zero).

EXAMPLE:
10: OPEN "CAS:DATA" FOR OUTPUT
20: FOR J=0 TO N
30: FOR K=0 TO M
40: PRINT #1,C$(J, K)
50: NEXT K:NEXT J:CLOSE

192

RADIAN
FORMAT: RADIAN

Abbreviation: RAD.
See Also: DEGREE, GRAD

PURPOSE:
Changes the form of angular values to radians.

REMARKS:
The computer has three forms for representing angular values: degrees, radians,
and gradient. These forms are used in specifying the arguments to the SIN, COS
and TAN functions and in returning the results from the ASN, ACS, and ATN
functions.

The RADIAN function changes the form of all angular values to radian form until
DEGREE or GRAD is used. Radian form represents angles in terms of the length
of the arc with respect to the radius, i.e., 360° is 2n radians, since the circum
ference of a circle is 2k times the radius.

EXAMPLE:
10: RADIAN
20: X = ASN 1
30: PRINT X

X now has a value of 1.570796327 or rc/2, the arc sine of 1.

193

RANDOMIZE
FORMAT: RANDOMIZE

Abbreviation: RA.
See Also: RND

PURPOSE:
Resets the seed for random number generation.

REMARKS:
When random numbers are generated using the RND function, the computer begins
with a predetermined “seed” or starting number. RANDOMIZE resets this seed to a
new randomly determined value.

The starting seed will be the same each time the computer is turned on, so the
sequence of random numbers generated with RND is the same each time, unless
the seed is changed. This is very convenient during the development of a program
because it means that the behavior of the program should be the same each time it
is run, even though it includes a RND function. When you want the numbers to be
truly random, the RANDOMIZE statement can be used to make the seed itself
random.

EXAMPLE:
10: RANDOMIZE
20: X = RND 10

When run from line 20, the value of X is based on the standard seed. When run from line 10, a new
seed is used.

194

READ P

FORMAT: READ variable, variable,.... variable

Abbreviation: REA.
See Also: DATA, RESTORE

PURPOSE:
Reads values from a DATA statement and assigns them to variables.

REMARKS:
When assigning initial values to an array, it is convenient to list the values in a
DATA statement and use a READ statement in a FOR...NEXT loop to load the
values into the array. When the first READ is executed, the first value in the first
DATA statement is returned. Succeeding READs use succeeding values in the
order in which they appear in the program, regardless of how many values are
listed in each DATA statement or how many DATA statements are used.

If desired, the values in a DATA statement can be read a second time using the
RESTORE statement.

Note:
The type of data must match the type of variable (numerical or string) to which it is
assigned.

EXAMPLE:
10: DIM B(10)
20: WAIT 60
30: FOR I = 1 TO 10
40: READ B (I)
50: PRINT B(l)*2;
60: NEXT I
70: DATA 10, 20, 30, 40, 50, 60
80: DATA 70, 80, 90, 100
90: READ C, D, E$, F$

100: PRINT C,D,E$,F$
110: DATA 3,5,G=,H=
120: END

[10] Set up an array.
[40] Loads the values from the first DATA statements into B (). B(1) is 10, B(2) is 20, B(3) is 30, etc.
[90] Loads the values from the final DATA statement. C is 3, D is 5, E$ is G=, F$ is H=.

195

REM(’)
FORMAT: REM remark or ’ remark

Abbreviation:
See Also:

PURPOSE:
Includes comments in a program.

REMARKS:
It is often useful to include explanatory comments in a program. These can provide
titles, names of authors, dates of last modification, usage notes, reminders about
algorithms, etc. These comments are included using the REM (or apostrophe (’))
statement.

The REM (’) statement has no effect on program execution and can be included
anywhere in the program. Everything following REM (’) in that line is treated as a
comment.

EXAMPLE:
10: ’ THIS LINE HAS NO EFFECT

100: REM THIS LINE HAS NO EFFECT EITHER.

RENUM D

FORMAT: RENUM [new line number] [, [old line number] [.increment]] l-«— i|

Abbreviation: REN.
See Also: DELETE, LIST

PURPOSE:
Renumbers the lines of a program.

REMARKS:
Valid only as direct input in the PRO mode.

The line numbers are changed from old line numbers to new line numbers with a
specified increment. If the new line number is not specified, the lines are renum
bered starting with line 10. If the increment is not specified, the lines are renum
bered with an increment of 10. RENUM updates referenced line numbers in
GOTO, ON...GOTO, GOSUB, ON...GOSUB, RESTORE, and (IF)...THEN state
ments.

If a line number is given in the form of a variable (example: GOTO A) or numerical
expression (example: GOTO 2 |X x 150), the line will not be renumbered properly.
If a line number is given by a variable or expression, temporarily make it a remark
(REM), and correct it after executing the RENUM command. It is recommended that
you replace such commands with ON...GOTO commands, etc.

If a line number exceeds 65279, an error will be generated. If a specified old line
number does not exist, an error will be generated. Changing the execution order
generates an error (example: RENUM 15,30 when there are already lines num
bered 10, 20, and 30). If a password has been used, an error occurs.

If the display shows pressing the I br eak I key will interrupt renumbering.
A display of “* * ” indicates that renumbering cannot be interrupted. Error generation
or use of the I br eak I key leaves the program unchanged.

EXAMPLE:
10: INPUT "CONTINUE";A$
20: IF A$ = "YES'' THEN 10
30: IF A$ = "NO" THEN 60
40: PRINT "ENTER YES OR NO PLEASE!"
50: GOTO 10
60: END

RENUM 100, 10. 5 P ^ i l

100: INPUT ”CONTINUE";A$
105: IF A$ = "YES" THEN 100
110: IF A$ = "NO" THEN 125
115: PRINT "ENTER YES OR NO PLEASE!"
120: GOTO 100
125: END

197

RESTORE P

FORMAT: R E S T 0 R E .

2. RESTORE

Abbreviation: RES.
See Also: DATA, READ

line number!
xlabel J

PURPOSE:
Rereads values in a DATA statement or changes the order in which these values
are read.

REMARKS:
In the regular use of READ the computer begins reading with the first value in a
DATA statement and proceeds sequentially through the remaining values; Format 1
resets the pointer to the first value of the DATA statement whose line number is
equal to the specified line number or *label. Format 2 resets the pointer to the first
value of the first DATA statement, so that it can be read again.

EXAMPLE:
10: DIM B(10)
20: WAIT 32
30: FOR I = 1 TO 10
40: RESTORE
50: READ B(l)
60: PRINT B(l)*l;
70: NEXT I
80: DATA 20
90: END

[10] Sets up an array.
[50] Assigns the value 20 to each of the elements of B ().

198

RIGHTS D
p

FORMAT: RIGHT$(string,N)

Abbreviation: Rl.
See Also: LEFTS, MID$

PURPOSE:
Returns N characters from the right end of a string.

REMARKS:
Fractions will be truncated. If N is less than 1, a null string will be returned. If N is
greater than the number of characters in the string, the whole string will be returned.

EXAMPLE:
5: WAIT 60

10: XX$ = "SHARP COMPUTER"
20: FOR N = 1 TO 14
30: SS$ = RIGHT$(XX$,N)
40: PRINT SS$
50: NEXT N

RND p
D

FORMAT: RND numeric expression

Abbreviation: RN.
See Also: RANDOMIZE

PURPOSE:
Generates a random number.

REMARKS:
If the value of the expression is less than 2 but greater than or equal to zero, the
random number is less than 1 and greater than zero. If the expression is an integer
greater than or equal to 2, the result is a random number greater than or equal to 1
and less than or equal to the expression. If the expression is greater than or equal
to 2 and not an integer, the result is a random number greater than or equal to 1
and less than or equal to the smallest integer that is larger than the expression. (In
this case, the generation of the random number changes depending on the value of
the decimal portion of the argument.) If the expression is negative, the previously
set numeric expression is used to generate the random number.

- - - --- R e s u lt------ --------
Argument Lower Limit Lipper Limit

.5 0< <1
2 1 2
2.5 1 3

The same sequence of random numbers is normally generated because the same
“seed” is used each time the computer is turned on. To randomize the seed, see
the RANDOMIZE command.

200

RUN D

FORMAT: 1 .R U N P = T |

2. RUN line number
xlabel

Abbreviation: R.
See Also: GOTO

PURPOSE:
Executes a program in memory.

REMARKS:
Format 1 executes a program beginning with the lowest numbered statement in
memory.
Format 2 executes a program beginning with a specified line number

An error will occur if the specified line number or xlabel is not found.

If two or more identical labels exist in a program, the one with the lesser line
number will be executed.

EXAMPLE:
RUN 100

Executes the program starting from line 100.

201

SAVE D

FORMAT: SAVE “filename”

Abbreviation: SA.
See Also: LOAD, FILES

PURPOSE:
Saves the BASIC program to the RAM disk.

REMARKS:
The SAVE statement names a BASIC program in memory and then writes it to the
RAM disk.

A filename is the name given to a program. The desired file can be readily retrieved
by the computer if it is given a filename.
A filename may consist of up to eight alphanumeric characters or symbols.

If no extension is specified, .BAS is assumed. The extension can consist of up to
three characters.

An existing file will be erased if the same filename is specified, but an error occurs
if the existing file is a TEXT file.

The SAVE command will be ignored when there is no program loaded or the
program is password protected.

STOP
FORMAT: STOP

Abbreviation: S.
See Also: CONT

PURPOSE:
Halts execution of a program for diagnostic purposes.

REMARKS:
When STOP is encountered in program execution, execution halts and a message
such as “BREAK IN 200" is displayed where 200 is the number of the line contain
ing the STOP. STOP is used during the development of a program to check the
flow of the program or to examine the state of variables. Execution may be restart
ed with the CONT command. Pressing the | I I key executes the program line by
line.

EXAMPLE:
10: STOP

Causes "BREAK IN 10” to appear on the display.

STR$ p
D

FORMAT: STR$ expression

Abbreviation: STR.
See Also: VAL

PURPOSE:
Converts numeric data into string data.

REMARKS:
The STR$ function changes numeric data to a string. The string will be composed
of the same digits as the original number. The STR$ function has the opposite ef
fect of the VAL function.

If the numeric data is negative, the string will be preceded by a minus (-) sign.

EXAMPLE:

110: N=N*3
120: A$=STR$ N
130: B$=LEFT$ (A$,3)
140: M=VAL B$

[110] Program performs calculations on numeric variable N.
[120] The numeric variable N is converted to the string variable A$. String variables are easier to

manipulate than numerics. In this example, suppose that the first 3 digits of the number are
required. Having converted the number to a string, we can use any of the string manipulation
commands: LEFTS, RIGHTS, MID$.

[130] Stores only the first 3 digits (characters) of the number into siring variable B$.
[140] The first 3 digits are reconverted into a numeric variable for processing by the program as a

number.

204

TROFF D
p

FORMAT: TROFF

Abbreviation: TROF.
See Also: TRON

PURPOSE:
Cancels trace (TRON) mode.

REMARKS:
Execution of TROFF restores normal execution of the program.

EXAMPLE:
See TRON.

TRON D
p

FORMAT: TRON

Abbreviation: TR.
See Also: TROFF

PURPOSE:
Enables the trace mode.

REMARKS:
The trace mode provides assistance in debugging programs. When the trace mode
is on, the line number of each statement is displayed after each statement is
executed. To stop trace execution, press the | br eak | key or execute the STOP
command. After trace execution is stopped, the computer waits for the down arrow
key to be pressed before moving on to the next statement. The trace mode
continues until TROFF is executed, or the | shif t | + | ca | keys are pressed.

EXAMPLE:
10: TRON
20: FOR I = 1 TO 3
30: NEXT I
40: TROFF

When run, this program displays the line numbers 10, 20, 30, 30, and 30.

205

pUSING D

FORMAT: 1. USING format string
2. USING

Abbreviation: U.
See Also: LPRINT, PRINT

PURPOSE:
Controls the format of displayed or printed output.

REMARKS:
USING can be used by itself or as a clause within a PRINT or LPRINT statement.
USING establishes a specified format for output that is used for all output that
follows until changed by another USING.

#: Right justified numeric field character.
Length of integer field: 2 to 11 (including sign)
If a value is shorter than the specified numeric field, the extra portion of the
field is filled with spaces. An error occurs if a value is longer than the field.
If a numeric field with a length of twelve or more digits is specified, it is
regarded to be eleven digits long.
Length of decimal field: 0 to twelve (0 to 9 for exponential numbers)
If a value is shorter than the specified field, zeros appear in the extra portion of
the field. If the former is longer than the latter, the extra digits are truncated.
Decimal point (delimiter for integer and decimal parts)

A: Used to indicate that numbers should be displayed in scientific notation.
With this notation, the length of the mantissa field is always 2 (1 digit and the
sign), without regard to the specified length of the integer field. If the given
length of the decimal field is nine or more digits, the length of the decimal field
of the mantissa is also nine digits.

&: Left justified alphanumeric field
If a string is shorter than the specified field, spaces appear in the extra portion
of the field. If the former is longer than the latter, the extra characters are
dropped.

(1) USING"###"
Prints the sign and two integer digits.

(2) USING"###.”
Prints the sign, two integer digits, and a decimal point.

(3) USING"###.##”
Prints the sign, two integer digits, a decimal point, and two decimal places.

(4) USING"##.##*”
Prints numerical data in exponential form with up to two decimal places.
Spaces for one integer digit and the sign are automatically reserved for the
mantissa, and for two integer digits, the capital E, and the sign for the exponent.

206

(5) USING“&&&&&&"
Prints a string of six characters.

(6) USING“###&&&&”
Prints a string adjacent to a numeric value.

(7) USING
Format 2 clears formatting.

Formatting is also cleared by executing the RUN command, pressing
I shif t | + | ca |, or turning the computer off and then on.

EXAMPLE:
10: B=—10:0=10.7703
20: PRINT USING "&&&###" ; "B=" ; B ; "_C=" ;: PRINT USING "###.###"; C

VAL
FORMAT: VAL string

P
D

Abbreviation: V.
See Also: STR$

PURPOSE:
Converts a string of numeric characters into a decimal value.

REMARKS:
The VAL function converts a character string, which may include the hex number
designator (&H), numbers (0-9), a sign (+, -) , and exponential symbols (E), into a
numeric value.

If the string is in decimal notation, it must be composed of the characters 0 to 9,
with an optional decimal point and sign. In this form, VAL is the opposite of the
STR$ function.

If illegal characters are included, conversion is performed up to the first occurrence
of an illegal character.

EXAMPLE:
A=VAL"-120”
B=VAL"3.2*4="
C=VAL"&H64"

Assigns -120 to variable A.
Assigns 3.2 to variable B.
Assigns 100 to variable C.

207

WAIT
FORMAT: 1. WAIT expression

2. WAIT

Abbreviation: W.
See Also: PRINT

PURPOSE:
Controls the length of time that displayed information is shown before program
execution continues.

REMARKS:
Format 1 specifies the time in which execution of the PRINT command halts. The
program temporarily halts for the specified time interval, then automatically restarts.

The value of the expression may be set to any value from 0 to 65535. A value of 1
as the expression corresponds to an interval of approx. 1/64 sec. When the com
puter is turned on or the RUN command is executed, WAITO (a wait time of zero) is
assumed.
The WAIT command is valid for all the PRINT commands used in the program. To
set an infinite interval, use format 2. If format 2 is used, the !■«——>l key must be
pressed to resume program execution.

Note:
In general, the WAIT command is not available on personal computers. On PCs,
the FOR...NEXT statement is used for wait time control, for example:
50: FOR J=1 TO 500:NEXT J

EXAMPLE:
10: WAIT 64

Causes PRINT to wait about 1 second.

208

PART 6

APPENDICES

CE-T801 Data Transfer Cable A
Error Messages B

Character Code Chart C
Key Functions in BASIC D

Troubleshooting E
Memory Maps F
Specifications G

Using Programs from Other SHARP Computers H
Care of the PC-E220 I

APPENDIX A
CE-T801 DATA TRANSFER CABLE
The CE-T801 is an optional serial communications cable designed to allow your
PC-E220 to communicate with a personal computer or other serial device. It lets
you transfer TEXT or machine code programs to and from your PC using the TEXT
mode’s SIO function or the Monitor’s SIO commands.

The CE-T801 contains a level converter that converts the RS-232C signal level to
the signal level of the PC-E220. For serial communications with the PC-E220, a PC
normally uses an RS-232C serial communications port. Because the serial interface
of the PC-E220 does not conform to the RS-232C standard, it will be damaged if
RS-232C signals are directly applied to it. The CE-T801 contains a level matching
circuit to match the two signal levels, thus enabling serial communications.

Caution:
Do not touch the CE-T801 cable’s connector pins with your bare hand. Static
discharge from your body may damage the internal circuitry.

CCEE--TT880011

-232C
on a PC

To the RS-232C
connector on a PC

CE-T801 connector pin assignments (DB-25(W))

H X D -
TXD— 1

f— RTS
r—CTS

Pins 6 and 20 are connected.

210

Signal Description

RS-232C signal Direction of signal
viewed from the

PC-E220
Description

Pin No. Signal name Symbol

1 Frame ground FG —

2 Send Data TXD (SD) Input Data signal transferred to the
PC-E220

3 Receive Data RXD (RD) Output (Note 2) Data signal transferred from
the PC-E220

4 Request To Send RTS (RS) Input

The PC transmits data
when this line is set to High,
and stops data transmission
when it is set to Low.

5 Clear To Send CTS (CS) Output (Note 2)
Set to High when the PC-E220
is ready to receive data; set to
Low when it is not ready.

7 Signal Ground SG —
Used to match the reference
potential level between the
input and output devices.

11 — NC — Not used.

Notes:
1. The CE-T801 is designed to feed output signals (pins 2 and 4) from the PC to

input pins of the PC-E220, and output signals from the PC-E220 to input pins
(pins 3 and 5) on the PC. The cable can thus directly connect to an RS-232C
connector on the PC.

2. The status of PC-E220 output signals are indefinite in any but the following cases:
(1) SIO is opened in the BASIC mode.
(2) R or W command is executed in the Monitor mode.
(3) Data is transferred through the SIO in the TEXT mode.

Communicating with a Personal Computer
For data transfer from a personal computer, a work area of approx. 300 bytes is
required.

211

APPENDIX B
ERROR MESSAGES
When an error occurs, one of the error codes listed below will be displayed.
For errors that occur during program execution, the error code is followed by the
number of the line in which the error occurred.

Error
code Meaning

10 Invalid expressions or statements have been used.

12 An attempt was made to execute a command that is illegal as a program execution
or direct input operation.
The mode for PRO or RUN was selected incorrectly.

13 The CONT statement was executed illegally.

14 An attempt was made to designate a password for a program that does not exist.

20 The calculated result exceeds the calculation range.

21 An attempt was made to divide by zero.

22 An illegal operation was attempted.

30 An attempt was made to declare an array variable name which is already declared.

31 The array variable name was specified without the DIM statement.

32 Array was addressed illegally (array subscript exceeds the size of the array
specified in the DIM statement)

33 The specified value exceeds the allowable range.

40 The specified line number or label does not exist.

41 The line number was specified illegally.

43 Invalid RENUM statement.
(An old line number that does not exist was specified or line execution order was
changed.)

44 The ending line number was specified with a number less than the starting line
number in a statement such as LLIST or DELETE.

50 The levels of nesting in the GOSUB or FOR statement exceeds the allowable
range.

51 An attempt was made to execute the RETURN statement without calling the
subroutine.

52 The FOR statement is missing for the NEXT statement.

53 The DATA statement is missing for the READ statement.

54 The allowable number of data buffers (8) or function buffers (16) was exceeded.

212

Error
code Meaning

55 The length of the entered string exceeds 255 bytes.
The line exceeds 255 bytes.

60 The size of program or variable exceeds the memory capacity.

70 Characters cannot be printed in the format specified in the USING statement.

71 The format specified in the USING statement is illegal.

80 Check sum error on the cassette tape or read-in error in the SIO.

81 Time-out error in cassette interface or SIO (specified wait time was exceeded
during program or data I/O).

82 Data mismatch found during verify operation with the cassette tape or other media.

83 The type of variable specified in the INPUT# statement does not match the type of
data read.

84 Printer-related error.

85 A device had not been opened when data transfer to or from it was attempted with
the PRINT# or INPUT# command.

86 Attempt was made to open a device when another device was already in use.

87 Attempt was made to read more data after all data in the file had been read.

90 Attempt was made to assign characters to a numeric variable or numerals to a
string variable, or a string variable was specified in a function that can only have
numerals as the variable, such as SIN A$.

91 A fixed variable to which numerals have been assigned was used as a string
variable, or that to which characters have been assigned was used as a numeric
variable.

92 Password mismatch.

93 Attempt was made to manually execute the MON command when a password has
been set.

94 Specified file was not found.

95 Invalid filename.

96 Attempt was made to read a TEXT file in BASIC mode, or a BASIC file in TEXT
mode.

97 The number of files exceeded 255.

213

APPENDIX C
CHARACTER CODE CHART
The character code chart shows the characters and their character codes used by
the CHR$ and ASC commands. Each character code consists of two hex charac
ters (or eight binary bits). The most significant hex character (four bits) is shown
along the top of the chart and the least significant hex character (four bits) is shown
along the left side of the chart. If no character is shown, the entered character is
illegal on the computer.

For example, the character “A” is hex 41 or decimal 65 or binary 01000001. The
character “P” is decimal 80 or hex 50 or binary 01010000.

The character codes are represented as follows:

Examples:
Code for *
Hexadecimal &H2A
Decimal 42 (32 + 10)

Code for P
Hexadecimal &H50
Decimal 80

Note:
When printing on the CE-126P, codes &H00-&H1F and &H7F-&HFF are spaces.

Most Significant Four Bits

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NL space 0 @ P 1
P space n space 7C e J n

c

1 i 1 A Q a q A p a P 0
0

I
p

2 R 2 B R b r B E p G
1

1 X e

3 # 3 C S c s r T Y T
2

2 I 0

4 $ 4 D T d t A Y 8 V 3
3 ►

5 % 5 E U e u E 0 e 4>
4

4 < ►

6 & 6 F V f V Z X £ X
5

5 > 0

7 7 G w g w H ¥ n V
6

6 X ■

8 (8 H X h X © Q e (0 7
7 [9

9) 9 I Y i y I N i A
6 a] ■

A * : J z j z K n K T 9
9 • A

B + K [k { A H X y - A —>

C 1 < L \ 1 1
1 M R

+ a
*

D — = M] m } N V °C oo b
A T

E > N A n d 1/2 + e
B 4.

F / 0 — 0 O 6 0 X +
m

e ♦ J

Codes &H01-&H1F and &H7F are spaces.

APPENDIX D
KEY FUNCTIONS IN BASIC

I shif t I + I > I • Use to specify relational expressions.

l BRoE iAiK I • Use to turn the power on when the power has been turned
off by the Auto OFF function.

• Pressing this key during program execution functions as a
I br eak I key and causes program execution to be interrupted.

• When pressed during direct input operation, execution of
CLOAD will be interrupted.

• In the STAT mode, the key is used to return to the
submenu.

• In the TEXT and ASMBL modes, the key is used to return
to the Main Menu or Menu.

I SHIFT |
12nd F |

• Either the yellow key marked “SHIFT” or “2nd F" must be
pressed (and held for “SHIFT") to use a key’s second
function (indicated immediately above the key).

Example: I shif t | + | y I -» & is entered.
(I2nd f || y I)

I C»CE | • Use to clear the contents of the entry and the display.
• Use to reset after an error.

| SHIFT | + | CA | • Not only clears the display contents, but resets the com
puter to its initial state.
• Reset: the WAIT timer.
• the display format (USING format).
• the TRON state (TROFF).
• PRINT=LPRINT.
• an error condition.

I BASIC | • Use to change the operational submode from another mode
to RUN or from PRO to RUN.

I ANS I • Use to recall the last answer.

• Use to advance the cursor to the next tab position. In the
RUN or PRO mode, the key advances the cursor in seven
column increments. In the Text Editor mode, it first
advances the cursor eight columns, then six columns, and
seven columns thereafter.

I CONST| • Use to set a constant and operators for constant calcula-
tions ("CONST’ indicator appears on the display). 12nd f |
I const I (I shif t I + I const I) displays the currently set constant.

I SHIFT I + I < I • Use when entering logical operations in IF statements.

216

• Enters a program line into the computer.

I • Use to provide multi-display (two or more values displayed
at a time).

• Use to separate commands and variables.

ISHIFTl + l : I • Use to separate more than one statement defined on a
single line.

I f I • Use to provide multi-display (two or more values displayed
at a time).

I ►! • Shifts the cursor to the right.
• Executes playback instructions.
• Calls the cursor if it is not displayed while the contents are

displayed.
• Clears an error in direct input operation.

L±J • Shifts the cursor to the le ft.____
• Otherwise the same as the I ► I key.

I INS I • Inserts a single space at the current cursor position.

I DEL I • Deletes the character at the cursor position.

l~BS~| • Deletes the character to the left of the cursor.

• Use when writing programs.
• Requests manual calculation or direct execution of a com

mand statement by the computer.
• Use to restart a program temporarily stopped by an INPUT

command.

I SHIFT | + |M P | • Use to set print or non-print mode when the optional printer
is connected.

I CAPS I • Toggles the uppercase mode (the CAPS symbol appears
on the display).

• When the CAPS symbol is displayed, letters will be entered
in uppercase. If I caps I is pressed, the CAPS symbol disap-
pears and lowercase characters will be entered.

I SHIFT | + | & I • Use to indicate a hexadecimal value.

The I 4 I and I t I keys have the functions listed in the following table, depending
on the mode, as well as the state of the computer:

217

Mode State .___ _ ■m r~t~i

RUN

Program being ex
ecuted Not functional

Interrupted by the
STOP command or
the | br eak I key

Executes the next line and
stops.

Hold down to display pro
gram line being executed
or already executed.

Error condition
during program ex
ecution

Not functional Hold down to display error
producing line.

Trace mode ON Executes program in Trace
mode.

Hold down to display pro
gram line being executed
or already executed.

PRO

(When the mode is ch

Program is tem
porarily interrupted

anged to PRO mode and progr

Displays the line
interrupted.

am lines are not displayed)

Same as at left

Error condition Displays the line with the
error.

Same as at left

Other condition Displays the first line. Displays the last line.

(When the program lir es are displayed)

Displays the next program
line.

Displays the preceding pro
gram line.

Note:
If no key is pressed in the key entry request mode for approximately eleven
minutes, the power is automatically turned off (Auto OFF function).

218

APPENDIX E
TROUBLESHOOTING
This appendix provides you with some hints on what to do when your computer
does not do what you expect it to. You should try each of the following suggestions,
one at a time, until you have corrected the problem.

1. If the display is too light or too dark:
• adjust the contrast control.

2. If the power does not come on (nothing is displayed):
• the batteries may be exhausted. Replace the batteries.
• the memory protect switch may be set to position B. Check that the switch is

set to position A.
3. If the power does not turn off:

• the computer is running a program using a command that takes a long time,
such as CSAVE or CLOAD. Press the I br eak | key to interrupt program execu
tion, then the I of f I key.
If the power will still not turn off, perform the following operation 4.

4. If the computer does not operate properly,
• a peripheral device may have been connected or disconnected while the

power was on, or there may have been an error during program execution, or
the computer may have been subjected to strong electrical interference or
shocks during use.
Perform one of the following operations:

Reset Operation
Press the RESET button with a ball-point pen or any other appropriate device.

RESET button

Use only a ball-point pen or similar
device to press the RESET button.
Do not use a mechanical pencil with
the lead exposed or a device with a
sharp point, such as a sewing needle.

When you release the RESET button, the following message will appear. If any
other message appears, press the RESET button again. (You will be prompted to
make sure you want to clear the entire contents of memory.)

MEMORY CLEAR O.K.? (Y/N)

219

• If you don’t want to clear the program or data stored in memory, press the
I N I key (or any key other than I Y I). The display will return to the opening
screen in the RUN mode.
• If an error occurrs again when the program is run, do the following:

• Clearing All Contents of Memory
When the above message is displayed, press the I y I key. The entire contents
of memory will be cleared and the following message will flash on the display
(this shows that the computer has been initialized and the entire contents of
memory cleared):

| ALL RESET |

Press any key to return to the opening screen in the RUN mode.

APPENDIX F
MEMORY MAPS
Memory Map

0000H

0100H

8000H

COOOH

FFFFH

Reserved area

Machine code area

Program file area (RAM disk)

Text area

BASIC program area

Variable area

Fixed variable area

Work area

Stack area

ROM BANKO

ROM BANK1 ROM ROM ROM ROM ROM ROM
BANK2 BANK3 BANK4 BANK5 BANK6 BANK7

221

APPENDIX G
SPECIFICATIONS
Processor: 8-bit CMOS CPU (Z80A equivalent)

Memory capacity: System internal 2.1 K bytes approx.
Fixed variable area 208 bytes
Program/data area 30435 bytes

Stack: Subroutine stack: 10 buffers
Function stack: 16 buffers
FOR-NEXT stack: 5 buffers
Data stack: 8 buffers

Operators: Addition, subtraction, multiplication, division, trigonometric
and inverse trigonometric functions, logarithmic and
exponential functions, angle conversion, square and
square root, power, sign, absolute, integer, coordinate con
version, pi, etc.

Numeric precision: 10 digits (mantissa) + 2 digits (exponent)

Editing features: Cursor left and right, line up and down, character insert,
character delete
Text editor, Z80 machine language monitor

Memory protection: Battery backup

Interface capability: 11-pin (for cassette interface, printer, SIO device)

Display: 4-line, 24-column liquid crystal display with 5 x 7 dot
matrix.

Power supply: For computer operation:
6.0 Vdc Type-AA dry cell battery (R06) x 4
For memory backup:
3.0 Vdc Lithium battery (CR2032) x 1

Power consumption: 0.37 W
Approximately 80 hours of continuous operation under
normal conditions (based on 10 minutes of operation or
program execution and 50 minutes of display per hour at
a temperature of 20°C/68°F).
Note:
When the computer is used for serial communications
through the optional CE-T801 Data Transfer Cable, the
number of hours the unit can be operated continuously will
drop to approx. 48 hours (when used for 2 min. of com
munications, 8 min. of calculation or program execution,
and 50 min. of display per hour at an ambient temperature
of 20°C/68°F).

222

The operating time may vary slightly depending on usage
and the type of battery used.

Operating temperature: 0° - 40°C (32° - 104°F)

Dimensions: 215(W) x 100(D) x 18(H) mm
8-15/32"(W) x 3-15/16"(D) x 23/32”(H)

Weight: 300 g (0.66 lb.) (with batteries)

Accessories: Hard cover, four AA batteries, one lithium battery,
and Operation Manual.

Options: Printer/Cassette Interface (CE-126P)
Data Transfer Cable (CE-T801)

APPENDIX H
USING PROGRAMS FROM OTHER SHARP COMPUTERS
Programs written for the following SHARP PC series computers can be run on the
PC-E220 computer with slight modifications:

PC-1403(H), PC-1460, PC-1425

The PC-E220’s WAIT command has an initial default value of zero. This means that
the display will not be temporarily frozen when the PRINT command is executed. If
you wish to display more than four lines at a time, insert a WAIT command in the
transferred program to temporarily freeze the display (see “WAIT” command). Since
the PC-E220 has 24 display columns, the transferred program may require modifica
tions to fit the PC-E220’s display width. Programs containing commands or charac
ters not defined on the PC-E220 will also require modification.

• Memory Capacity
A program written on another computer requires a different amount of memory
on the PC-E220.

• User-Defined Keys
The PC-E220 has no user-definable keys for program execution. As an
alternative for user-defined keys, enter GOTO *label l-«— 1| instead. Use xlabel
rather than “label” in the GOTO statement.

• Line Numbers
Variables or expressions cannot be used for line numbers specified in the
GOTO, GOSUB, RESTORE, or THEN statement.

• Cassette Tape Recorder
When loading a program from another computer into the PC-E220, use one of
the following commands:
CLOAD@"filename" l-«— 11 or CLOAD@{-<— 1|
If the filename is omitted, the program first encountered after the tape is started
will be loaded. The PC-E220 automatically converts loaded program codes into
PC-E220 program codes as it reads each line. An error will occur if a converted
program line exceeds 255 bytes. An error will also occur if the size of the loaded
program is too large for the PC-E220’s program area. If this happens, clear
unnecessary variables from the program area, then reload the program. For code
conversion, a work area of approx. 300 bytes is required, in addition to the
program space.
When inputting/outputting data from/to cassette tape, the OPEN command must
be executed.

Example:
20 PRINT #F,G -> 10 OPEN "CAS:" FOR OUTPUT

20 PRINT #1,F,G
30 CLOSE #1

• Array Variables
If array A () is used in a program written on another computer without first being
declared with a DIM statement, the array must be declared at the beginning of
the program. Fixed variable space is not shared with array variable A ().

224

Miscellaneous
1. For logical operations, the PC-E220 returns value -1 for true, and 0 for false.
2. It is not allowed to use expressions in the DATA statement, such as DATA

SIN 30+2, CHRS66. Use the statement in the form of, for example, DATA 2.5,
B.

APPENDIX I
CARE OF THE PC-E220
To ensure trouble-free operation of your computer, note the following:

• Always handle the computer carefully, as the liquid crystal display is made of
glass.

• Keep the computer away from extreme temperatures, as well as moisture and
dust. During warm weather, temperatures in vehicles left in direct sunlight will
rise sharply. Prolonged exposure to high temperature may damage your
computer.

• Use only a soft, dry cloth to clean the computer. Do not use solvents, water, or
wet cloths.

• To avoid battery leakage, remove the batteries when the computer will not be in
use for an extended period of time.

• If the computer is subjected to strong static electricity or external interference, it
may “hang up" (all keys will become inoperative). If this happens, press the
RESET button. (See TROUBLESHOOTING)

• Keep this manual for future reference.

COMMAND INDEX

A S C ... 148
BEEP ... 148
CHR$... 149
C LE A R ... 150
CLO AD... 151
CLO AD?... 152
C LO S E ... 153
CLS ... 154
C O N T... 154
C S AV E... 155
DATA ... 156
DEGREE..157
DELETE... 158
DIM ...159
END ... 161
F ILE S ... 162
FOR...NEXT...................................... 163
F R E ... 164
GOSUB...RETURN 165
GOTO .. 166
G R A D ... 167
IF...THEN ...168
INKEY$.. 170
INPUT .. 172
INPUT# .. 173
K ILL ... 174
LEFT$.. 174
LEN ... 175
LET ... 176
LFILE S ... 176
LIST ... 177
LLIST ... 178
LOAD ... 179
LOCATE... 180
LP R IN T .. 181
MID$.. 182
M O N .. 182
N E W .. 183
ON...GOSUB....................................... 184
ON...GOTO 185
O P E N ... 186
PASS ... 187
PRINT .. 188
PRINT# .. 191
RADIAN ... 193
RANDOMIZE 194
READ ... 195

REM (’) ...196
RENUM ..197
RESTORE... 198
RIGHTS ... 199
R N D ..200
R U N ..201
S A V E ..202
STO P..203
STR$..204
TROFF .. 205
TRON .. 205
USING ... 206
V A L ...207
WAIT ..208

INDEX

A
ASCII code 98, 109
ASMBL mode 9,121
Array variables 77
Assembler 118

assembling 126
errors 134
list 129
pseudo instructions 130
reserving area 120
source program coding and editing

Auto OFF 8

B
BASIC

commands 85
concepts and terms 74
converter 9
mode 9
program operation 73
reference 135
statements 84

Basic operations 26
BATT indicator 11,12
Batteries

handling 15
operating 7, 12
memory backup 7,14
replacement 12

BUSY indicator 10

C
CAL mode 9, 22
Calculations

errors 71
length 66
ranges 145
scientific 27, 66, 136
serial 62
statistical 50

CAPS indicator 10
Care of computer 226
Cassette recorder

interface 16, 17
specifications 17

Character codes 215
Command reference

BASIC 135
machine language 112

Complex numbers 48
Communication parameters 105
CONST indicator 10
Constants

calculations 63
physical 43

122 string 74
Contrast 11
Conversions

angle/time 29, 68
metric 45
polar/rectangular 30, 68
TEXT/BASIC 109

Cursor 10

D
Data transfer cable 16, 210
Debugging 94
Decimal places 24, 31
DEG indicator 10
Degree 25, 66
Devices, peripheral 16
Direct calculation 69
Direct command 86, 147
Direct input 21
Display 6, 10
Display mode 24

E
E indicator 11
11-pin connector 6, 16
Engineer software (ENG) 9, 34

list 35
Error messages 117, 212
Errors 62,71,134
Expressions 80

logical 82
relational 81
string 81

Extensions of filenames 80

F
Factorization 34

formulas 36
Filenames 80
Files, program 80
Fixed variables 76
Formulas

factorization 36
integration 40
trigonometric 38

Free memory (FRE) 3

G
GRAD indicator 10
Gradient 25, 66
Greek alphabet 42

H
Hardware 6, 8
Hexadecimal numbers 74

I
I/O, serial 16, 104

command table 16
Initializing the computer 2
Integration 34

formulas 40

K
Key functions 216
Keyboard 6

L
Labels 85, 124
Last answer recall 65
LCD screen 6, 10

contrast dial 6, 11
Line numbers 84
Logical expressions 82

M
M indicator 11
Machine language monitor 111

command reference 112
error messages 117

Memory
available 3
calculations using 27
maps 221

Metric conversion 45
Modify function 32
Monitor mode 111

N
Names, file 80
Numeric operators 26

O
Object program 118, 122
Operation modes 9

selection 9
Operator precedence 32, 70, 83
Operators

logical 82
numeric 26, 80
relational 69, 81

P
Parentheses 31, 33, 83
Peripheral devices 16
Physical constants 43
Precedence 32, 70, 83
PRINT indicator 11
Printer/cassette interface 16, 19
Printing, direct input 71
Priority levels 32, 70, 83
PRO mode 9, 73, 86

indicator 11
Program

entering 86
execution 92
files 80
from other computers 224
listing 87, 90
storing 92

Programming 84, 86
Prompt 10, 113
Protective cover ii
Pseudo instructions 130

R
RAD indicator 10
Radians 25, 66
RAM disk i, 80, 221
Relational operators 69, 81
RESET

button 7
operation 2, 219

RUN mode 9, 11, 58
calculations in 58
indicator 11

S
Scientific

calculations 27, 66, 136
notation (SCI) 24

Second function (2nd F)
indicator 10
key 9

Serial calculations 62
Serial I/O 98,104
Shift key 9
Single-variable statistics 50
Source program 118, 123
Specifications 222
STAT mode 11, 50

indicator 11
Statement 84, 123
Statistics

calculations 50, 54
data deletion 51
data entry 51,55
printing 54
single-variable 50
two-variable 54

Status line 10
Storing programs 92

Variables 75
fixed 76
numeric 76
simple 77
string 76
types 76
using in calculations 64
using in programs 89

W
Wild card 102

T
TAB key 100
Tape

notes 19
recording 17

TEXT mode 98
communication parameters 105
editor 99
functions 98
indicator 11

TEXT/BASIC conversion 109
Trace mode 94
Trigonometric calculations 28, 66, 67

formulas 38
Troubleshooting 219
Turning on 8

SHARP CORPORATION

OSAKA, JAPAN

1991 C SHARP CORPORATION

PRINTED IN JAPAN/IMPRIME AU JAPON
1E1KS(TINSE1204ECZZkZ

